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Hybrid systems

Dynamical systems with discrete and 
continuous state and/or input variables

q changes discretely

x changes either discretely, or continuously

q ∈ Q = {q1, q2, q3}

x ∈ R
n

q(t�) �→ q(t+)

x(t�) �→ x(t+)

x� (t) = f(x(t), q(t))
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Hybrid Automata [Johansson et.al.]

Hybrid automaton:

– Discrete state variables

– Continuous state variables

– Initial conditions

– Continuous dynamics

– Domain of continuous evolution

– Discrete transitions

– Guards

– Transition relation

H = (Q,X, Init, F, Dom, E, G, R)

Q = {q1, q2, q3, . . .}

Init � Q �X

F : Q�X → 2R
n

Dom : Q → 2X

R : E �X → 2X

X = R
n

E � Q �Q

G : E → 2X
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Rough interpretation

• power set (set of all subsets) of Χ

• State of the system

• Start with

• Continuous motion … 

• … provided that

• Discrete transition only if

–

–

• After discrete transition

(q, x) ∈ Q �X

2X

x� ∈ F(q, x)

(q, x) ∈ Init

x ∈ Dom(q)

q �→ q′

(q, q′) ∈ E

x ∈ G(q, q′)

x′ ∈ R(q, q′, x)
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Solutions

(q, x) ∈ Init

Dom(q1)

Dom(q3)

Dom(q2)

G(q3, q2)

x� ∈ F(q3, x)

x(0)

R(q3, q2, x(t))

x(t) x(t′)

R(q3, q2, x(t′))
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Uncertainty

• Solutions defined “declaratively” 

(cf. “imperatively”)

• Allows uncertainty

– Select any

– Multiple continuous flow directions                    

– Multiple discrete state destinations

– Multiple continuous state destinations

– Choice between flowing and jumping

G(q, q′) ∩ G(q, q′′)�=∅

x� ∈ F(q, x)

x′ ∈ R(q, q′, x)

(q, x) ∈ Init

x ∈ Dom(q) ∩ G(q, q′)
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Solutions

(q, x) ∈ Init

Dom(q1)

Dom(q3)

G(q3, q2)

x� ∈ F(q3, x)

x(0)

R(q3, q2, x(t))

R(q3, q1, x(t))

G(q3, q1)

x(t)

Siena, July 21, 2005

Uncertainty

• Solutions defined “declaratively” 

(cf. “imperatively”)

• Allows uncertainty

– Select any

– Multiple continuous flow directions                    

– Multiple discrete state destinations

– Multiple continuous state destinations

– Choice between flowing and jumping

G(q, q′) ∩ G(q, q′′)�=∅

x� ∈ F(q, x)

x′ ∈ R(q, q′, x)

(q, x) ∈ Init

x ∈ Dom(q) ∩ G(q, q′)
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Solutions

(q, x) ∈ Init

Dom(q1)

Dom(q3)

Dom(q2)

G(q3, q2)

x� ∈ F(q3, x)

x(0)

R(q3, q2, x(t))

x(t) x(t′)

R(q3, q2, x(t′))
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Non determinism

• Choice typically non-deterministic
– Many solutions possible

– Nothing to distinguish one from the others

– E.g. which is likely and which is not

• Only yes/no questions can be answered

• OK model of uncertainty for certain 
applications

• E.g. robust control

• In some applications finer levels of 
information needed
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Examples and applications

• Communication networks

• Mathematical finance, insurance

• Fault tolerant manufacturing

• Air traffic management
– Continuous dynamics

– Discrete dynamics

– Stochastic dynamics: Wind and weather, 
malfunctions, actions/errors of humans

– Accidents will always be possible

– We would like to reduce their probability

• Biochemical networks
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Stochastic Hybrid Framework 

Control Theory Computer Science

Hybrid Systems

Stochastic Analysis

Stochastic Hybrid Systems

(SHS)

Stochastic Hybrid Systems

(SHS)
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Disclaimer

• Very technical field

• In some areas, general understanding just 
emerging

• Omit technical details, stick to big picture

• Indicate where knowledge ends

• Discussion in continuous time

• In discrete time issues are similar, 
technical problems are usually simpler
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Outline

1. Modeling
1. Classes of models

2. Comparison

2. Analysis and control
1. Overview of analysis and control problems

2. Reachability

3. Monte-Carlo approximation

3. Applications
1. Biochemical networks: DNA replication

2. Air traffic control
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1. Modeling
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Classes of SHS

• Autonomous or with inputs
– Modeling and analysis, stability, reachability

– Composition, optimal control, stabilization, etc.

