
13

HYSCOM
IEEE CSS Technical Committee on Hybrid Systems

scimanyd suounitnoc enibmoc smetsys dirbyH
lacipyt (snoitauqe ecnereffid ro laitnereffid)

scimanyd etercsid dna stnalp lacisyhp fo
fo lacipyt (snoitidnoc lacigol dna atamotua)

fo senilpicsid gninibmoc yB .cigol lortnoc
,yroeht lortnoc dna smetsys dna ecneics retupmoc

dilos a edivorp smetsys dirbyh no hcraeser
,sisylana eht rof sloot lanoitatupmoc dna yroeht
fo ngised lortnoc dna ,noitacifirev ,noitalumis
egral a ni desu era dna ,''smetsys deddebme``

ria ,smetsys evitomotua) snoitacilppa fo yteirav
ssecorp ,smetsys lacigoloib ,tnemeganam ciffart

.(srehto ynam dna ,seirtsudni

www.ist-hycon.orgwww.unisi.it

1 HYCON PhD School on Hybrid Systemsst

Siena, July 19-22, 2005 - Rectorate of the University of Siena

Reachability Analysis of
Stochastic Hybrid Systems

Maria Prandini
Politecnico di Milano, Italy

prandini@elet.polimi.it

Maria Prandini
Politecnico di Milano, Italy

E-mail: prandini@elet.polimi.it

In collaboration with Jianghai Hu, Purdue University, and Shankar
Sastry, University of California at Berkeley

Reachability Analysis for Stochastic Hybrid
Systems: a Markov chain approximation method

Outline
• Reachability

– Reachability & safety verification
– Probabilistic safety

• Reachability computations for safety verification

• A Markov chain approximation method for probabilistic safety
verification

• Application to aircraft conflict detection

Reachability
Given a system and a set of initial conditions S0

determine the set of states that can be reached by the system
starting from S0

S0

Reachability
Given a system and a set of initial conditions S0

determine the set of states that can be reached by the system
starting from S0

Reach(S0)

S0

Safety verification
• In some systems, a region of the state space is “unsafe”.

• One has to verify that the system operates in safe conditions, i.e., it
keeps staying inside the safe set.
If that is not the case the system has to be modified so as to
guarantee safety.

Reachability & safety verification
Reachability analysis can be used for safety verification

Reach(S0) ⊂ safe set F

the system is operating in safe conditions

Reach(S0)
S0

safe set F

Reachability & safety verification
Reachability analysis can be used for safety verification

Reach(S0) ⊄ safe set F

the system is operating in unsafe conditions

Reach(S0)
S0

safe set F

Safety for stochastic systems
In stochastic systems, trajectories are realizations of a stochastic

process, and different realizations have different likelihood.

• if every realization keeps staying inside the safe set, then the system
is 100% safe

100% safe ↔
Reach(S0) ⊂ safe set F

Reach(S0)
S0

safe set F

Safety for stochastic systems
In stochastic systems, trajectories are realizations of a stochastic

process, and different realizations have different likelihood.

• if the set of realizations exiting the safe set has probability smaller
than ε, then the system is 100(1-ε)% safe

100(1-ε)% safe ↔
Pr(Reach(S0)\ safe set F) < ε

Reach(S0)
S0

safe set F

Safety for stochastic systems
Two safety notions:
• every realization has to keep staying inside the safe set

worst-case safety
trajectories are considered all equally admissible as if the system were
deterministic
conservative

• some realizations may exit the safe set, but this event has small
probability

probabilistic safety
trajectories are weighted according to their likelihood
no 100% guarantees

Model checking
automatic methods for safety verification through reachability
computations

– require to be able to “compute” with sets and probabilities (represent and
propagate)

– mainly developed for deterministic systems (worst-case safety)

Model Checker
model

safe set
safe/not safe

Deterministic finite automata
S = {q1, q2, …} ≡ finite set of states
Σ = {a, b, c,… } ≡ finite set of input symbols (events)
T ⊂ S × Σ × S ≡ transition relation

