IHYCON PhD School on Hybrid Systems

Www.unisi.it

Verification of
Hybrid Systems

eorgse aAs e N S i =
M ' — A i.:‘gj.-e%uw’u £ }']rgrv-é

University of Pennsylvania, USA > f;;\.,k 2 Ty) -

r f Al ! b o " —

ok ; T - 20
pappasg@central .cis.upenn.edu 1 e —6-L

. =

| A ,,Q"eﬁ;'am;.,s.ﬁ.r;‘)@i_j 5 '
: Yoss ‘) (znoﬁ»ure LareraTiib 50 Jaitpavaiti) I : : L P I___'-‘:_'.._“'n:--..__ ; 8
: EX) «a?)e'r:)u% $in 2‘)hh91§h3)2[1{ - . B ""'_-_:“*:"'7‘:"-
o me@ (usiifloss Yised) bon hamedin J ik 3 iy
{ q’q z-em() ;:.m% pinidros r&ﬁ\a: o) gowr‘)mo { ¢ ; .- ;
" N & (4 f
}

A o-e{') 901‘):«03 'P)I\A WIS e %M 22h9iD%. -\r-e‘)u 0D ; :
%A,o} 'y e%)vowr E:‘)z 3 %na {N) {owji‘n Y i
A e]
i Jd AnA a@ -voi} 2()003 gmodk‘)ukoa 'E‘MA I»no-e{ . i) \-#"" Rt on .

L}o l' ME g‘o-v')f«o:) %Na_ moi‘)noﬂ’hev (N.)J-)Agu j 1

=Y _H ""‘ _' -
f“v —
SN u')}m r_z‘{:? ﬁoJ() .wr-e S

{;-aw SYA %I‘A f [IRRNE S

o =2k a,%m haoa q ka o)q’/]'kd *

S|ena July 19- 22 2005 Rectorate of the Un|ver5|ty of Slena

Verification of hybrid systems

HYCON Summer School George J. Pappas
on Hybrid Systems Departments of ESE and CIS
Siena, Italy University of Pennsylvania
July 19-22, 2005 pappasg@ee.upenn.edu
. .

Thanks to

School Organizers

Alberto Bemporad

Maurice Heemels

Acknowledgments

Collaborators

and HYCON
Lecture goals
Why hybrid systems ?

Emphasis on some engineering examples
Modeling of hybrid systems
Emphasis on abstraction and refinement
Analysis of hybrid systems
Emphasis on algorithmic verification
Approximations of discrete and continuous systems
Emphasis on approximate (bi)-simulation

Warning : All questions and answers are biased and incompletel

Postdocs Rajeev Alur, M. Babaali, Calin Belta,

Antoine Girard Vofkan Isler, Ali Jadbabaie, John "
i Koo, Vijay Kumar, Insup Lee, Stephel
Agung Julius Pr‘ajna,JPZulo Tabuada,a—{er‘beﬂ g
Tanner.

Ph.D Students
Ali Ahmazadeh Support
George Fainekos NSF Career, PECASE
Hadas Kress Gazit NSF ITR (2)
Truong Nghiem NSF EHS (3)
Mahmut Serkar ARO MURT (2)
Hakan Yazarel DARPA HURT
Michael Zavlanos Honeywell

Outline of lectures
Lecture 1

Examples of hybrid systems and hybrid automata

A crash course in formal methods

Lecture 2

Abstraction and refinement notions
Discrete abstractions for hybrid systems verification

Lecture 3

Approximation metrics for discrete/continuous systems
Game theoretic interpretation of bisimulation

&Penn

Why hybrid ?

Enabling technologies

Advances in sensor and actuator technology
GPS, control of quantum systems

Invasion of powerful microprocessors in physical devices
Sophisticated software/hardware on board

Networking everywhere
Interconnects subsystems

Emerging applications...

l% 5

Latest BMW : 72 networked microprocessors
Boeing 777 : 1280 networked microprocessors

#Penn

Networked embedded systems...

Network

v

a
f—

I

Controller Controller
l SW/HW | l SW/HW |
Actuator Sensor Actuator Sensor
| Physical | | Physical [
System System
-~

Networked embedded systems...

Network

& »
< ” T »
I Il
Controller Controller
l SW/HW | l SW/HW |
Actuator Sensor Actuator Sensor
Physical] | Physical [

System System

I

Physical system is continuous, software is discrete

Discrete and Continuous

Computer Science
Transition systems
Composition, abstraction
Concurrency models

Control Theory
Continuous systems
Stability, control
Feedback, robustness

|

Hybrid Systems

Software controlled systems
Multi-modal systems
Embedded real-time systems
Multi-agent systems

&Penn

Exporting Science

Computer Science
Transition systems
Composition, abstraction
Concurrency models

Control Theory
Continuous systems
Stability, control
Feedback, robustness

Robustness
Feedback
Stability

Composition
Abstraction
Concurrency

Different views...

