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Lecture I:

Control under communication constraints

e Classical control theory are
based on perfect exchange
of information

e Modern control systems are
often networked
+ added flexibility
+ cheaper implementation

e Sensor and actuator data
are then transmitted over a
shared network resource

— added uncertainty
— higher complexity
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Motivating applications

Scania truck

Volvo XC90

SMART-1 spacecraft

Power control in wireless system

Congestion control in communication network
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Networked control architecture

of a Scania truck

Control units connected through 3 controller area
networks (CANS) coloured by criticality

CAN is a standard introduced by Bosch 1986
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Networked control architecture of a Volvo XC90

e 3 CAN networks connect up to
40 control units

e Example of control system using
CAN is vehicle dynamics control
(electronic stability program)
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Networked control architecture
of the SMART-1 spacecraft

First European lunar mission, launched Sep 2003

CAN networks for control system (“system”) and for

scientific experiments (“payload”)
Node and communication redundancies
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Distributed power control in cellular systems

e Power control in each mobile station tries to keep signal-to-interference
ratio (SIR) at a threshold value

e Disturbances from channel fluctuations and interfering traffic

e Control in mobile station based on gquantized estimate of SIR
communicated from base station

. Multiple Access
Channel attenuation Tnterforence

&

y
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HBase
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| SIR Ertimation
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Quantization




Congestion control in packet-switched
data communication network

e Each sender regulates sending

rate based on congestion (rgheeceer
information from receiver =

e Variations in available Receiver
bandwidth and traffic load >

« Congestion indicated implicitly =

through missing
acknowledgement packets

e Quantized control command

Se?r \ \

[Discussed in detail next lecture] %=



Examples of
networked control architectures

mg=mge
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What is hybrid in networked control?

 Networked control systems are inherently hybrid, not only
because interaction of physical plant and computer control,
but also because they have
— mixture of event- and time-triggered communication protocols
— asynchronous network nodes (no global clock)
— quantized sensor data to limit network traffic
— symbolic control commands to simplify design and operation

e Now on we mainly discuss
modelling and compensating
some communication constraints, .
cf., Mitter’s lecture | ,
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Control with constrained communication

e Limitations in the communication of sensor and actuator data
Impose constraints on the control system

e Communication imperfections include

— Delay and jitter
— Quantization [Lecture by Palopoli] A { -| s
— Packet loss f
— Bit error J
— Outage (lost connection) | Novork

[ -

L |
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Time delays

e Delays in communication due to buffering and propagation delays
e Delays are bad for control loops (avoid if possible)

e Delays can be fixed or varying, known (measurable) or unknown
e Data loss can be interpreted as infinity delay

0 - B
[}
Network N
A
Delays
———— L y

C =
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Unknown and fixed time delay
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Unknown and varying time delay

o,
=

C(s)

Remark: Closed-loop gain needs to be sufficiently small.
Easy to check through Bode plot.
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Relation to Nyquist Criterion

Piw)Clw) | 1 1
1+ P(iw)C(iw) |~ |1 —etem| ~ ©op
Lincoln inequality imposes

N
¥m h Tmax%e ‘-II
0 £ 7 £ Tmax

Corresponds to the Nyquist Criterion
for fixed (t) = rmax
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P(s)

EH
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Known time delay

Known time delays can be compensated by Smith predictor

Controller Delay Plant

- e = PO

Closed-loop system with P=Pand? =71

F —_— PG i)
=1 PG

Design controller as if there were no time delay and then implement structure above

—8T .
T

K. H. Johansson, 1st HYCON PhD School on Hybrid Systems, Siena, 2005



= Plant

Major improvement in control ‘ , ,
performance if delays are
known/measurable (or can be Ty il Ty
accurately estimated) t e T T,

Example

CAN protocol (discussed earlier) is event-triggered and does not give
timing guarantees in general

TTCAN (Time-triggered communication on CAN) is an extension to the
CAN standard targeting the need from sampled-data control
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Compensating known delays:

State feedback controller
% 2(kh)
N

w(kh + 1) = —LZ(kh + 1)

kh—+1g
Z(kh + 1) = A% x(kh) —I—/ e ARIATE=S) By(5)ds
kh
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Compensating known delays:

Output feedback controller
% y(kh)
- 1

T(kh) = x(kh) + Kly(kh) — Cz(kh)]

kh4+T1;.