S = {1,2,3,4,5,6} Σ = {a, b}
T = {(1,a,2),(1,b,3),(2,a,5),(2,b,4),(3,a,1),(3,b,6),(4,a/b,4),(5,a/b,5),(6,a/b,6)}

deterministic
finite

automaton

Graph
representation

1

2 3

4 5 6

a b

bab

a

a,b a,b a,b

Deterministic finite automata: execution
S = {q1, q2, …} ≡ finite set of states
Σ = {a, b, c,… } ≡ finite set of input symbols (events)
T ⊂ S × Σ × S ≡ transition relation

execution ≡ sequence of states {s0, s1, s2, …} such that there exists a sequence
of events {e0, e1, e2, …} for which (si, ei, si+1) ∈ T, ∀i

{3,1,2,4,4, …} is an execution

deterministic
finite

automaton

1

2 3

4 5 6

a b

bab

a

a,b a,b a,b

Deterministic finite automata: reach set
S = {q1, q2, …} ≡ finite set of states
Σ = {a, b, c,… } ≡ finite set of input symbols (events)
T ⊂ S × Σ × S ≡ transition relation

given a set of initial states S0⊂ S:
Reach(S0) ≡ set of states s ∈ S for which there is a finite execution that starts in
S0 and ends at s

deterministic
finite

automaton

S0={3}1

2 3

4 5 6

a b

bab

a

a,b a,b a,b

Deterministic finite automata: reach set
S = {q1, q2, …} ≡ finite set of states
Σ = {a, b, c,… } ≡ finite set of input symbols (events)
T ⊂ S × Σ × S ≡ transition relation

given a set of initial states S0⊂ S:
Reach(S0) ≡ set of states s ∈ S for which there is a finite execution that starts in
S0 and ends at s

reach set computation
by listing all finite
executions

deterministic
finite

automaton

1

2 3

4 5 6

a b

bab

a

a,b a,b a,b

S0={3}

{3,1,2,4}
{3,1,2,5}
{3,6}
…

Reach(S0) = S

finite executions
starting from s = 3

Deterministic finite automata: reach set
S = {q1, q2, …} ≡ finite set of states
Σ = {a, b, c,… } ≡ finite set of input symbols (events)
T ⊂ S × Σ × S ≡ transition relation

one-step successor operator:
Post: 2S → 2S
Post(A)={s’ ∈ S: ∃ s ∈ A, e ∈ Σ, (s,e,s’) ∈ T}

deterministic
finite

automaton

one-step successors of
the set of states A

1

2 3

4 5 6

a b

bab

a

a,b a,b a,b

S0 = {3}

Reach0 = {3}
Reach1 = Reach0 ∪ Post(Reach0) = {1,3,6}
Reach2 = Reach1 ∪ Post(Reach1) = {1,2,3,6}
Reach3 = Reach2 ∪ Post(Reach2) = S
Reach4 = Reach3

Reach(S0) = S

Deterministic finite automata: reach set
S = {q1, q2, …} ≡ finite set of states
Σ = {a, b, c,… } ≡ finite set of input symbols (events)
T ⊂ S × Σ × S ≡ transition relation

one-step successor operator:
Post: 2S → 2S
Post(A)={s’ ∈ S: ∃ s ∈ A, e ∈ Σ, (s,e,s’) ∈ T}

deterministic
finite

automaton

one-step successors of
the set of states A

1

2 3

4 5 6

a b

bab

a

a,b a,b a,b

S0 = {3}

Reach0 = {3}
Reach1 = {1,3,6}
Reach2 = {1,2,3,6} ⊄ F not safe

F = {1,3,4,5,6}
Safe set:

Safety verification algorithm

initialization: Reach-1 = ∅
Reach0 = S0
i = 0

loop: while Reachi ≠ Reachi-1 and Reachi ⊆ safe set F do
Reachi+1 = Reachi ∪ Post(Reachi)
i = i + 1

output: if Reachi = Reachi-1 then the system is safe else the system is not safe

algorithm can terminate immediately if
one of the Reachi is not included in F

Theorem: Since S is finite then
the algorithm can be implemented and always terminates.