Computer science perspective
View the physics from the eyes of the software
Modeling result : Hybrid automaton

Control theory perspective

View the software from the eyes of the physics
Modeling result : Switched control systems

Embedded System Architecture

Hybrid behavior arises in

Hybrid dynamics
Hybrid model is a simplification of a larger nonlinear model
Quantized control of continuous systems
Input and observation sets are finite
Logic based switching
Software is designed to supervise various dynamics/controllers
Partial synchronization of many continuous systems
Resource allocation for competing multi-agent systems

Hybrid specifications of continuous systems
Plant is continuous, but specification is discrete or hybrid...

Logic based switching

#Penn

Nuclear reactor example

Without rods

T=01T-50
With rod 1)

T=01T-56
With rod 2

T=01T-60

Rod 1and 2 cannot be used simultaneously
Once a rod is removed, you cannot use it for 10 minutes

Specification : Keep temperature between 510 and 550 degrees.
If T=550 then either a rod is available or we shutdown the plant.

&Penn

Software model of nuclear reactor

Rod1 (~ NoRod) Rod2

Shutdown

Hybrid model of nuclear reactor

T=510ny, =10y, =10

T=550ny, 210 T=5501y, 210

T-510y,-0

T=5501y, <10Ay, <10

‘ Analysis : Is shutdown reachable ? |

‘ Algorithmic verification: NO |

&Penn

Partial synchronization
(Concurrency)

The train gate

_ﬁl -
raise
approach lower, exit

Controller

System=Train||Gate || Controller

Safety specification : If train is within 10 meters of the crossing, then
gate should completely closed.
Liveness specification : Keep gate open as much as possible.

&Penn

Train model

x=1000 x=0
approach
exit

x=-100->x'=[200052)

Gate model

raise

Iowe

&Penn

Controller model

y=0
exit
true
y=0 y=0
approach exit
lower raise
y=0
approach

Synchronized fransitions

near
1000 | o0
approach -505x<-30)
x>0
exit

X= 100 > X =[20007)

y=0
exit
true
(Boing tolower y0 idle yi0 Going to raise
y=1 approach y=1 exit y=1
ned__J lower e/ raise —rzd
y=0
umB approach

Verifying the controller

L3
raise
approach lower, exit

Controller

_

System=Train||Gate || Controller

Safety specification : Can we avoid the set >0 (-10<x<10) ?

Research Issues

Modeling Issues

e Well posedness, robustness, zenoness
Analysis

o Stability issues, qualitative theory, parametric analysis
Verification

e Algorithmic methods that verify system performance
Controller Synthesis

o Algorithmic methods that design hybrid controllers
Simulation

e Mixed signal simulation, event detection, modularity
Code generation

e From hybrid models to embedded code
Complexity

e Compositionality and hierarchies

Tools : HyTech, Checkmate, d/dt, HYSDEL, Stateflow, Charon

Parametric HyTech verification: YES if dsg
#Fenn
Outline of lectures
Lecture 1

Examples of hybrid systems and hybrid automata
A crash course in formal methods

Lecture 2

Abstraction and refinement notions
Discrete abstractions for hybrid systems verification

Lecture 3

Approximation metrics for discrete/continuous systems
Game theoretic interpretation of bisimulation

Transition Systems
A transition system

S=(Q.Q%Z,~,TT,())

consists of
A set of states Q
A subset of initial states [e}y=fe}
A set of events z z s I
A set of observations m,
The transition relation q-q'
The observation map (q)=m

We assume systems to be non-blocking, possibly nondeterministic
The sets Q, ¥, and TT may be infinite
Language L(S) is all initialized sequences of observations

?&’Penn Reach(S)={meTl | 7 isreachable by L(S)}

A discrete example

The parking meter

5p

©

tick Tick
tick 5p
States Q ={0,1,2,..,60}
Events {tick,5p}

Observations {exp,act}

A possible string of observations exp—*—sact—"qct—tik,

A continuous example

$=(QQ%Z,~,T,())
State set Q=X=R"

Labelset =R,

Non-deterministic

Observationset TT=Y=R"
x'=F(x,d) x(0)eI |—
Linear Observation Map (x)=g(x)

y=9(x) deDd
Transition Relation — < XxR, x X
N 3 x(s),d(s) with 0<s<t
X, =X, <> x(0) =x; and x(t) = x, and
X'(s)=F(x(s),d(s))
o L(S):{Yo—5>Y1L)Yz_1’»--}
&Penn

Transition Systems

A region is a subset of states P = Q

We define the following operators

Pre,(P)={qcQ|3pcP q—>p}
Pre(P)={qc Q|30 3 3IpeP qop}

Post,(P)={qcQ|Ip<cP p->q}
Post(P)={qcQl3occX 3pecP poq)

#Penn

Transition Systems

We can recursively define

Pre!(P) = Pre, (P)
Pre"(P) = Pre, (Pre™(P))

Similarly for the other operators. Also

Pre’(P)=JPre"(P)

neN

Post”(P) = | JPost"(P)

neN

&Penn

Safety and Invariance

Given transition system S, we consider two problems

Safety problem
Is Reach(S) nTT. empty?