• Stochastic uncertainty
– Initial condition: probability distribution

– Continuous evolution (e.g. SDE)

– Destination of discrete transitions: probability 
distribution, depends on state before transition

– Choice between jumping and flowing
• Markovian jumps with rates that depend on continuous 
state (spontaneous transitions)

• Boundary hits (forced transitions)
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Solutions

Dom(q3)

Dom(q2)
dx = f(q3, x)dt+ g(q3, x)dB

�(q3, x(t))rate

Spontaneous
transition

Forced
transition

x(t)

Probability kernel
(q′, x′)  R(q3, x(t))
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Classes of SHS

• Ingredients present in different combos
• More general models preferable

– Properties inherited by special cases

• Fewer properties known for general models
– Existence, non-Zeno, CADLAG
– Markov and strong Markov properties
– Generator of the process
– Characterization of value functions
– Invariant distributions, stability

• Important in theory and in practice
– E.g. theoretical foundations of Monte-Carlo 
simulation
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Modeling frameworks

• To illustrate the issues consider three 
classes of stochastic hybrid modeling 
frameworks
– Piecewise Deterministic Processes (PDP)

(Davis 1980’s)

– Switching diffusion processes (SDP)

(Ghosh et.al. early 1990’s)

– “Stochastic hybrid systems” (SHS)

(Hu et.al. late 1990’s)

• All autonomous
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A PDMP is a collection H = ( (Q,d,X), f, Init, λ, R) where:

• Q is a countable set of discrete variables;

• d: Q -> N  is a map giving the dimensions of the continuous state 
spaces;

• X:  Q -> Rd(.)  maps each i ∈ Q into an open subset X(i) of Rd(i) ;

• f: D(Q,d,X) -> Rd(.) is a vector field where D(Q,d,X) represents the 
hybrid state space;

• Init: B(D*) -> [0,1] is an initial probability measure on (D*,B(D*)), 
with Init(Dc)=0;

• λ:  D*(Q,d,X) -> R+ is a transition rate function;

• R:  B(D*) x D*(Q,d,X) -> [0,1]  is a transition measure with R(Dc,.)=0.

PDMP execution is formalized by the following Algorithm:

Set T=0

Select D-valued random variable (q,x) according to Init;

Repeat 

Select R+-valued random variable T* such that P(T*>t)=F((q,x),t)

Set (q(t),x(t))=Φ((q,x),t-T) for all t ∈[T,T+T*)

Select D-valued random variable (q,x) according to R(., Φ((q,x), T*)

Set T=T+T*

Until true

Φ((q,x),t) denotes the flow of vector field f(q,x)

survival functionF(q, x, t) = I{t�t�(q,x)}exp(�
∫

0
t
�(q, x, s)ds)

Under 

• Assumption: X(i) are open, f(i,.) is globally Lipschitz, λ(.) is 
measurable, λ(.) is locally integrable, R(A,.) is measurable, 
the process Nt =Σi I(t ≥Ti) is such that E(Nt) < ∞ for all times 
t;

The PDMP is a strong Markov process (Davis 1985), and its 
expression of infinitesimal generator is given by:

Where θ belongs to the domain of generator as in Davis 1985.

( ) ( )( ) ( ) ( ) ( ) ( )( )βθαθβαβλβθ βθ −+⋅= ∫∇
),,(*

,

XdQD

T
PDMP dRfL

PDP: Formal model
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A SDP is a collection H = ( Q, X, f, Init, σ, λij) where:

• Q is a finite set of discrete variables;

• X= Rn is the continuous state space ;

• f: Q x X -> Rn is a vector field;

• Init: B(Q x X ) -> [0,1] is an initial probability measure on 

(Q x X ,B(Q x X ));

• σ: Q x X -> Rnxn  is a state dependent matrix;

• λij:  X -> R , i,j ∈Q are a set of x-dependent transition rates 
such that 

λij (.) ≥0 if i≠j and Σq ∈ Q λij (x)=0 for any q ∈ Q and x∈ X.