Backward-reachability
S = {q1, q2, …} ≡ finite set of states
Σ = {a, b, c,… } ≡ finite set of input symbols (events)
T ⊂ S × Σ × S ≡ transition relation

given a set of final states Sf⊂ S:
BackReach(Sf) ≡ set of states s ∈ S for which there is a finite execution that
starts in s and ends at Sf

1

2 3

4 5 6

a b

bab

a

a,b a,b a,b

BackReach({2}) = {1,2,3} ∩ S0 ≠ ∅

deterministic
finite

automaton

Unsafe set: Sf={2} S0 = {3}

not safe

Backward-reachability
S = {q1, q2, …} ≡ finite set of states
Σ = {a, b, c,… } ≡ finite set of input symbols (events)
T ⊂ S × Σ × S ≡ transition relation

one-step predecessor operator:
Pre: 2S → 2S
Pre(A)={s ∈ S: ∃ s’ ∈ A, e ∈ Σ, (s,e,s’) ∈ T}

deterministic
finite

automaton

1

2 3

4 5 6

a b

bab

a

a,b a,b a,b

BReach0 = {2}
BReach1 = BReach0 ∪ Pre(BReach0) = {2,1}
BReach2 = BReach1 ∪ Pre(BReach1) = {2,1,3}
BReach3 = BReach2 ∪ Pre(BReach2) = {2,1,3}

BackReach({2}) = {1,2,3} ∩ S0 ≠ ∅

Unsafe set: Sf={2} S0 = {3}

not safe

Backward-reachability
S = {q1, q2, …} ≡ finite set of states
Σ = {a, b, c,… } ≡ finite set of input symbols (events)
T ⊂ S × Σ × S ≡ transition relation

one-step predecessor operator:
Pre: 2S → 2S
Pre(A)={s ∈ S: ∃ s’ ∈ A, e ∈ Σ, (s,e,s’) ∈ T}

deterministic
finite

automaton

1

2 3

4 5 6

a b

bab

a

a,b a,b a,b

BReach0 = {2}
BReach1 = {2,1}
BReach2 = {2,1,3} ∩ S0 ≠ ∅

Unsafe set: Sf={2} S0 = {3}

not safe

Safety verification algorithm (backward procedure)

initialization: BReach-1 = ∅
BReach0 = Sf
i = 0

loop: while BReachi ≠ BReachi-1 and BReachi ∩ S0 = ∅ do
BReachi+1 = BReachi ∪ Pre(BReachi)
i = i + 1

output: if BReachi = BReachi-1 then the system is safe else it is not safe

algorithm can terminate immediately
if BReachi intersects S0

Theorem: Since S is finite then
the algorithm can be implemented and always terminates.

Safety verification
Deterministic finite automata:

– sets & transitions can be represented by enumeration
– termination of the algorithm is guaranteed

Safety verification is decidable:
there exists a computational procedure that decides in a finite
number of steps whether the system is safe or not.

– large-scale systems state space explosion
– technical challenge: devise algorithms and data structure to handle large

state spaces
• binary decision diagrams to obtain a more compact, symbolic representation
• semantic minimization to reduce the state space
• …

Deterministic hybrid automata

Q ≡ set of discrete states
Rn ≡ continuous state-space
f : Q × Rn → Rn ≡ vector field
Φ : Q × Rn → Q × Rn ≡ discrete transition (& reset)

hybrid
automaton

execution ≡ pair of right-continuous signals q:[0,∞) → Q, x:[0,∞) → Rn such that

1. q is piecewise constant and x is piecewise differentiable
2. on any interval (t1,t2) where q is constant and x is differentiable

3.

Deterministic hybrid automata: execution

Q ≡ set of discrete states
Rn ≡ continuous state-space
f : Q × Rn → Rn ≡ vector field
Φ : Q × Rn → Q × Rn ≡ discrete transition (& reset)

hybrid
automaton

Transition systems

transition
system

Q ≡ set of discrete states
Rn ≡ continuous state-space
f : Q × Rn → Rn ≡ vector field
Φ : Q × Rn → Q × Rn ≡ discrete transition (& reset)

same set of reachable states

((q0,x0), τ, (q0,xf)) ∈ T if ∃ tf > 0 s.t.