Invariance problem

Is Reach(S)cTT: ?

#Penn

Forward reachability algorithm

Forward Reachability Algorithm

initialize R:=P

whille TRUE do
if RN S£D return UNSAFE ; end if;
if Post(R) € R return SAFE ; end if;
R := RU Post(R)

end while

If Sis finite, then algorithm terminates (decidability).
Complexity : O(n;+ mpg)

== J010] initial reachable
& Pe - states transitions

Backward reachability algorithm

Backward Reachability Algorithm

initialize R:=S

whille TRUE do
if RN P£)D return UNSAFE ; end if;
it Pre(R) C R return SAFE ; end if;
R:= RU Pre(R)

end while

If Sis infinite, then there is ho guarantee of termination.

Algorithmic issues

Representation issues

Enumeration for finite sets
Symbolic representation for infinite (or finite) sets

Operations on sets

Boolean operations
Pre and Post computations (closure?)

Algorithmic termination (decidability)

Guaranteed for finite transition systems
No guarantee for infinite transition systems

Model checking

Given fransition system S, and temporal logic formula ¢

Basic verification problem

Sk

Two main approaches

Model checking . Algorithmic, restrictive
Deductive methods : Semi-automated, general

More complicated problems

More sophisticated properties can be expressed using
Linear Temporal Logic (LTL)
Computation Tree Logic (CTL)
CTL*
mu-calculus

&Penn

Linear temporal logic (informally)

Express temporal specifications along sequences

Informally Syntax Semantics
Eventually p Op 499999999999P
Always p Op PPPPPPPPPPPPPP

If p then next g p = Oa¢ 499999999pq

p until g pUq ppppppppprprpprprq

#Penn

Linear temporal logic (formally)

Linear temporal logic syntax

The LTL formulas are defined inductively as follows

Atomic propositions
All observation symbols p are formulas

Boolean operators
If ¥1 and ¥2 are formulas then

P1V p1
Temporal operators
If ¢1 and 2 are formulas then
p1U s O¢

#Penn

Linear temporal logic semantics

The LTL formulas are interpreted over infinite (omega) words

W =Py P1 P2 P3 Pa- - -

(w,i) =p iff pi=p

(w,9) E1 Vs iff (w,i) =1 or (w,9) e
(w,i) ==y iff (w,i) f=ep1
(w, 1)
(w, 1)

~

) = Qe iff (w,i+1)=e
,1) =01 Uy
3i>i (w,j) =g and Yi<k<j (w,k) Eo

wl=¢ iff (w,0)=¢

q Tl=¢ iff Ywe L(T) wl= ¢

Linear temporal logic
Syntactic boolean abbreviations
Conjunction 01 A @3 = (71 V —y)
Implication P1= P2 =01V @
Equivalence o199 2= (1= @) A (2= 1)
Syntactic temporal abbreviations
Eventually Co=TUyp

Always Op=—0%
In 3 steps O3 ¢=000¢

LTL examples

Two processors want o access a critical section. Each processor can has three
observable states

p1={inCS, outCS, reqCS}
p2={inCS, outCS, reqCS}

Mutual exclusion
Both processors are not in the critical section at the same time.

[]=(p1 =inCS A py =inCS)

Starvation freedom
If process 1 requests entry, then it eventually enters the critical section.

[] p1 =reqCS = $py =inCS

& Penn

LTL Model Checking

Given finite transition system and LTL formula we have

LTL model checking

/Sysfem verified|
Determine if S |=cp <

Counterexample

Tools : SPIN (automata), SMV (BDD), SAT-based

Complexity : O((n+m)(k+ 1)2000))

\

states transitions formula
%Penn length

Outline of lectures
Lecture 1

Examples of hybrid systems and hybrid automata
A crash course in formal methods

Lecture 2

Abstraction and refinement notions
Discrete abstractions for hybrid systems verification

Lecture 3

Approximation metrics for discrete/continuous systems
Game theoretic interpretation of bisimulation

#Penn

Dealing with model complexity

Bi-simulation

Simulation

Language Inclusion

#Penn

Language Equivalence

Consider two transition systems S, and S, over same Z and TT

Languanges are equivalent L(5)=L(S,)={a—">a—>b—>b...,

a——>a—>c—2>c.}

Safety equivalence

Language equivalence

If L(S)) = L(Ss) then Reach(S;) = Reach(Ss)

Language inclusion

If L(S1) € L(Sy) then Reach(S:) € Reach(Ss)

Language equivalence and inclusion are difficult to check

&Penn

Simulation Relations
Consider two transition systems

S :(Q1/Q10,Z,_>1,n,<'>1)

5 =(Q. Q.Z,5,.T0,(),)