SDP: Formal model

A stochastic process (q(t),x(t)) is an SDP execution if it is the

solution of the following SDE and stochastic integral:

For t ≥0 and x(0)=x0 q(0)=q0 where:

• (q(0),x(0)) is a random variable extracted according to Init;

• Wt is a n-dimensional Wiener process;

• φ(dt,dz) ia Poisson random measure with intensity dt x m(dz) 

• φ(.,.), Wt and (q(0),x(0)) are independent.

),()),(),(()(

,))(),(())(),(()(

dzdtztqtxhtdq

dWtxtqdttxtqftdx

R

t

ϕ

σ

∫ −=

+=

Under 

• Assumption: f(i,x), σij(i,x), and λij(x) are bounded and 
Lipschitz; 

The SDP is a strong Markov process (Ghosh et al. 1991), and its 
expression of infinitesimal generator is given by:

Where θ belongs to the domain of generator as in Ghosh et al. 
1991.

( ) ( )( ) ( ) ( )( )
( ) ( )( )∑

∇

=
−+

++⋅=

N

j ij

TT
SDP

xixx

xiHxixiTrfxiL xi

1
,,,)(

),(,,
2

1
, ,

θθλ

σσθ θθ
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A SHS is a collection H = ( Q, X, Dom, f, g, Init, G, R ) 
where:

• Q is a countable set of discrete variables;

• X= Rn is the continuous state space ;

• Dom: Q -> 2X assigns to each i∈Q an open subset of X; 

• f,g : Q x X -> Rn are vector fields;

• Init: B(Q x X ) -> [0,1] is an initial probability measure on D(Q x 
X,B(Q x X )), with Init(Dc)=0;

• G: QxQ -> 2X assigns to each (i,j) ∈ QxQ a guard G(i,j) ⊂X such 
that the family G(i,j) with j ∈Q are a disjoint partition of 
∂Dom(i);

• R:  B(D*) x D* -> [0,1]  is a transition measure with R(Dc,.)=0.

A stochastic process (q(t),x(t)) is called an SHS execution if:

There exists a sequence of stopping times T0 = 0 ≤ T1≤ T2≤… such that 
for each j ∈N,

• (q(0),x(0)) is a random variable extracted according to Init;

• For t ∈[Tj, Tj+1), q(t)=q(Tj) is constant and x(t) is the solution of the 
following SDE:

Where Wt is a 1-dimensional Wiener process;

• Tj+1 =inf{t ≥ Tj: x(t)    Dom(q(Tj))};

• x(Tj+1) ∈G(q(Tj),q(Tj+1));

• The probability distribution of x(Tj+1) is governed by R(.,(q(Tj), 
x(Tj+1))).

,))(),(())(),(()( tjj dWtxTqgdttxTqftdx +=

∉
−

−

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )∫

∇

−+

++⋅=

*

,

)(
2

1

D

TT
SHS

dR

HTrfL

αβαθβθ

αασασαθ θαθ

Under 

• Assumption: f(i,x) and g(i,x) are bounded and Lipschitz in x, 
R(.,.) is measurable;

The SHS is a Markov process (Hu et al. 2000), and

Theorem: The SHS expression of infinitesimal generator is given 
by:

Where θ belongs to the domain of generator.

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )∫

∇

−+

++⋅=

*

,

)(
2

1

D

TT
SHS

dR

HTrfL

αβαθβθ

αασασαθ θαθ

SHS: Formal model
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Classification of some SHS [12]

PDP [3,4] SDP [5,6] SHS [8]

Stochastic
continuous
evolution

Forced
transitions &
continuous 
reset

Spontaneous
transitions

GSHP [2,14]

Siena, July 21, 2005

Known properties

• PDP:
– Well posedness, strong Markov property

– Generator, domain characterization

– Optimal control, stability

• SDP
– Well posedness, strong Markov property

– Generator, domain characterization

– Optimal control, stability

• SHS
– Markov property

• GSHP
– Well posedness, strong Markov property

– Generator
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2. Analysis and Control
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Stability and stabilization

