ItHYCONPhD Schoolon Hybrid Systems

Verification of Hybrid Systems

Geurge Pappas
 University of Pennsylvania, USA

pappasg@central.cis.upenn.edu

Siena, J uly 19-22, 2005 - Recto rate of the U niversity of Siena

Outline of lectures

Lecture 1

Examples of hybrid systems and hybrid automata
A crash course in formal methods

Lecture 2

Abstraction and refinement notions
Discrete abstractions for hybrid systems verification

Lecture 3

Approximation metrics for discrete/continuous systems Game theoretic interpretation of bisimulation
罗Penn

Thanks to

School Organizers
Alberto Bemporad
Maurice Heemels
and HYCON

FPenn

Lecture goals

Why hybrid systems?

Emphasis on some engineering examples

Modeling of hybrid systems

Emphasis on abstraction and refinement
Analysis of hybrid systems
Emphasis on algorithmic verification
Approximations of discrete and continuous systems
Emphasis on approximate (bi)-simulation

> Warning : All questions and answers are biased and incomplete!

量Penn

Why hybrid?

Trann

Enabling technologies

Advances in sensor and actuator technology GPS, control of quantum systems

Invasion of powerful microprocessors in physical devices Sophisticated software/hardware on board

Networking everywhere Interconnects subsystems

舞Penn

Boeing 777 : 1280 networked microprocessors 2Penn

Hybrid behavior arises in

Hybrid dynamics

Hybrid model is a simplification of a larger nonlinear model
Quantized control of continuous systems
Input and observation sets are finite
Logic based switching
Software is designed to supervise various dynamics/controllers
Partial synchronization of many continuous systems
Resource allocation for competing multi-agent systems
Hybrid specifications of continuous systems
Plant is continuous, but specification is discrete or hybrid...

無Penn

Logic based switching

Penn

Partial synchronization (Concurrency)

OPEnn

Research Issues

Modeling Issues

- Well posedness, robustness, zenoness

Analysis

- Stability issues, qualitative theory, parametric analysis

Verification

- Algorithmic methods that verify system performance

Controller Synthesis

- Algorithmic methods that design hybrid controllers

Simulation

- Mixed signal simulation, event detection, modularity

Code generation

- From hybrid models to embedded code

Complexity

- Compositionality and hierarchies

Tools : Hy Tech, Checkmate, d/dt, HYSDEL, Stateflow, Charon
橆Penn

Outline of lectures

Lecture 1

Examples of hybrid systems and hybrid automata
A crash course in formal methods

Lecture 2
Abstraction and refinement notions Discrete abstractions for hybrid systems verification

Lecture 3

Approximation metrics for discrete/continuous systems Game theoretic interpretation of bisimulation
畏Penn

A discrete example

The parking meter

器Penn

Transition Systems

We can recursively define

$$
\begin{aligned}
& \operatorname{Pre}_{\sigma}^{1}(P)=\operatorname{Pre}_{\sigma}(\operatorname{P}) \\
& \operatorname{Pre}_{\sigma}^{n}(P)=\operatorname{Pre}_{\sigma}\left(\operatorname{Pre}_{\sigma}^{n-1}(P)\right)
\end{aligned}
$$

Similarly for the other operators. Also

$$
\begin{aligned}
\operatorname{Pre}^{*}(P) & =\bigcup_{n \in N} \operatorname{Pr}^{n}(P) \\
\operatorname{Post}^{*}(P) & =\bigcup_{n \in N} \operatorname{Post}^{n}(P)
\end{aligned}
$$

\% Penn

Transition Systems

A region is a subset of states $P \subseteq Q$

We define the following operators

$$
\begin{aligned}
& \operatorname{Pre}_{\sigma}(P)=\{q \in Q \mid \exists p \in P \quad q \xrightarrow{\sigma} p\} \\
& \operatorname{Pre}(P)=\{q \in Q \mid \exists \sigma \in \Sigma \quad \exists p \in P \quad q \xrightarrow{\sigma} p\}
\end{aligned}
$$

$$
\operatorname{Post}_{\sigma}(P)=\{q \in Q \mid \exists p \in P \quad p \xrightarrow{\sigma} q\}
$$

$$
\operatorname{Post}(P)=\{q \in Q \mid \exists \sigma \in \Sigma \quad \exists p \in P \quad p \stackrel{\sigma}{\rightarrow} q\}
$$

\%Penn

Safety and Invariance

Given transition system S, we consider two problems

Safety problem

Is Reach $(S) \cap \Pi_{F}$ empty?