Z(kh + 1) = eA™Z(kh) +f eARNTTE=8) By (5)ds
kh

u(kh + ) = —LZ(kh + 1)
kh+h

i(kh + h) = e TR E (KD 4+ 73) +/ e AKh+h=5) By (s)ds
kh—+T1



Large delays and out-of-order delivery

A | ‘ . \ BOEE)ENE [arge known delays can be treated
as before by extending the estimator state

== (one dim per extra sampling period delay)
I !
Network e Buffers can handle out-of-order delivery,
A ! but may also increase delays
e Don’t wait for late data, but when they
o f—1| arrive use them to adjust old estimates
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ys (k)

Packet loss

Modify traditional observer; simplest case: teth)
Kly(k) — C2(k)], d(k) =0
#(k+ 1) = Ba(k) + Tu(k) + 1 W) — O, (k)

e Can be hard to handle packet loss: when decide that E(ENESR"?
— E.g., TCP uses TimeOut variable to decide when a packet is lost

e It can be better to drop data, than use old information for control
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Bit errors and outages

e Bit errors are due to rapid variations in the physical channel
e Unlikely in wired systems, but important in wireless systems
e Compensation through forward error correction (coding)

) X 0 —— ]

1 T 171 [ | || ||

e Qutages are sudden events when connection is lost
e A severe problem in most wireless systems
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Integrated design of control and
communication systems

e Up to here, communication has been considered as a
disturbance or model imperfection affecting control

e \What about jointly design control and communication,
along the proposal in Mitter’s lecture?

e Let’s illustrate with an example

K. H. Johansson, 1st HYCON PhD School on Hybrid Systems, Siena, 2005
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Example:

Stabilization of networked systems

e Consider joint state feedback stabilization of a set plants,
when only one plant can utilize the bus at a time:

Communication bus

e What control and communication policy should be adopted?
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Hybrid system representation

e How choose the guard conditions of the hybrid automaton to
stabilize the system?

v |

Communication bus




“Largest state first”-policy

21| < €A
|x2| 2 |3
'
£1 = A121 1 = Ay
g2 = (A2 + B2K2)x2
— < ==
Theorem [Hristu-V. and Kumar]
For scalar unstable systems:




= Plant

Summary _ -

ucs
o
(95}
-
T =
[X]

Communication and networking I ] I

Important in growing number of

7 (:"1 T‘l Tj

control applications

Communication delays, quantizers, losses, errors and outages can be
viewed as constraints imposed on the control system

Can in many cases be suitably modelled as hybrid systems

Design methodologies exist for certain classes of constraints, but much
more remains to be done

Desirable to jointly design control and communication system

— Control algorithms need to adapt to changing network conditions

— Communication protocols should be aware of control needs

— But, other network applications set competing restrictions

K. H. Johansson, 1st HYCON PhD School on Hybrid Systems, Siena, 2005
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Traffic control in packet-switched
communication network

Objective is to
e Give each user suitable service

e Utilize network resources efficiently Receiver
=
Obtained through two control mechanisms: Receiver
/

Spatial control . 4 \%{?a
e route traffic short way through the network ) =
e receiver address in header of each packet
e shortest-distance matrix in each router
e updated on a slow time scale Sender K

wf \
Temporal control =

\z‘r«f‘ Sender

e adjust sending rate to available bandwidth

e base on info available in sender (end-to-end)
e implicit bandwidth estimate through ack’s

e updated on a faster time scale

¥=—=
i =g!
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Temporal congestion control @5

-
&

| X — \/\ Receiver
e Each network link has a limited capacity / / \ a

=
N =
—c

il
A Y L2

e Variations in traffic is primarily handled :
by temporary storage in router buffers

e |If a buffer gets full, it simply throws
away incoming packets Sender \

e Hence, congestion leads to lost packet ~~%§,

<
2

e Acknowledgements (ack’s) indicate (Tl Sender
sender, who can take action L ==

Sender Receiver

—
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Transmission control protocol (TCP)