• Different notions of stochastic stability
– Existence of invariant measures

– Moment asymptotic stability

– Almost sure asymptotic stability

– …

• Sufficient conditions based on Lyapunov
functions

• Well studied for classes of SDP

• Studied in the 1980’s for PDP

• Very little known about other SHS classes
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Optimal control

• Introduce control variables to
– Drive continuous motion
– Influence discrete transition rate
– Force discrete transitions
– Influence discrete transition destination

• Different combos in different approaches
• Introduce admissible control policies

– Feedback
– Markov
– Non-anticipative

• Introduce cost function to assign cost to 
control policy
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Optimal control

• Usually expected value

• Minimize over all admissible control policies

• Define value function

• Develop dynamic programming principle

• Characterize value function as PDE solution
– Coupled second order for SDP

– First order with boundary conditions for PDP

– ??? for others

E{
∫

0
∞
l(x(t), u(t))dt+

∑

i=0
∞

c(x(�i), u(�i))}
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Reachability

State space
Target states

Initial condition

Estimate measure
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Reachability

• Underlying probability space 

• State space 

• Stochastic process

• Given            and   

• Reach “events”

• Reach probability 

x : Ω � R+ → X

(Ω, M, P)

(X, B)

ReachT(E) = {ω ∈ Ω | ∃t ∈ [0, T] such that x(ω, t) ∈ E}

Reach∞(E) = {ω ∈ Ω | ∃t � 0 such that x(ω, t) ∈ E}

E ∈ B T � 0

P{ReachT(E)}
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Alternative characterization

• Define indicator function

• Note that

IE(x) =
1 if x ∈ E
0 otherwise

�

IE(x(t)) = 1 ⇔ x(t) ∈ E

max
t∈[0,T]

IE(x(t)) = 1 ⇔ ∃t ∈ [0, T] : x(t) ∈ E

P{ReachT(E)} = P{max
t∈[0,T]

IE(x(t)) = 1}

= E{max
t∈[0,t]

IE(x(t))}

Siena, July 21, 2005

Immediate technical problem

• Is the set ReachT(E) an event?

• Equivalently, is                  

a random variable?

• Answer trivially yes in discrete time

• Answer is often yes in continuous time
– E.g. SDP, PDP

• Technical conditions need to be introduced

ReachT ∈ M

max
t∈[0,T]

IE(x(t))
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Computation of ReachT

• Analytical estimates [Bujorianu et.al.]
– Dirichlet forms, potential theory

– Links to Lyapunov stability

• Computational estimates [Katoen et.al.]
– Symbolic model checking

– Restricted classes

• Numerical estimates [Prandini, Tomlin et.al]
– Numerical solution of PDE’s

– Approximate by Markov chains (next talk)

• Statistical estimates
– Monte-Carlo simulation
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Monte-Carlo simulation

• Assume simulator of SHS is available

• Simulate N times

• Count number of simulations that reach E

• Estimate

xi(� ) : [0, T] → X

P�N =
N

1 ∑

i=1
N IReachT(E)(x

i(� ))

IReachT(E)(x(� )) =
1 if ∃t ∈ [0, T] : x(t) ∈ E
0 otherwise

�
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Convergence of Monte-Carlo

• Under very weak assumptions

• Moreover, given

provided that
• “Fast” growth w.r.t. ε slow w.r.t. δ
• Growth still polynomial
• Sample size independent of state dim.
• Simulation time affected by it

lim
N→∞ P�N = P{ReachT(E)}

%, & ∈ (0, 1)

P{|P�N � P{ReachT(E)}| > &} � %

N � 2&2
1 ln(

%

2)
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Particle implementation

• Each simulation treated as “particle”

• Particles simulated in parallel

• Particles interact at each simulation step

• “Good” particles get rewarded
– Assigned bigger weight

– Allowed to produce more offspring

• Advantages
– Substantial speed-up in rare event simulation

– Recursive implementation
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3. Applications
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3.1 Biochemical networks
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Biochemical network modeling

• Biochemical networks:
– Describe interactions of genes, proteins and 
other molecules in the cell

– Provide information about cell function
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Example: stress responce in E. coli