Invariance problem

Is $\operatorname{Reach}(S) \subseteq \Pi_{F}$?

PPenn

Backward reachability algorithm

Backward Reachability Algorithm

```
initialize R:= S
    if }R\capP\not=\emptyset\mathrm{ do return UNSAFE ; end if;
    if }\operatorname{Pre}(R)\subseteqR\quad\mathrm{ return SAFE ; end if;
    R:=R\cupPre(R)
end while
```

If S is infinite, then there is no guarantee of termination.葻Penn

Algorithmic issues

Representation issues

Enumeration for finite sets
Symbolic representation for infinite（or finite）sets

Operations on sets
Boolean operations
Pre and Post computations（closure？）
Algorithmic termination（decidability）
Guaranteed for finite transition systems
No guarantee for infinite transition systems
\％Penn

More complicated problems

More sophisticated properties can be expressed using
Linear Temporal Logic（LTL）
Computation Tree Logic（CTL）
CTL＊
mu－calculus

睘Penn

Model checking

Given transition system S，and temporal logic formula φ

Basic verification problem

$S \models \varphi$

Two main approaches
Model checking ：Algorithmic，restrictive Deductive methods：Semi－automated，general
器Penn

Linear temporal logic（informally）
Express temporal specifications along sequences

Informally	Syntax	Semantics
Eventually p	$\diamond p$	qqqqqqqqqqqqqp
Always p	$\square p$	pppppppppppppp
If p then next q	$p \Rightarrow \bigcirc q$	$q q q q q q q q p q$
p until q	$p U q$	$p p p p p p p p p p p p p p p q$

登Pen

Linear temporal logic（formally）
Linear temporal logic syntax
The LTL formulas are defined inductively as follows
Atomic propositions
All observation symbols p are formulas

Boolean operators

If φ_{1} and φ_{2} are formulas then
$\varphi_{1} \vee \varphi_{2} \quad \neg \varphi_{1}$
Temporal operators
If φ_{1} and φ_{2} are formulas then
$\varphi_{1} U \varphi_{2} \quad \bigcirc \varphi_{1}$

器Penn

Linear temporal logic semantics
The LTL formulas are interpreted over infinite（omega）words

$$
w=p_{0} p_{1} p_{2} p_{3} p_{4} \ldots
$$

$$
(w, i) \mid=p \quad \text { iff } \quad p_{i}=p
$$

$$
(w, i) \mid=\varphi_{1} \vee \varphi_{2} \quad \text { iff } \quad(w, i) \mid=\varphi_{1} \quad \text { or } \quad(w, i) \mid=\varphi_{2}
$$

$$
(w, i) \mid=\neg \varphi_{1} \text { iff } \quad(w, i) \quad \neq \varphi_{1}
$$

$$
(w, i) \mid=\bigcirc \varphi_{1} \quad \text { iff } \quad(w, i+1)=\varphi_{1}
$$

$$
(w, i) \vDash \varphi_{1} U \varphi_{2}
$$

$$
\exists j \geq i(w, j) \mid=\varphi_{2} \text { and } \forall i \leq k<j \quad(w, k) \mid=\varphi_{1}
$$

$$
w \mid=\phi \quad \text { iff } \quad(w, 0) \mid=\varphi
$$

$$
T \models \phi \quad \text { iff } \forall w \in L(T) w \neq \varphi
$$

LTL examples

Two processors want to access a critical section. Each processor can has three observable states

```
                                    pl={inCS, outCS, reqCS }
```

 \(\mathrm{p} 2=\{\) inCS, outCS, reqCS \(\}\)

Mutual exclusion

Both processors are not in the critical section at the same time.

$$
\square \neg\left(p_{1}=i n C S \wedge p_{2}=i n C S\right)
$$

Starvation freedom
If process 1 requests entry, then it eventually enters the critical section.