((q0,x0), (q0,qf) , (qf,xf)) ∈ T if

same (q0,x0) and τ appear in
many distinct elements of T

S = Q × Rn ≡ set of states (infinite)
Σ = {τ, (qi,qj): qi,qj∈Q} ≡ alphabet of events:

τ is the continuous evolution event
(qi,qj) is a jump event

T ⊂ S × Σ × S ≡ transition relation

hybrid
automaton

Same algorithms as for the deterministic finite automata, but:

– the set of states S = Q×Rn is not finite

– computation and representation of the successor/ predecessor of set A
when the event is a continuous evolution:

Postc(A) = {s’ ∈ S : ∃ s ∈ A, e = τ ∈ Σ, (s,e,s’) ∈ T}

Prec(A) = {s ∈ S : ∃ s’ ∈ A, e = τ ∈ Σ, (s,e,s’) ∈ T}

is not simple (in general)

Deterministic hybrid automata: reach set Safety verification
Deterministic hybrid automata:

– termination is not guaranteed in general

– set representation and propagation by continuous flow is difficult
• exact methods for classes of systems with simple dynamics
• approximation methods for more general classes of systems:

– Over-approximation methods
– Asymptotic approximation methods

Decidability results have been proven by using discrete abstraction for certain
classes of hybrid automata: building a finite quotient transition system
(deterministic finite automaton) that is “equivalent” to the original hybrid automaton for
the purpose of safety verification

Asymptotic approximation methods
Aim:

obtaining an approximation of the reachable sets that converges to
the true reachable sets as some accuracy parameter tends to zero

Characteristics
– can be applied to general classes of systems and they do not require a specific

shape for the reachable sets
– reachability computations become more intensive as the dimension of the

continuous state space grows

Stochastic finite automata

S = {1,2,3}

S = {q1, q2, …} ≡ finite set of states

Φ: S × S → [0,1] ≡ transition probability function

Φ(s, s’) ≡ probability of transitioning to state s’ when in state s

Markov
chain

s ∈ S s’ ∈ S Φ(s,s’)

1 1 1
1 2 0
1 3 0
2 1 0.95
2 2 0
2 3 0.05
3 1 0.5
3 2 0
3 3 0.5

Stochastic finite automata
S = {q1, q2, …} ≡ finite set of states

Φ: S × S → [0,1] ≡ transition probability function

Φ(s, s’) ≡ probability of transitioning to state s’ when in state s

Markov
chain

1 2

3

0.95

0.5 0.05

1

0.5

S = {1,2,3}

S = {q1, q2, …} ≡ finite set of states

Φ: S × S → [0,1] ≡ transition probability function

execution ≡ sequence of states {s0, s1, s2, …} such that Φ(si, si+1)>0, ∀i

Stochastic finite automata: execution

{2,1,1} is a finite execution starting from 2
1 2

3

0.95

0.5 0.05

1

0.5

Markov
chain

initial state
probability distribution

• One has to guarantee that every realization of the Markov chain
process keeps staying inside the safe set

stochastic
finite
automaton

not 100% safe

1

0.95

0.5 0.05

1

0.5

2

3

Stochastic finite automata: worst-case safety

S0 = {2} Sf = {3}

BReach0 = {3}
BReach1 = {3, 2} (∩ S0 ≠ ∅)

deterministic
finite
automaton

1

e

e e

e 2

3

S0 = {2} Sf = {3}

Sf = {3}

e

• One can allow that some realizations of the Markov chain process
exit the safe set, if this event has low probability

The realizations starting from state 2 that eventually reach the unsafe state 3
have probability 0.05.