Superhelical

density of DNA

rrnP1 P2

Activation

CRP

crp

cya

CYA

CRP•cAMP

FIS

TopA

topA

GyrAB

P1-P4
P1 P2

P2P1-P’1

P

gyrABP

Signal (lack of nutrients)
Supercoiling

fis

tRNA
rRNA

protein

gene

promoter

Courtesy: H. de Jong, INRIA
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Hybrid dynamics

• Hybrid dynamics at many levels
– Genes on/off

– Thresholds of protein concentration

– Cell cycle phases

– Cell differentiation

• Develop a simple SHS model of DNA 
replication in the cell cycle
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Cell cycle

• Series of phases

S

G2G1

M

G0

DNA 
replication

Cell division 
(mitosis)

Gap phases
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Biochemical network

• Progress through the cell cycle needs to be 
tightly regulated
– Mitosis without complete S phase => death

– Multiple S phases without mitosis not good 
either (linked to cancer)

Siena, July 21, 2005

Cells stuck in S-Phase

Courtesy: Z. Lygerou, UPAT
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Biochemical network

• Progress through the cell cycle needs to be 
tightly regulated
– Mitosis without complete S phase => death

– Multiple S phases without mitosis not good 
either (linked to cancer)

• Complex biochemical network (~15 
molecules involved, Novak et.al.)

• Key ingredient: CDK proteins

• CDK activity fluctuation sets the pace for 
cell cycle (Nurse et.al.)

• Process of threshold crossing
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CDK activity [Nurse et.al.]

SG1 G2 M

Threshold 1

Threshold 2

Licensed DNA Unlicensed DNA

Window of opportunity

The Quantitative modelCDK Activity
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S-Phase

• Split DNA and make a copy

• Splitting in many locations along genome
– Origins of replication

• Process in a number of steps
– Binding of ORC to genome (G2/M phase)

– Licensing (G1 phase)

– Initiation (firing)

– Replication

• Try to develop a rudimentary model for 
licensing-firing-replication

• Treat CDK fluctuation as external signal
Siena, July 21, 2005
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Dynamics

• Discrete
– Firing of origins

– Destruction of origins by replication

• Continuous
– Movement of replication along genome

– Speed depends on location along genome

• Stochastic
– Location of origins

– Firing of origins
• Early vs. late

• Weak vs. strong
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Model data

• Genome length N, normalized to 

• # of origins of replication (n)

• p(x) p.d.f. of origin positions on genome

• λ(χ) firing rate of origin at position x

• v(x) forking speed at position x

x ∈ [0, 1]

Siena, July 21, 2005

Stochastic terms

• Extract origin positions

• Extract firing time, Ti, of origin i
P{Ti > t} = e��(Xi)t

Xi  p(x), i = 1, . . ., n

Xi

xi- xi+

Xi+1
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Discrete dynamics (origin i)

NRi RBi

RLi

RRi

Di

Guards depend on Ti, xi+, xi-
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Continuous dynamics (origin i)

• Progress of forking process

x�+
i
=

v(Xi + x+
i
) if q(i) ∈ {RB, RR}

0 otherwise

{

x��
i
=

v(Xi � x�
i
) if q(i) ∈ {RB, RL}

0 otherwise

{
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Simulation

• Model a PDP (a simple one!)

• Simulate for Schizzosacharomyces pombe
– N = 12 Mbases

– n = 400

– v(x) = 3kbases/minute

• Simple case
– p(x) uniform

– λ(x) = 0 or infinity
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Monte-Carlo simulation

Siena, July 21, 2005

MC estimate of S-phase duration
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Research issues

• Validation of experimental data (e.g. 
average S-phase duration)

• Suggest omissions and new experiments
• Promote understanding, e.g.

– What determines origin positioning?
– Is there an advantage to stochastics?
– Why do some organisms prefer deterministic 
origin positions?

– Is there early-late vs. weak-strong distinction?

Siena, July 21, 2005

3.2 Air traffic

Siena, July 21, 2005

Features

• Safety Critical

Siena, July 21, 2005
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• Safety Critical

• Complex

• Naturally hybrid

Features
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Features

• Safety Critical

• Complex

• Naturally hybrid

• Regulations and procedures

• Critical infrastructure

• Human factors

• Remarkably it works …

• … but demand is increasing!