$$
\square p_{1}=r e q C S \Rightarrow \diamond p_{1}=i n C S
$$

OPEn

Outline of lectures

Lecture 1

Examples of hybrid systems and hybrid automata
A crash course in formal methods

Lecture 2

Abstraction and refinement notions
Discrete abstractions for hybrid systems verification

Lecture 3

Approximation metrics for discrete/continuous systems Game theoretic interpretation of bisimulation
RPenn

Language Equivalence

Consider two transition systems S_{1} and S_{2} over same Σ and Π

Languanges are equivalent $L\left(S_{1}\right)=L\left(S_{2}\right)=\{a \xrightarrow{\sigma} a \xrightarrow{\sigma} b \xrightarrow{\sigma} b \ldots$,

$$
a \xrightarrow{\sigma} a \xrightarrow{\sigma} c \xrightarrow{\sigma} c . . .\}
$$

FPenn

Safety equivalence
Language equivalence
If $L\left(S_{1}\right)=L\left(S_{2}\right)$ then $\operatorname{Reach}\left(S_{1}\right)=\operatorname{Reach}\left(S_{2}\right)$
Language inclusion
If $L\left(S_{1}\right) \subseteq L\left(S_{2}\right)$ then Reach $\left(S_{1}\right) \subseteq \operatorname{Reach}\left(S_{2}\right)$
Language equivalence and inclusion are difficult to check
Penn

睘Penn

Simulation Games

Simulation is a matching game between the systems

Note that $S_{1} \leq S_{2}$ but it is not true that $S_{2} \leq S_{1}$
The transition systems are bisimilar iff $S_{1} \leq S_{2}$ and $S_{2} \leq S_{1}$ spenn

Simulation Relations

Consider two transition systems

$$
\begin{array}{ll}
S_{1}=\left(Q_{1}, Q_{1}^{0}, \Sigma, \rightarrow_{1}, \Pi,\langle\cdot\rangle_{1}\right) \\
S_{2}=\left(Q_{2}, Q_{2}^{0}, \Sigma, \rightarrow_{2}, \Pi,\langle\cdot\rangle_{2}\right)
\end{array} \quad S_{1} \leq S_{2}
$$

A relation $R \subseteq Q_{1} \times Q_{2}$ is called a simulation relation if it
1．Respects initial states $\forall q_{1} \in Q_{1}^{0} \quad \exists q_{2} \in Q_{2}^{0} \quad\left(q_{1}, q_{2}\right) \in R$

2．Respects observations if $\left(q_{1}, q_{2}\right) \in R$ then $\left\langle q_{1}\right\rangle_{1}=\left\langle q_{2}\right\rangle_{2}$
3．Respects transitions if $\left(q_{1}, q_{2}\right) \in R$ then $q_{1} \xrightarrow{\sigma} q_{1}^{\prime}$
$R \quad R$
国Penn
$q_{2} \xrightarrow{\sigma} q_{2}^{\prime}$

The parking example

The parking meter

$R=\{(0,0),(1$, many $), \ldots,(60$, many $)\}$
会Penn

Special quotients

When is the quotient language equivalent or bisimilar to T ? PMenn

Outline of lectures

Lecture 1

Examples of hybrid systems and hybrid automata
A crash course in formal methods

Lecture 2

Abstraction and refinement notions Discrete abstractions for hybrid systems verification

Lecture 3

Approximation metrics for discrete/continuous systems Game theoretic interpretation of bisimulation
䈭Penn

Bad news

Undecidability barriers

Consider the class of uninitialized multi-rate automata with $n-1$ clock variables, and one two slope variable (with two different rates).
The reachability problem is undecidable for this class.

No algorithmic procedure exists.
Model checking temporal logic formulas is also undecidable
Initialization is necessary for decidability
PRenn

All timed automata admit a finite bisimulation

Hence CTL* model checking is decidable for timed automata \% Penn

Basic answers

Finite bisimulations of continuous dynamical systems
笑Penn

Basic problems

Finite bisimulations of continuous dynamical systems
Given a vector field $F(x)$ and a finite partition of R^{n}
1．Does there exist a finite bisimulation？ 2．Can we compute it ？