A relation RcQ,; xQ, is called a simulation relation if it
1. Respects initial states vq e’ 39,cQ) (q.9,)eR

5, <5,

2. Respects observations if (q,,¢,)€R then(q), =(q,),

3. Respects transitions if (¢.,9,) R then ¢, —q

R R
ZPenn %—q,

Simulation Games

Simulation is a matching game between the systems

Note that S, <S, but it is not true that S, <S;

Em;\'he transition systems are bisimilar iff S, <S, and S, <S;
SHrent

The parking example

The parking meter

Simulation relations

Consider two transition systems S, and S,

Simulation implies language inclusion
If S <8 then L(S;) C L(S,)

Bi-simulation implies language equivalence

If S, then L(S)) = L(Sy)

5p 5p
tick 5p
A coarser model 5p
tick
tick 5p
R ={(0,0),(1,many)....,(60,many)}

&Penn

Exact Relationships

Sl = SQ ;:> Sl S SQ
L(S) = L(S;) = L(S) S L(S)

=

Complexity of L(S;) C L(Sy) O((ng +mq)2™)
Complexi‘ry of SJ < SQ O((m + ml)(nz +m2))

#Penn

Reach(S,) = Reach(Sy)|Z=) Reach(S;) C Reach(S,)

Two important cases

Abstraction Refinement
T. T
T<T, T<T,
T T

&Penn

Special quotients

Abstraction

When is the quotient language equivalent or bisimilar to T ?

&Penn

Quotient Transition Systems
Given a transition system
T=(QZ~-0.,/))
and an observation preserving partition * € Qx Q , define
T/ ~=(Q/~%,-.,0,().)

naturally using
1. Observation Map

(P). = o iff there exists pePwith (p)=o
2. Transition Relation

P 5. P iff there exists peP,p'eP with p 5 p'

Outline of lectures
Lecture 1
Examples of hybrid systems and hybrid automata

A crash course in formal methods

Lecture 2

Abstraction and refinement notions
Discrete abstractions for hybrid systems verification

Lecture 3

Approximation metrics for discrete/continuous systems
Game theoretic interpretation of bisimulation

#Penn

Bisimulation Algorithm

Quotient system T/ ~ always simulates the original system T

When does original system T simulate the quotient system T/~ ?

g ©
o—>1—o

_®

g
o .4—..

Bisimulation Algorithm

Quotient system T/ ~ always simulates the original system T

When does original system T simulate the quotient system T/~ ?

g 0
o—1—o

—"1—o

10

Bisimulation algorithm

Bisimulation Algorithm

initialize Q/.={p~q iff <g>=<p>}

while 3P, P € Q/. such that (£ C PN Pre(P)£C P
P, := PN Pre(P)
P, := P\ Pre(P)
Q/~ = (Q/ \{PH)u{P, P2}

end while

If Tis finite, then algorithm computes coarsest quotient.
If Tis infinite, there is no guarantee of termination

Relationships

Bisimulation

Strongest, more properties, easiest to check

|

Simulation

Weaker, less properties, easy to check

|

Language Inclusion

Weakest, less properties, difficult to check

Complexity comparisons

Bisimulation
O(m - log(n))

|

Simulation
O(m - n)

1 |

Language Equivalence
O(m - 2™)

&Penn
Hybrid to discrete
Abstraction
Discrete —— T/~
T=T/»
Hybrid —— T
Goal : Finite quotients of hybrid systems

#Penn

Hybrid System Model

A hybrid system H = (V,R", Xy, F,Inv,R) consists of
oy is a finite set of states
o R is the continuous state space
o X =VxR" is the state space of the hybrid system
e X, CX is the set of initial states
® F(l,z) CR" maps a diff. inclusion to each discrete state
o Inv(l) CR” maps invariant sets to each discrete state
e RC XXX is a relation capturing discontinuous changes

Define E={(,!')| 3z € Inv(l),2" € Inv(l) ((I, z), (I',2")) € R}
Init(l) = {z € Inv(l) | (I,x) € Xo}
Guard(e) = {z € Inv()| I’ € Inv(l') (I, x), (', 7)) € R

'ﬁJPennRESEt(e’ z) = {2’ € Inv(l")| (I,), (I',2')) € R}

An example

T=510ny,~10ny, =10

T=550ny, 210 /" NoRod) T=550ny, >10
T-01T-50
vl =t

T-510->y,=0 T<550 T-510>y,-0

T=550ny, <10ny, <10

11

Transitions of Hybrid Systems

Hybrid systems can be embedded into transition systems
H=(V.R", X, F, Inv, R) Th=(Q,Q0,%,—,0,<->)

Q=VxR"

Qo =X, Observation set and map
$ = EU{r} depend on desired properties
—-C QXY X Q

Discrete transitions

(L, z1)~% (b, z2) iff x) € Guard(e),zy € Reset(e, z)
Continuous (time-abstract) transitions