Technological 

considerations

Socio-

economic 

considerations
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Scope for Improvement

• Naturally distributed system

• Centralised by operational constraints

• Due to
– Historical reasons

– Limitation of human operators

• ATM research aims to ease the latter
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Framework

• Bottleneck: safety

• In particular in-flight loss of separation

• Conflict Detection and Resolution CD&R

• Automatic control point of view: feedback

AircraftAircraft

ATCATC CD&RCD&R

RadioRadio RadarRadar
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CD&R

• Typically three step process
– Predict the future

– Determine whether situation is safety critical

– Propose resolution manoeuvre

• Last two steps can be merged

• Dynamical model used in all three stages
– For trajectory prediction

– Monte-Carlo (particle filter based) conflict 
detection

– Monte-Carlo based randomized optimization for 
conflict resolution



Siena, July 21, 2005

Role of Uncertainty

• CD&R involve predicting the future

• Uncertainty crucial in prediction accuracy

• Probabilistic (stochastic) uncertainty
– Deviation of weather from nominal

– Situational awareness errors

– Faults, malfunctions

• “Deterministic” uncertainty
– Aircraft mass

– Thrust settings

Siena, July 21, 2005

Uncertainty in approach
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Uncertainty in
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Prediction Model

Aircraft

Nominal 

Wind

Stochastic

Wind

FMS
Flight Plan

x

u

w
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Aircraft Dynamics

• Flight plan
– 4D waypoints from CFMU

• Aircraft dynamics: 
– Inspired by BADA
– Point mass model with extras
– Parameters from BADA database

• FMS
– Continuous bank angle controller for tracking 
and turning

– Discrete modes for thrust and flight path angle 
control (acceleration and ROCD)

• Nominal wind from RUC database
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Stochastic wind perturbations

• Random field w(t,P)
• Correlated in space (P) and time (t)
• Negligible wind in vertical direction
• Correlation in horizontal direction

• Values for parameters: Lincoln labs study
• Strong correlation for horizons of interest
• None of the modelling classes considered 
above allow this!

*xy(t, t
′P, P′) = ,(z),(z′)e��|t�t

′|e�.‖(x,y)�(x′,y′)‖e�/|z�z
′|
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Randomized conflict resolution

• Probabilistic trajectory prediction models

• Select flight plans to resolve conflicts

• Introduce cost function to select “best” 
among the safe resolution maneuvers

• Based on advanced Monte-Carlo methods
– Accommodate complex trajectory prediction 
models

– Accommodate general cost criteria

– Allow recursive and/or parallel implementation
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Metropolis-Hastings algorithm

• Related to simulated annealing
• Select cost that reflect

– Safety
– Efficiency (deviation from flight plan, flight 
time, etc.)

• Roughly speaking
– Select resolution maneuver according to 
probability distribution

– Estimate cost by running many simulations
– “Accept” maneuver with certain probability that 
depends on whether it is better than previous

– Probability distribution of “accepted” 
maneuvers will converge around optimal
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Example: Final approach sequencing

• Two aircraft A1, A2

• Come in at FL160

• A1 flight plan fixed

• Optimize A2 approach
– Conflict free

– Reach 1500ft at end

– Minimum time

• A2 control parameters
– Top of descent

– Length of downwind leg

• Probabilistic mass and 
wind uncertainty

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1

x 10
4

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
4

  Leg 1
  Top 1

  Top  2
  Leg 2

Siena, July 21, 2005

Optimization results
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Increased computation
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Example: TMA sequencing

• Two aircraft A1, A2

• Level flight

• A1 flight plan fixed

• Optimize A2 plan
– Conflict free

– Exit 5 minutes after A1

• A2 control parameters
– Position of middle way 
point

• Probabilistic wind 
uncertainty

Control 
variable
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Optimization results
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Non-crossing safe maneuvers
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Crossing safe maneuvers
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Concluding remarks

• SHS different mixtures of discrete, 
continuous and probabilistic terms

• Modeling of SHS rich and varied
• Foundation for

– Theoretical contributions ( e.g. optimal control, 
reachability, stability)

– Practical implications (e.g. Monte-Carlo 
simulation)

• Technically very challenging
• Motivated by applications
• Applications even more general

– E.g. spatio-temporal correlation of wind in ATM
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