Decidable problems for continuous systems

Consider linear vector fields of the form $F(x)=A x$ where
A is rational and nilpotent
A is rational，diagonalizable，with rational eigenvalues
A is rational，diagonalizable，with purely imaginary，rational eigenvalues
Then
1．The reachability problem between semi－algebraic sets is decidable．
2．Consider a finite semi－algebraic partition of the state space． Then a finite bisimulation always，exists and can be computed．

3．Consider a CTL＊formula where atomic propositions denote semi－algebraic sets．Then CTL＊model checking is decidable．

発Penn

Decidable problems for hybrid systems

A hybrid system H is said to be o-minimal if

1. In each discrete state, all relevant sets and the flow of the vector field are definable in the same o-minimal theory.
2. After every discrete transition, state is reset to a constant set (forced initialization)

All o-minimal hybrid systems admit a finite bisimulation.
CTL* model checking is decidable for the class of o-minimal hybrid systems.

Decidable problems for hybrid systems

Consider a linear hybrid system H where

1. For each discrete state, all relevant sets are semi-algebraic
2. After every discrete transition, state is reset to a constant semi-algebraic set (forced initialization)
3. In each discrete location, the vector fields are of the form $F(x)=A x$ where
A is rational and nilpotent
A is rational, diagonalizable, with rational eigenvalues A is rational, diagonalizable, with purely imaginary, rational eigenvalues Then

CTL* model checking is decidable for this class of linear hybrid systems.
The reachability problem is decidable for such linear hybrid systems.
\%Penn

Outline of lectures

Lecture 1

Examples of hybrid systems and hybrid automata
A crash course in formal methods

Lecture 2
Abstraction and refinement notions
Discrete abstractions for hybrid systems verification

Lecture 3

Approximation metrics for discrete/continuous systems Game theoretic interpretation of bisimulation
Pern

Non-deterministic dynamics

A relation R is a simulation relation if for all $\forall d_{1}(t) \quad \exists d_{2}(t)$

$$
x_{1}(0) \xrightarrow{d_{1}(t)} x_{1}(t)
$$

$$
R \quad R \quad C_{1} x_{1}(t)=C_{2} x_{2}(t)
$$

$$
R \underset{d_{2}(t)}{R}
$$

$$
x_{2}(0) \xrightarrow{d(t)} x_{2}(t)
$$

From exact to approximate

Exact relationships useful for binary answers
When dealing with the physical world, we use approximations
Labeled Markov processes (Desharnais et. al., TCS 2004)
Quantitative transition systems (de Alfaro et. al., ICALP 2004)
Timed and hybrid systems
Approximate system relationships
Enable larger system "compression"
Quantify error/complexity tradeoffs
Provide measures of robustness
Potentially introduce different algorithms

客Penn

Approximate Goal

Define pseudo-metrics on the set of transition systems:

$$
\begin{array}{ccc}
d_{2}\left(S_{1}, S_{2}\right)=0 & \text { iff } & L\left(S_{1}\right) \subseteq L\left(S_{2}\right) \\
d\left(S_{1}, S_{2}\right)=0 & \text { iff } & L\left(S_{1}\right)=L\left(S_{2}\right) \\
d_{s}\left(S_{1}, S_{2}\right)=0 & \text { iff } & S_{1} \leq S_{2} \\
d_{B}\left(S_{1}, S_{2}\right)=0 & \text { iff } & S_{1} \cong S_{2}
\end{array}
$$

Exact notions captured as zero sections of pseudo-metrics.
How can we define such metrics and how are they related?
(2Penn

Metrics

A metric d defined on a set E is a nonnegative function

$$
\mathrm{d}: \mathrm{E} \times \mathrm{E} \rightarrow \mathrm{R}
$$

Satisfying the usual properties

$$
\begin{aligned}
& \text { 1. } d\left(e_{1}, e_{2}\right)=d\left(e_{2}, e_{1}\right) \\
& \text { 2. } d\left(e_{1}, e_{2}\right)=0 \Leftrightarrow e_{2}=e_{1} \\
& \text { 3. } d\left(e_{1}, e_{3}\right) \leq d\left(e_{1}, e_{2}\right)+d\left(e_{2}, e_{3}\right)
\end{aligned}
$$

Dropping property 1 results in a directed metric Dropping \Rightarrow in property 2 results in a pseudo-metric