95% safe

stochastic
finite
automaton

1

0.95

0.5 0.05

1

0.5

2

3

Stochastic finite automata: probabilistic safety

Sf = {3}

Probabilistic safety analysis

modified
Markov
chain

S = {q1, q2, …} ≡ finite set of states

Φ: S × S → [0,1] ≡ transition probability function
Markov
chain

Q = {q1, q2, …} ≡ finite set of states

p: Q × Q → [0,1] ≡ transition probability function

every state in the unsafe
set becomes absorbing

P0 ≡ initial state probability distribution over S0

P0 ≡ initial state probability distribution over S0

Probabilistic safety analysis

same safety properties

Sf = {3}

1

0.95

0.5 0.05

1

0.5

2

3

1

0.95

1

1

2

3 Sf = {3}0.05

P-Safety verification: backward procedure

Markov
chain

Q = {q1, q2, …} ≡ finite set of states

p: Q × Q → [0,1] ≡ transition probability function

P0 ≡ initial state probability distribution over S0

Backward procedure for computing this conditional probability map

P-Safety verification: backward procedure

Markov
chain

Q = {q1, q2, …} ≡ finite set of states

p: Q × Q → [0,1] ≡ transition probability function

P0 ≡ initial state probability distribution over S0

probability of reaching the unsafe
set starting from q’ at time k+1

probability of reaching
q’ from q in one step

P-Safety verification: backward procedure

Markov
chain

Q = {q1, q2, …} ≡ finite set of states

p: Q × Q → [0,1] ≡ transition probability function

P0 ≡ initial state probability distribution over S0

Define

then

0 1 kfkf -1.k+1kk-1

backward reach
computations

Initialization?

P-Safety verification: backward procedure

Markov
chain

Q = {q1, q2, …} ≡ finite set of states

p: Q × Q → [0,1] ≡ transition probability function

P0 ≡ initial state probability distribution over S0

Define

then

Initialization

P-Safety verification algorithm

initialization: k = kf -1

loop: while k ≥ 0 do

k = k-1

output: if

then the system is P-safe else the system is not P-safe

P-safety verification

1

0.95

1

1

2

3 Sf = {3}0.05

P-Safety verification algorithm

initialization: k = kf -1

loop: while k ≥ 0 do

k = k-1

output: if

then the system is P-safe else the system is not P-safe

If kf <∞ (finite time horizon) the algorithm terminates

If kf =∞ (infinite time horizon) convergence issue….

P-Safety verification algo: convergence

matrix of the transition
probabilities between
safe states

column vector of the
probabilities of reaching
the unsafe set in one step

Define the column vector of unknowns for all safe states

then

P-Safety verification algo: convergence

Define the column vector of unknowns for all safe states

then

discrete time system with constant input and state πc

A has on each row positive elements whose sum is smaller or equal to 1

asymptotically stable convergence of πc to some (unique) equilibrium

execution ≡ solution to the stochastic differential equation (SDE)

Continuous stochastic systems: execution

continuous
stochastic

system

standard n-dimensional
Brownian motion

P0 ≡ initial state probability distribution over S0

Rn ≡ continuous state-space
b : Rn → Rn ≡ drift
σ : Rn → Rn ×Rn ≡ diffusion

Probabilistic safety analysis

continuous
stochastic

system

P0 ≡ initial state probability distribution over S0

Rn ≡ continuous state-space
b : Rn → Rn ≡ drift
σ : Rn → Rn ×Rn ≡ diffusion

Given the stochastic differential equation (SDE)

and a look-ahead time horizon [0,tf],

compute the probability

with initial condition X(0) ∼ P0.

Problem to be Solved

Pc=P(X(t)∈Sf for some t∈[0,tf]),

Impossible to solve analytically, in general.

U

Stochastic Approximation

• Idea: approximate the solution to the SDE with a Markov chain
defined on some grid points

Consider S = all the grid points δZ2 in U\Sf

Sf

Find an open U containing Sf with compact support Find an open U containing Sf with compact support

U

Stochastic Approximation

• Idea: approximate the solution to the SDE with a Markov chain
defined on some grid points

Consider S = all the grid points δZ2 in U\Sf

SfDefine a Markov chain Q on S
such that Q→ X as δ→0d

For a small δ, compute
P(Q reaches Sf first than Uc during [0,tf])

A good approximate of Pc

Weak Convergence of MC

po
(δ)(q): q →q,

pw
(δ)(q): q→qw,, pnw

(δ)(q): q→qnw, psw
(δ)(q): q→qsw

pe
(δ)(q): q→qe,, pne

(δ)(q): q→qne, pse
(δ)(q): q→qse

pn
(δ)(q): q→qn,, ps

(δ)(q): q→qs

qn

qs

qeqw

Each interior point q in S has eight neighbors: qw, qe, qn, qs, qnw, qsw, qne, qse

qneqnw

qse
qsw

Weak Convergence of MC

Each point q in ∂S is an absorbing state

q ∈∂SU

q ∈∂SD

Each interior point q in S has eight neighbors: qw, qe, qn, qs, qnw, qsw, qne, qse