TCP implements a congestion controller that regulates the sending rate

Control variable is the congestion window w, which represents
number of outstanding (not-yet-acknowledged) packets

Control is based on implicit feedback information from ack’s

TCP follows additive increase multiplicative decrease (AIMD) strategy
Sender / Receiver Sender \ Receiver

K. H. Johansson, 1st HYCON PhD School on Hybrid Systems, Siena, 2005



TCP congestion avoidance

aod
B [ en o b

== a/a|=| vo|s| oAl =]

b o bered oaoporeri . Fssnples. West wssd (st (S I -E ]

TCP

Window w is updated each round-trip time RT'T e

If no drops occur, then w:=w+1

If drop occurs, then w := w/2

9
Flow 2 g @

Hybrid system is obtained by interpreting
w as a continuous-time real variable:

Typical windows evolution:

drop? °

60

= /WWWW

° 25
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Hybrid dynamics of a queue

Queue Queue Queue
Empty < p Active ., Ful

Receiver
q(t)

SN (1) ; B(t) @
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Hybrid model of TCP over single link

drop?

w
w .= —

2
drop
s nla al T q
RI'T =11 —
prop =+ B

r<B,z:=0 c:l.rop
Sender .
q(t) Recelver
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=
A
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Timeout handles severe congestion
Slow-Start gives faster growth initially
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Hybrid model of TCP
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Alternative models of network traffic:
Packet models and fluid models

Packet models Fluid models

e Model each individual packet e Averaged fluid quantities
(event-driven) (time-driven)

e Accurate but computationally e Capture only steady-state
heavy and slow behaviors

e Hybrid model combines features of these traditional network models

K. H. Johansson, 1st HYCON PhD School on Hybrid Systems, Siena, 2005



TCP over wireless links

Base Mobile

Sender -
Station _ : Receiver
Radio Link

.: TCP protocol .: RLC protocol

 Integration of Internet and cellular networks hard due to radio link variations
e When used over wireless links, TCP cannot ensure a high link utilization

e Packet drops, bandwidth and delay variations in radio link erroneously
indicate network congestion to TCP

e How do radio links affect TCP throughput?
e Can we make the radio link and the cellular system “TCP friendly”?
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A hybrid cascade control problem

e Radio link transforms losses into random
delays

e Key dynamics from cascaded feedback
control loops

Inner and outer power controls
Link-layer retransmission
TCP

 Increased probability of spurious timeout
gives reduced TCP throughput

e Adjust link layer properties to optimize TCP

throughput

Q—-—Enmd{t—- -"d_h"'k y

1

Scheduling Redundancy Rate

A

Decodd

?}ﬁj}%»}.

Power

#

SR
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New feedback protocols for wireless Internet

e Improved TCP throughput through new radio network feedback protocol

e Proxy between cellular system and Internet adapt sending rate to radio
bandwidth variations obtained from radio network controller (RNC)

App Serv
RNC 3G-SGSN

3G-GGSN

\

ERICS50N =

\
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http://www.ericsson.com/

New feedback protocols for wireless Internet

e Hybrid controller in proxy regulates sending rate based on
— Events generated by radio bandwidth changes obtained from RNC
— Sampled measurements of queue length in RNC

e Improved time-to-serve-user and utilization compared to
traditional end-to-end TCP

uuuuuuuuuuuuuuuuuuuu

RNFMessage

« available BW
= queus length

i
i
son|-
variable BW / delay anf
: =

-
-
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Challenges in network traffic control

Deployment
— Implementation in end computers

Distributed control
— Communication constraints
— Implicit state information

Complex interacting dynamics
— Network, protocol and user dynamics
— Large and varying time delays
— Wired and wireless links
— Packet loss

No clear optimality objective
— Network throughput
— User throughput

— Response time
— FEairness

[

i =]

M=)
e

Netweork

Data link

Physical
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Summary

Hybrid model of congestion control in packet-switched networks
Combine event-driven packet models with time-driven fluid models
Accurate on time-scale of the round-trip time

Enables analysis and efficient simulations of congestion control

Interactions between wireless links and TCP lead to performance loss
Hybrid controller gives improved user experience and network utilization
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