TePen

Hausdorff distances

Given subsets A and B of E ，the Hausdorff distance is

	$h \rightarrow(A, B)=\sup _{a \in A} \inf _{b \in B} d(a, b)$
	$h(A, B)=\max (h \rightarrow(A, B), h \rightarrow(B, A))$

The classical result follows

$$
\begin{aligned}
h \rightarrow(A, B)=0 & \Leftrightarrow c l(A) \subseteq c l(B) \\
h(A, B)=0 & \Leftrightarrow c l(A)=c l(B)
\end{aligned}
$$

琅Penn

Reachability metrics

Since $\operatorname{Reach}\left(S_{1}\right)$ ， $\operatorname{Reach}\left(S_{2}\right) \subseteq \Pi$ which is a metric space

$$
\begin{aligned}
& d_{R}\left(S_{1}, S_{2}\right)=h \rightarrow\left(\operatorname{Reach}\left(S_{1}\right), \operatorname{Reach}\left(S_{2}\right)\right) \\
& d_{R}\left(S_{1}, S_{2}\right)=h\left(\operatorname{Reach}\left(S_{1}\right), \operatorname{Reach}\left(S_{2}\right)\right)
\end{aligned}
$$

The result follows

$$
\begin{aligned}
& d_{R}\left(S_{1}, S_{2}\right)=0 \Leftrightarrow c l\left(\operatorname{Reach}\left(S_{1}\right)\right) \subseteq c l\left(\operatorname{Reach}\left(S_{2}\right)\right) \\
& d_{R}\left(S_{1}, S_{2}\right)=0 \Leftrightarrow c l\left(\operatorname{Reach}\left(S_{1}\right)\right)=c l\left(\operatorname{Reach}\left(S_{2}\right)\right)
\end{aligned}
$$

答Penn

Metric Transition Systems

A transition system

$$
S=\left(Q, Q^{0}, \Sigma, \rightarrow, \Pi,\langle \rangle\right)
$$

is a called metric transition system if

```
The set of states is equipped with a metric d}\mp@subsup{d}{Q}{}:Q\timesQ->
    The set of events has the discrete metric
    The set of observations is has a metric \quadd}\quad\mp@subsup{d}{\Pi}{}:\Pi\times\Pi->
```

Furthermore we assume that 1 ．Initial set is compact
2．Observation map is continuous
Post is continuous
4．Support（Post）is an open subset
5．Post (q) is compact
（2Penn

Language metrics

Lifting the metric to sequences（in the infinity sense）

$$
\begin{aligned}
& d_{l}^{\vec{l}}\left(S_{1}, S_{2}\right)=\sup _{\left.n \in L\left(S_{1}\right) \inf _{2} \leq L S_{2}\right)} d_{\pi}\left(r_{1}, r_{2}\right) \\
& d\left(S_{1}, S_{2}\right)=\max \left\{d_{l}^{d}\left(S_{1}, S_{2}\right), d_{l}^{\overrightarrow{2}}\left(S_{2}, S_{1}\right)\right\}
\end{aligned}
$$

The result follows

$$
\begin{aligned}
& d_{l}\left(S_{1}, S_{2}\right)=0 \Leftrightarrow c l\left(L\left(S_{1}\right)\right) \subseteq c l\left(L\left(S_{2}\right)\right) \\
& d_{L}\left(S_{1}, S_{2}\right)=0 \Leftrightarrow c l\left(L\left(S_{1}\right)\right)=c l\left(L\left(S_{2}\right)\right)
\end{aligned}
$$

谷Penn

Approximate Simulation Relations

Consider two transition systems and let $\delta \geq 0$ be given

$$
\begin{aligned}
& S_{1}=\left(Q_{1}, Q_{1}^{0}, \Sigma, \rightarrow_{1}, \Pi,\langle\cdot\rangle_{1}\right) \\
& S_{2}=\left(Q_{2}, Q_{2}^{0}, \Sigma, \rightarrow_{2}, \Pi,\langle\cdot\rangle_{2}\right)
\end{aligned}
$$

Relation $R \subseteq Q_{1} \times Q_{2}$ is a δ－simulation relation if it
1．Respects initial states $\forall q_{1} \in Q_{1}^{0} \quad \exists q_{2} \in Q_{2}^{0} \quad\left(q_{1}, q_{2}\right) \in R$