(l, 1) (ly, m2) iff §; =1y and 36>0 =(-):[0,0] — RN"
2(0) = z1,z(0) = x5, and V¢ € [0,

& € F(ly,x(t)) and x(t) € Inv(ly)

q
ST

Rectangular hybrid automata

Rectangular sets : /\17"7 ~ep ~E {<, <=2, >}7 G EQ

x=2000

far near
x=1000 x=0
-50 < x <40 approach -50<x <30,
x=0

exit
x=-100->x'<[200052)

Rectangular hybrid automata are hybrid systems where

Init(l), Inv(l), F(l, x), Guard(e), Reset(e, x);

J are rectangular sets

LI

Multi-rate automata

x=-100 - x'=2000

Multi-rate automata are rectangular hybrid automata where

Init(l), F(l, x), Reset(e, x);

are singleton sets

Timed automata

x>95y:=0

o

x>101y>20 > x:=0nyi=1

Timed automata are multi-rate automata where
F (l, .LZ) =1l

for all locations | and all variables.

#Penn

Initialized automata

Rectangular hybrid automata are initialized if the following holds:

After a discrete transition, if the differential inclusion (equation) for
a variable changes, then the variable must be reset fo a fixed interval.

Timed automata are always initialized.

x=2000

approach

exit

x=-100>x'<[20002)

Bad news

Undecidability barriers

Consider the class of uninitialized multi-rate automata with n-1 clock
variables, and one two slope variable (with two different rates).

The reachability problem is undecidable for this class.

No algorithmic procedure exists.
Model checking temporal logic formulas is also undecidable

Initialization is necessary for decidability

12

Timed automata

x=0
h o . - .

x>10Ay>20>x==0ny:=1

Timed automata

y>3

x>10ny>20>x==0ny-1

All timed automata admit a finite bisimulation . X
Approach : Discretize the clock dynamics using region equivalence

Hence CTL* model checking is decidable for timed automata

&Penn

@& Penn

Multi-rate automata

x=2000
h - . N .

x=-100 - x'=2000

Region equivalence

All initialized multi-rate automata admit a finite bisimulation

Equivalence classes : 6 corner points
14 open line segments

8 open regions -
B

&Penn

Rectangular automata

x=2000
h - N .

Xx=-100 - x'=2000

x=-100->x'=2000
All initialized rectangular automata admit a finite bisimulation All initialized rectangular a ‘admit a finite bisimulation

@& Penn

Rectangular automata

&Penn

No finite bisimulation

I"Vﬁv‘zo

Inv—x'=0

Bisimulation algorithm never terminates

&Penn

but...
near
x =1000 x=0
approach -50<x<-30
x>0

exit

x =-100 - x'=[2000)

All initialized rectangular automata admit a finite language
equivalence quotient which can be constructed effectively.

LTL model checking of rectangular automata is decidable.

&Penn

More complicated dynamics?

Sets
B ={(x,0)|0<x<4}

KQ g:{(:,0)|-43x<0}
k/ P =R*\(RUR)

Dynamics

o . . x1=0.2X, + X,
Bisimulation algorithm

. X2 =-x, +0.2x
never terminates |l S 2

Basic problems

Given a vector field F(x) and a finite partition of R"

1. Does there exist a finite bisimulation ?
2. Can we compute it ?

Finite bisimulations of continuous dynamical systems

#Penn

Basic answers

Finite bisimulations of continuous dynamical systems

Consider a vector field X and a finite partition of R" where

1. The flow of the vector field is definable in an o-minimal theory
2. The finite partition is definable in the same o-minimal theory

Then a finite bisimulation always exists.

#Penn

Decidable problems for continuous systems

Consider linear vector fields of the form F(x)=Ax where
A is rational and nilpotent
A is rational, diagonalizable, with rational eigenvalues

A is rational, diagonalizable, with purely imaginary, rational eigenvalues

Then

2. Consider a finite semi-algebraic partition of the state space.
Then a finite bisimulation always, exists and can be computed.

3. Consider a CTL* formula where atomic propositions denote
semi-algebraic sets. Then CTL* model checking is decidable.

1. The reachability problem between semi-algebraic sets is decidable.

14

Decidable problems for hybrid systems

A hybrid system H is said to be o-minimal if

1. Ineach discrete state, all relevant sets and the flow of the vector
field are definable in the same o-minimal theory.

2. After every discrete transition, state is reset to a constant set
(forced initialization)

All o-minimal hybrid systems admit a finite bisimulation.

CTL* model checking is decidable for the class of o-minimal hybrid systems.

&Penn

Decidable problems for hybrid systems

Consider a linear hybrid system H where

1. For each discrete state, all relevant sets are semi-algebraic

2. After every discrete transition, state is reset fo a constant
semi-algebraic set (forced initialization)

3. Ineach discrete location, the vector fields are of the form F(x)=Ax
where
A is rational and nilpotent
A is rational, diagonalizable, with rational eigenvalues
A is rational, diagonalizable, with purely imaginary, rational eigenvalues
Then

CTL* model checking is decidable for this class of linear hybrid systems.