po
(δ)(q): q →q,

pw
(δ)(q): q→qw,, pnw

(δ)(q): q→qnw, psw
(δ)(q): q→qsw

pe
(δ)(q): q→qe,, pne

(δ)(q): q→qne, pse
(δ)(q): q→qse

pn
(δ)(q): q→qn,, ps

(δ)(q): q→qs

Weak Convergence of MC

Theorem: The Markov chain Q converges weakly to the solution X to
the SDE on U\Sf with absorption on the boundary, if as δ→0
1. Eδ[Qn+1-Qn|Qn=q]/∆t(δ) → b(q);
2. Eδ[(Qn+1-Qn)(Qn+1-Qn)T|Qn=q]/∆t(δ) → σ(q)σ(q)T.
(local consistency conditions)

Time it takes for each jump is ∆t(δ) (→ 0, as δ → 0)

qn

qs

qeqw

qneqnw

qse
qsw

q

Each interior point q in S has eight neighbors: qw, qe, qn, qs, qnw, qsw, qne, qse

po
(δ)(q): q →q,

pw
(δ)(q): q→qw,, pnw

(δ)(q): q→qnw, psw
(δ)(q): q→qsw

pe
(δ)(q): q→qe,, pne

(δ)(q): q→qne, pse
(δ)(q): q→qse

pn
(δ)(q): q→qn,, ps

(δ)(q): q→qs

Each point q in ∂S is an absorbing state

P-safety verification by MC approximation

continuous
stochastic

system

P0 ≡ initial state probability distribution over S0

Markov
chain

Q = {q1, q2, …} ≡ finite set of states

p(δ): Q × Q → [0,1] ≡ transition probability function

P0 ≡ initial state probability distribution over S0 ∩δZ2

Rn ≡ continuous state-space
b : Rn → Rn ≡ drift
σ : Rn → Rn ×Rn ≡ diffusion

Transition Probabilities
Assume that σ(x)= a(x) I (diagonal matrix)
One example of transition probabilities that work is

where

po
(δ)(q)=χq/Cq

(δ)

pw
(δ)(q)=exp(-δξq) /Cq

(δ), pe
(δ)(q)=exp(δξq) /Cq

(δ),
ps

(δ)(q)=exp(-δηq) /Cq
(δ), pn

(δ)(q)=exp(δηq) /Cq
(δ),

pnw
(δ)(q)= psw

(δ)(q) = pne
(δ)(q)= pse

(δ)(q)=0

ξq=[b(q)]x/a(q)2, ηq=[b(q)]y/a(q)2

χq=2/(λa(q)2)-4, Cq
(δ)=2csh(δξq)+2csh(δηq)+χq

∆t= λδ2, for some 0<λ<1/(2 max a(q)2)

• Same backward procedure as for stochastic finite automata

• Extension to the case of SDE with time-varying drift & diffusion

• MC asymptotic approximation can used within a stochastic hybrid
setting:
– Time-driven switching
– Jump Markov processes
– SHS (Hu, Lygeros & Sastry)

P-safety verification by MC approximation

TRACON

Center A

Center B

GATES

Current ATMS architecture

TRACON

SUA

• Aircraft flying along jet-ways
• ATCs responsible for conflict avoidance

u1

u2

x2

x1

Aircraft-to-aircraft conflict

an aircraft comes closer than a minimum prescribed distance
to another aircraft

Separation Standards:
Inside the TRACON:
3 nmi, 1,000 ft
Outside the TRACON:
5 nmi, 1,000ft

TRACON

Center A

Center B

GATES

Aircraft-to-airspace conflict

TRACON

SUA

an aircraft enters a forbidden region
of the airspace (SUA area, area with
severe weather/high congestion)

Current ATMS initiatives
• Goal:

– increasing the performance of the current network-based ATMS
structure without reducing safety

• ATMS automation process:

– assisting ATCs and pilots in detecting and solving potential situations
of conflict

Mid-range conflict detection

• At the ATC level, tens of minutes horizon

• Introduction of a model for predicting the aircraft future position

• Evaluation of the possibility that a conflict would occur within a
certain time horizon, based on this model

Aircraft Motion Model

Aircraft dynamics:

dX(t)/dt =

aircraft position flight plan

u(t) + f(X,t)

wind field

+ σ w(X,t)

noises

- Flight plan u(t): deterministic, typically piecewise linear

- Noises w(x,t): random, modeling air turbulences and forecast/
measurement errors, modulated by σ

Observation: the closer the two aircraft, the more correlated
the random perturbations to their velocities.