2．Respects observations if $\left(q_{1}, q_{2}\right) \in R$ then $d_{\pi}\left(\left\langle q_{1}\right\rangle_{1},\left\langle q_{2}\right\rangle_{2}\right) \leq \delta$
3．Respects transitions
if $\left(q_{1}, q_{2}\right) \in R$ then $q_{1} \xrightarrow{\sigma} q_{1}^{\prime}$
$R \quad R$
※Penn $q_{2} \rightarrow q_{2}^{\prime}$

罗Penn

Inequalities

$$
\begin{aligned}
& d_{k}^{*}\left(S_{1}, S_{2}\right) \leq d_{l}^{-}\left(S_{1}, S_{2}\right) \\
& d_{k}\left(S_{1}, S_{2}\right) \leq d_{l}\left(S_{1}, S_{2}\right)
\end{aligned}
$$

$\operatorname{Reach}\left(S_{1}\right) \subseteq N\left(\operatorname{Reach}\left(S_{2}\right), d_{R}^{\vec{~}}\left(S_{1}, S_{2}\right)\right)$

$$
\subseteq \mathrm{N}\left(\operatorname{Reach}\left(\mathrm{~S}_{2}\right), \mathrm{d}_{l}\left(\mathrm{~S}_{1}, S_{2}\right)\right)
$$

Approximate simulation

For $\delta=0$ we recover exact simulation relation.
S_{2} approximately simulates S_{1} (with precision $\delta \geq 0$),

$$
S_{1} \leq_{\delta} S_{2}
$$

if there exists δ-simulation relation R.

For all $\delta, \delta^{\prime} \geq 0$ we have

$$
\begin{aligned}
& S_{1} \leq_{\delta} S_{1} \\
& S_{1} \leq_{\delta} S_{2} \text { and } \delta^{\prime} \geq \delta^{\prime} \text { then } S_{1} \leq_{\delta^{\prime}} S_{2} \\
& S_{1} \leq_{\delta} S_{2} \text { and } S_{2} \leq_{\delta^{\prime}} S_{3} \text { then } S_{1} \leq_{\delta^{\prime} \delta^{\prime}} S_{3}
\end{aligned}
$$

囬Penn

Bi-simulation metrics

The bi-simulation metric is defined as the tighest precision with which S_{2} bi-simulates S_{1}

$$
d_{B}\left(S_{1}, S_{2}\right)=\inf _{\delta \geq 0}\left\{S_{1} \cong_{\delta} S_{2}\right\}
$$

For any transition system we have

$$
\text { if } S_{1} \cong S_{2} \text { then } d_{B}\left(S_{1}, S_{2}\right)=0
$$

For metric transition systems we have

$$
\text { if } d_{B}\left(S_{1}, S_{2}\right)=0 \text { then } S_{1} \cong S_{2}
$$

受Penn

Simulation metrics

The simulation metric is defined as the tightest precision with which S_{2} simulates S_{1}

$$
\mathrm{d}_{\mathrm{s}}^{\rightarrow}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)=\inf _{\delta \geq 0}\left\{\mathrm{~S}_{1} \leq_{\delta} \mathrm{S}_{2}\right\}
$$

For any transition system we have

$$
\text { if } S_{1} \leq S_{2} \text { then } d_{s}\left(S_{1}, S_{2}\right)=0
$$

For metric transition systems we have

$$
\text { if } d_{s}\left(S_{1}, S_{2}\right)=0 \text { then } S_{1} \leq S_{2}
$$

\%Penn

Simulation algorithm

Maximal (coarsest) simulation relation can be computed using the following algorithm
Given $\delta \geq 0$

$$
\begin{aligned}
& R^{0}=\left\{\left(q_{1}, q_{2}\right) \mid d_{\pi}\left(\left\langle q_{1}\right\rangle,\left\langle q_{2}\right\rangle\right) \leq \delta\right\} \\
& R^{i+1}=\left\{\left(q_{1}, q_{2}\right) \in R^{i} \mid \forall q_{1} \xrightarrow{\sigma} q_{1}^{\prime} \exists q_{2} \xrightarrow{\sigma} q_{2}^{\prime}\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R^{i}\right\}
\end{aligned}
$$