The reachability problem is decidable for such linear hybrid systems.

&Penn

Safety verification of hybrid systems
Decidability boundary

Discrete abstraction of hybrid systems, Alur, Henzinger, Lafferriere, Pappas
What's decidable about hybrid automata, Henzinger, Kopke, Puri, Varaiya
Piecewise affine systems, Sontag

Switched linear systems, Blondel, Tsitsiklis

Symbolic rechability approaches

Linear hybrid automata, Henzinger, Alur, Courcoubetis, Puri, Varaiya
Computer algebra, Tiwari, Pappas, Manna, Mishra

Over-approximate rechability approaches
Level sets, Tomlin, Mitchell, Bayen, Sastry
Flowpipes, Krogh, Asarin, Maler, Prueli
MILP, Bemporad, Morari
Ellipsoids, Kurzhanski, Varaiya
Zonotopes, Girard
Predicate abstraction, Alur, Clarke, Tvancic, Thang
Barrier certificates, Prajna, Jadbabaie, Pappas, Roozbehani, Feron, Megretski

Tools : HyTech, Checkmate, d/dt, HYSDEL, Stateflow, Charon
==}
&)

Outline of lectures
Lecture 1
Examples of hybrid systems and hybrid automata

A crash course in formal methods

Lecture 2

Abstraction and refinement notions
Discrete abstractions for hybrid systems verification

Lecture 3

Approximation metrics for discrete/continuous systems
Game theoretic interpretation of bisimulation

#Penn

Exact Relationships

For deterministic systems

S]gSQ ;:> Sl S SZ

SlgSQ ;:> Sl S SQ

| 4

1 1

L(S)=L(S) =y L(S) S LSy

L(S) = L(Sy) [=) L(S1) € L(S)

P
=

I}

=

Reach(S,) = Reach(Sy)[Z=) Reach(S;) € Reach(Ss)

Reach(S,) = Reach(Sy)|Z=) Reach(S;) C Reach(S,)

#Penn

15

Bi-simulations of control systems *

xi(1) = A, (1) + By (D +Ed (1) | ()
yi (1) = Cix (1) s,

L(S;) = {(u, (1), y; (1) | 3, (1), d, (1) satisfying equations}

u (1)

W) | %o () = A, (1) + By, (1) + E,dy (1) ¥2(0)
Y2 (1) = Cx, (1)

S,

L(S,) = {(u, (1), y,(1)) 3x,(1), d, (1) satisfying equations}

*6.3. Pappas, Bisimilar linear systems, Automatica, December 2003
*P. Tabuada and 6.J. Pappas, Bisimilar control affine systems, Systems and Control Letters, May 2004,
N m *A. van der Schaft, Equivalence of dynamical system by bisimulation, TEEE TAC, December 2004

Non-deterministic dynamics

x1(1) = Ax, (1) + E,d, (1) i ()
i (1) = Cix (1) s,

Xz (1) = A x, (1) + E.d, (1) %o
Y2 (1) = Cox, (1) 52

A relation R is a simulation relation if for all vV d,(f) 3d,(t)

di(t)
%,(0) = x, (1)
R Cix, (1) = C,x, (1)
& (1)

R
X, (0) = x,(t)

R is a bi-simulation if converse is true as well

@l

Exact bi-simulation

Nonlinear systems

6.3. Pappas and S.Simic, Consistent abstractions of affine control systems, IEEE TAC 2002.
P. Tabuada and 6.J. Pappas, Abstractions of Hamiltonian systems, Automatica, 2003

P. Tabuada and 6.J. Pappas, Bisimilar control affine systems, Systems and control letters, 2003.

K. Grasse, Admissibility of trajectories in @-related systems, MCSS 2003

A. van der Schaft, Bisimulations of dynamical systems, Hybrid Systems : Computation and Control, 2004

Unifying discrete and continuous notions
E. Hagverdi, P.Tabuada, 6.J. Pappas, Bisimulations of discrete, continuous, and hybrid systems, Theoretical Computer Science,2005

A.A.Julius, A.J. van der Schaft, A behavioral framework for compositionality, MTNS 2004

Extensions to hybrid systems

P. Tabuada, 6.J. Pappas, P. Lima, Composing abstractions of hybrid systems, Discrete even dynamic systems, 2004
A. van der Schaft, Bisimulations of dynamical systems, Hybrid Systems : Computation and Control, 2004

6. Pola, A. van der Schaft, M. di Bennedeto, Equivalence of switching linear systems by bisimulation, TEEE CDC 2004

From exact to approximate

Exact relationships useful for binary answers

When dealing with the physical world, we use approximations
Labeled Markov processes (Desharnais et. al., TCS 2004)
Quantitative transition systems (de Alfaro et. al., ICALP 2004)

Timed and hybrid systems

Approximate system relationships

Enable larger system “compression”
Quantify error/complexity tradeoffs
Provide measures of robustness
Potentially introduce different algorithms

#Penn

Approximate Goal

Define pseudo-metrics on the set of transition systems:

q4°(5,5,)=0 iff L(S)<L(S,)
d.(5.5)=0 iff L(S)=L(S,)
&’(5.5,)=0 iff §<s
4(5.5,)=0 iff 5=S,

Exact notions captured as zero sections of pseudo-metrics.