- Wind field f(x,t): deterministic, known from forecast or
measurement

Random Field Perturbation

B(x,t), the time integral of w(x,t), is a spatially correlated Gaussian
random field.

• For each fixed x, B(x,t) is a standard Brownian motion

• B(x,t) is time-increment independent

• For t1<t2, {B(x,t2)-B(x,t1), x∈R3} is a collection of Gaussian random
variables with zero mean and covariance

E{[B(x,t2)-B(x,t1)][B(y,t2)-B(y,t1)]T}=ρ(x-y) (t2-t1) I2 , ∀x,y∈R3.

where ρ: R2→R is a function with ρ(0)=1, ρ(∆x)→0 as ∆x→∞.

Aircraft-to-Aircraft Conflict

dX(t) = v(t)dt + R(t)X(t) dt + σd[B(X2,t)-B(X1,t)]

X = X2-X1, v = u2-u1 Assume f(x,t)=R(t)x+d(t)

dX(t) = v(t)dt + R(t)X(t) dt + [2(1- ρ(Y))]1/2 σ dW(t)

Conflict occurs when X∈ Sf, where Sf is a circle

dX1(t) = u1(t)dt + f(X1,t)dt + σdB(X1,t)
dX2(t) = u2(t)dt + f(X2,t)dt + σdB(X2,t)

dim=4

dim=2

• Two aircraft come too close to each other

Aircraft-to-aircraft conflict
Time horizon tf=20; No nominal wind; Relative velocity v(t)=(2,0); Spatial

correlation ρ(x)=exp(-0.2||x||)

Example

t=0 t=10 t=20

Aircraft-to-aircraft (tf =40)

Spatial correlation ρ(x)=exp(-0.2||x||)

(2,0), t∈[0,10]

v(t)= (0,1), t∈[10,20]

(2,0), t∈[20,40]

Relative velocity

No wind

Example (more correlation)

Aircraft-to-aircraft (tf =40)

Spatial correlation ρ(x)=exp(-0.05||x||)

t=0 t=10 t=20

Spatial correlation does affect the probability of conflict

Larger spatial correlation results in Pc more concentrated
along the projected collision course, and extended longer

Example

t=0 t=10 t=20

The effect of a swirling wind field

Example

t=0 t=10 t=20

Infinite horizon case (tf=∞)

3D Forbidden Zone

Iso-probability surfaces (green 0.2, red 0.7)

What can be done with
the probability?

Of course, safety alert. But anything else?

Assist in designing feedback control to ensure safety

“Slide along a certain iso-surface”

References
“Reachability Analysis for Probabilistic Hybrid Systems with Application to Air Traffic
Management”
Deliverable of the HYBRIDGE project (http://www.nlr.nl/public/hosted-sites/hybridge/)

J. Hu, M. Prandini
“Aircraft conflict detection: a method for computing the probability of conflict based on
Markov chain approximation”
European Control Conference, Cambridge, UK, Sept. 2003

J. Hu, M. Prandini, S. Sastry
“Aircraft conflict prediction in presence of a spatially correlated wind field”
IEEE Trans. on Intelligent Transportation Systems, to appear.

H.J. Kushner, P.G. Dupuis
“Numerical methods for stochastic control problems in continuous time”
Springer-Verlag 2001.
X. D. Koutsoukos
“Optimal control of stochastic hybrid systems based on locally consistent Markov
decision processes”
2005 IEEE Int. Symp. on Intelligent Control (ISIC ’05), Cyprus, June, 2005.
Baier, B. Haverkort, Holger Hermanns, J-P. Katoen
“Automated performance and dependability evaluation using model checking”
Tutorial Proc. PERFORMANCE 2002, Springer LNCS 2459, 2002