We obtain that

$$
\begin{aligned}
\bigcap_{i=0}^{i=+\infty} R^{i} & =R^{\star} \\
R^{\star} & \subseteq R^{i}
\end{aligned}
$$

For $\delta=0$, we obtain the usual simulation algorithm ※Penn

Relations versus functions

Express relations as levels sets of functions
For any given $\delta \geq 0$

$$
\begin{aligned}
& R^{i}=\left\{\left(q_{1}, q_{2}\right) \mid f^{\prime}\left(q_{1}, q_{2}\right) \leq \delta\right\} \\
& R^{*}=\left\{\left(q_{1}, q_{2}\right) \mid f^{*}\left(q_{1}, q_{2}\right) \leq \delta\right\}
\end{aligned}
$$

Simulation functions are obtained by a dual algorithm

$$
f^{0}=d_{\pi}\left(\left\langle q_{1}\right\rangle,\left\langle q_{2}\right\rangle\right)
$$

$$
f^{i+1}=\max \left\{d_{\pi}\left(\left\langle q_{1}\right\rangle,\left\langle q_{2}\right\rangle\right), \sup _{q_{1} \rightarrow q_{1}} \inf _{q_{2} \rightarrow 2 q_{2}} f^{\prime}\left(q_{1}, q_{2}\right)\right\}
$$

mPenn

Bi-simulation algorithm

Maximal (coarsest) bi-simulation relation can be computed using the following algorithm

Given $\delta \geq 0$

$R^{0}=\left\{\left(q_{1}, q_{2}\right) \mid d_{\pi}\left(\left\langle q_{1}\right\rangle,\left\langle q_{2}\right\rangle\right) \leq \delta\right\}$
$R^{i+1}=\left\{\left(q_{1}, q_{2}\right) \in R^{i} \mid \forall q_{1} \xrightarrow{\sigma} q_{1}^{\prime} \exists q_{2} \xrightarrow{\sigma} q_{2}^{\prime}\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R^{i}\right\}$ and $\left.\forall q_{2} \xrightarrow{\sigma} q_{2}^{\prime} \exists q_{1} \xrightarrow{\sigma} q_{1}^{\prime}\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R^{i}\right\}$

We obtain that

$$
\begin{aligned}
\bigcap_{i=0}^{i=+\infty} R^{i} & =R^{\star} \\
R^{\star} & \subseteq R^{i}
\end{aligned}
$$

For $\delta=0$, we obtain the usual bi-simulation algorithm \&Penn

Simulation metric

The limit $f^{\star}=\lim _{i \rightarrow+\infty} f^{i}$ exists and is the minimal solution of

$$
f^{*}=\max \left\{d_{\Pi}\left(\left\langle q_{1}\right\rangle,\left\langle q_{2}\right\rangle\right), \sup _{q_{1} \rightarrow q_{1}} \inf _{q_{2} \rightarrow 2 q_{2}} f^{*}\left(q_{1}^{\prime}, q_{2}^{\prime}\right)\right\}
$$

Simulation functions define the simulation metric

$$
d_{s}^{\rightarrow}\left(S_{1}, S_{2}\right)=\sup _{q_{1} \in Q_{i}^{0}} \inf _{q_{2} \in \mathbb{Q}_{2}^{0}} f^{*}\left(q_{1}, q_{2}\right)
$$

A similar story for bi-simulation metrics国Penn

Bi-simulation functions and metric

Bi-simulation functions are obtained by a dual algorithm
$f^{0}=d_{\pi}\left(\left\langle q_{1}\right\rangle,\left\langle q_{2}\right\rangle\right)$
$f^{i+1}=\max \left\{d_{\Pi}\left(\left\langle q_{1}\right\rangle,\left\langle q_{2}\right\rangle\right), \sup _{q_{1} \rightarrow q_{1}} \inf _{q_{2} \rightarrow q_{2}^{\prime}} f^{\prime}\left(q_{1}^{\prime}, q_{2}^{\prime}\right), \sup _{q_{2} \rightarrow 2 q_{2}} \inf _{q_{1} \rightarrow q_{1}} f^{\prime}\left(q_{1}^{\prime}, q_{2}^{\prime}\right)\right\}$
Using the limit $f^{\star}=\lim _{i \rightarrow+\infty} f^{i}$ of the algorithm we can define

$$
d_{B}\left(S_{1}, S_{2}\right)=\max \left\{\sup _{0_{1} \in \mathcal{Q}^{\circ}} \inf _{q_{2} \in Q_{2}^{0}} f^{*}\left(q_{1}, q_{2}\right), \sup _{0_{0} \in \mathcal{L}^{\circ}} \inf _{q_{1} \in Q_{Q}^{0}} f^{*}\left(q_{1}, q_{2}\right)\right\}
$$