How can we define such metrics and how are they related ?

A. Girard and 6.3 Pappas, Approximation metrics for discrete and continuous systems, 2005. Submitted.

#Penn

Metrics

A metric d defined on a set E is a nonnegative function
d:ExE—>R

Satisfying the usual properties

1. d(e.e;)=d(e,.e)
2.d(e,e,)=0ce,=¢
3. d (e, e;5)<d(e,e,)+d(e;.e;)

Dropping property 1 results in a directed metric
Dropping = in property 2 results in a pseudo-metric

16

Hausdorff distances

Given subsets A and B of E, the Hausdorff distance is

h*(A,B)=sup inf d(a,b)
h(A,B) = max(h” (A,B),h” (B, A))

The classical result follows

h~(A,B)=0< cl(A) c cl(B)
h(A,B)=0 < cl(A) =cl(B)

&Penn

Metric Transition Systems

A transition system

S=(QQ%Z,~,T())

is a called metric transition system if

The set of states is equipped with a metric dQ QxQ >R
The set of events has the discrete metric
The set of observations is has a metric d :TIxTT >R

Furthermore we assume that 1. Initial set is compact
2. Observation map is continuous
3. Post is continuous
4. Support(Post) is an open subset
5. Post(q) is compact

#Penn

Reachability metrics

Since Reach(S,;),Reach(S,) =TT which is a metric space

d;’(S1,S,) =h” (Reach(S,),Reach(s,))
& (S;,S,) =h(Reach(S,),Reach(s;))

The result follows

4 (5,,5,) =0 < cl(Reach(S,)) < cl(Reach(S,))
d.(5,,5,) = 0 < cl(Reach(s,)) = cl(Reach(S,))

&Penn

Language meftrics

Lifting the metric to sequences (in the infinity sense)

47(5,5,)= sup inf du(1)

nel(s;) 2>

d.(5,5)=max{ d’(5,,S,) . d°(S;.5)}

The result follows

4°(5,,5,) =0 < cl(L(S,)) < cl(L(S,))
4 (5,5,)=0 < cl(L(S)) = cl(L(S,))

#Penn

Inequalities

&’(5.5,)<d’(S..S,)
&%(5.5,)<d (5.5,)

Reach(S,) = N(Reach(S,),d;’(S,,S,))
= N(Reach(s,),d°(5,.5,))

#Penn

Approximate Simulation Relations
Consider two fransition systems and let >0 be given
s1 :(QllQlolzl_)lrn:<'>1)
S, =(Q. Q.Z, 2, T1(),)

Relation Rc @, xQ, isa 3- simulation relation if it
1. Respects initial states vq eQ’ 3¢, Q) (4.9,) <R

2. Respects observationsif (q,,q,) R thendn((¢),.(¢,),) <3

3. Respects transitions if (¢.q,)<R then ¢ —q,
R R

o

&Penn %>

Approximate simulation

For & =0 we recover exact simulation relation.

555,

if there exists & -simulation relation R.

S, approximately simulates S, (with precision3>0),

For all 3,5'>0 we have

SERS
5535, andd'>8then S <;. S,
555, and S, <;. S; then S, <;.5. S5

&Penn

Bi-simulation metrics

The bi-simulation metric is defined as the tighest
precision with which S, bi-simulates S;

4(5.5,) = inf(5%8,)

For any transition system we have
if S,=5, then dy(S,,5,)=0
For metric transition systems we have

if dy(S,,S,)=0 then S =S,

&Penn

Simulation metrics

The simulation metric is defined as the tightest
precision with which S, simulates S;

&'(5.S,) = inf{S<;S,}

For any transition system we have
if 5, <S5, then d;’(S,,S,)=0

For metric transition systems we have

if d7’(5,,5,)=0 then S <S5,

#Penn
Approximate relationships
%(S:.S,) a’(5,.5,)
d(5,.5,) — 4°(5,.5,)
&(5..5,) —) 4’(5.5,)
#Penn

If metrics are zero then

Sl = Sg Sl SZ

A(L(S) = cl(L(S)) =y UL(S)

cl(L(Ss))

-
T I

cl(Reach(S)) = cl(Reach(Ss)) |:> 1(Reach(S1)) C cl(Reach(S2)

=

& Penn

Simulation algorithm

Maximal (coarsest) simulation relation can be computed
using the following algorithm