$q_{1} \in Q_{1}^{0} q_{2} \in Q_{2}^{0} \quad q_{2} \in Q_{2}^{0} q_{1} \in Q_{i}^{0}$

\%Penn

Bounding metrics

Relax the equality with inequality, and search for

$$
f \geq \max \left\{d_{\Pi}\left(\left\langle q_{1}\right\rangle,\left\langle q_{2}\right\rangle\right), \sup _{q_{1} \rightarrow q_{1} q_{1}} \inf _{q_{2} \rightarrow 2 q_{2}} f\left(q_{1}^{\prime}, q_{2}^{\prime}\right)\right\}
$$

Then $f \geq f^{*}$ and therefore

$$
d_{s}\left(S_{1}, S_{2}\right) \leq \sup _{q_{1} \in Q_{i}^{0}} \inf _{q_{2} \in Q_{2}^{\circ}} f\left(q_{1}, q_{2}\right)
$$

A similar story for bi-simulation metrics瞘Penn

Lyapunov-like conditions

Inequalities can be expressed in Lyapunov-like form as

$$
\begin{aligned}
& f\left(q_{1}, q_{2}\right) \geq d_{\Pi}\left(\left\langle q_{1}\right\rangle,\left\langle q_{2}\right\rangle\right) \\
& f\left(q_{1}, q_{2}\right) \geq \sup _{q_{1} \rightarrow q_{1}} \inf _{q_{2} \rightarrow q_{2}} f\left(q_{1}^{\prime}, q_{2}^{\prime}\right)
\end{aligned}
$$

Similarly, for bi-simulation
$f\left(q_{1}, q_{2}\right) \geq d_{\pi}\left(\left\langle q_{1}\right\rangle,\left\langle q_{2}\right\rangle\right)$
$f\left(q_{1}, q_{2}\right) \geq \sup _{q_{1} \rightarrow q_{1}} \inf _{q_{2} \rightarrow q_{2}} f\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$
$f\left(q_{1}, q_{2}\right) \geq$ sup $\inf f\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$
舜Penn

Constrained linear systems

Function $f\left(x_{1}, y_{1}, z_{1}, x_{2}\right)=\left|x_{1}-y_{1}-z_{1}\right|+\left|y_{1}+z_{1}-x_{2}\right|$ satisfies conditions $d_{s}^{d}\left(S_{2}, S_{1}\right)=0$
$d_{s}\left(S_{1}, S_{2}\right) \leq \sup _{I_{1}} \inf _{I_{2}} f=1$
$d_{B}\left(S_{2}, S_{1}\right) \leq 1 \Rightarrow d_{R}\left(S_{2}, S_{1}\right) \leq 1 \Rightarrow \operatorname{Reach}\left(S_{1}\right) \subseteq N\left(\operatorname{Reach}\left(S_{2}\right), 1\right)$
FTenn

Constrained linear systems

Deterministic linear systems

Reduces to solving Lyapunov equations

1. 100 dimensional linear system,
2. 6 dimensional approximation,
3. 10 dimensional approximation.

䈭Penn

Deterministic linear systems
Reduces to solving Lyapunov equations

The more robustly safe the system, the more we can compress the model the easier safety verification becomes
Penn

Constrained nonlinear systems

We are looking for functions $f(x)$ satisfying

$$
f^{2}(x) \geq|\lg (x)|_{k}^{2}
$$

$$
\sup _{d_{1} \in C_{1}} \inf _{d_{2} \in \theta_{2}} \nabla f \cdot F(x, d) \leq 0
$$

$$
\text { sup inf } \nabla f \cdot F(x, d) \leq 0
$$

Tenn

Thanks again!

School Organizers
Alberto Bemporad
Maurice Heemels
and HYCON

罗Penn