Given >0
R®={(q:.9) | dr(¢q).(g,)) <8}
R™={(q.9)eR | V¢—">1q3¢—>20, (¢.%)eR"}

We obtain that

R =R
R* =R

mFor 8 =0, we obtain the usual simulation algorithm
& Penn

18

Relations versus functions

Express relations as levels sets of functions

For any given >0
R'={(9.9) | f(q.9,)<5}
R* :{ (Ch/qg) I f’(qllqz)sa}

Simulation functions are obtained by a dual algorithm

o= dn(<Q1>,<QZ>)
"' = max{dn ((¢).(q,)) . sup inf (¢, q)}

qq 2%

&Penn

Simulation metric

The limit f*=lim f' exists and is the minimal solution of

" =max{dr((¢)).(g,)), sup inf f"(q,.9)}

qnq %72%

Simulation functions define the simulation metric

47 (5,,5,)= sup inf (40
QP %=

A similar story for bi-simulation metrics
#Penn

Bi-simulation algorithm

Maximal (coarsest) bi-simulation relation can be computed
using the following algorithm

Given >0

R®={(q.9,) | dr((q).(q:)) <5}

R"={(4,,q.)eR | V¢—">1¢,3¢,—2q, (4.9,)eR'}
and V¢, —">2 ¢, 3¢ —"—14, (q.4)eR'}

We obtain that
R =R
R* R

efor §=0,we obtain the usual bi-simulation algorithm
S ICI

Bi-simulation functions and metric

Bi-simulation functions are obtained by a dual algorithm

= dr({90).492))
i =max{d((q).(%)), sup inf f(q,q), sup inf fi(q,q)

qorq R2% @ WG

Using the limit f*=lim f' of the algorithm we can define

d;(S,,S,) =max{sup inf f'(q,q.).sup inf £(q.q,)}
¢e@® =R e 1=

#Penn

Exact Computation

Discrete* Continuous

d(5.5,) [PSPACE-complete| Impossible

4 One dynamic game
%(5.5,) el One static game

*L. De Alfaro, M. Faella, and M Stoelinga, Metrics for quantifative fransition systems, ICALP 2004

#Penn

Bounding metrics

Relax the equality with inequality, and search for

f>max{dn ((4.).(¢,)) , sup inf. (q,.q)}

qq R72%

Then f>f" and therefore

d5’(S,S;) < sup inf f(q;,q,)
qe@ %2R

A similar story for bi-simulation metrics

Lyapunov-like conditions Constrained linear systems

Inequalities can be expressed in Lyapunov-like form as

x1(1) = A, (1) + Eydy (1), dy(t) €D, [V1) y 4 0
Y1(1) = Cix, (1) s, x=|"" ,A:[! },c:[m,czl
f(q1.9,) > dr((9).4q,)) Xz 0 A
(41.q.)> sup inf f(q..q.) (1) = Apxy(1) + Exdy (1), dy(f) €Dy | Yo d= {fi] - {EI o}
Qg e Yo = Cx, (1) s C I
2

Similarly, for bi-simulation

(G1.9.) > 9 ((91).(42))
f(q.9)> sup inf f(q.q)

Restricting to quadratic functions f(x;,x,)=vx"Mx we get
f2(x,,%,) > x"CTCx

aong 2% sup ingz Vf(Ax+Ed) <0
; C 4eb, e
f(4.9.)> sup inf f(q;.q,) sup inf Vf(Ax+Ed) <0
Goegp B71% et G0
& Penn &Penn
Constrained linear systems Deterministic linear systems
R AT A = Reduces to solving Lyapunov equations
Yi=-% +z+d; y: (1)
z1= X, -y, -2z I, = (-1 £x,(0) -v,(0) - 2,(0) <1)
vi =X1(1‘) dl E[fl,l] 8<y,(0)<9,-6<2(0) <-4} .
Phecmy o S| v, : £
Yo = X, (1) 4oy E-@x@=H o O
Function f(x,,y1,2,,%)=l% ~y; -z |+|y; +2 -x, | satisfies conditions e T TR R
d:’(S,.5)=0 Reachable sets of the 1. 100 dimensional linear system,
d;(sl,sz)ssupirlmf f=1 2. 6 dimensional approximation,
I 2
4(S,,5,) <1 = d(S,.,5,) <1= Reach(S;) = N(Reach(s,).1) 3. 10 dimensional approximation.
&Penn #Penn
Deterministic linear systems Constrained nonlinear systems
Reduces to solving Lyapunov equations
xi=f,(x,d) dy(1) €D, yi) x:[xl} d{ﬂ
: Y1 =9:(x;) s, X, d,
: fi(x;.d)
‘ : : F(x,d) =
: : : xz =f,(x;,d;) dy(1) €D, Yo (1) o) [fz(xz,dz)}

] Yz = 92(x;) s
B O 2 9(x) = 9,(x,) - g2 ()

We are looking for functions f(x) satisfying
The more robustly safe the system, ORI
the more we can compress the model :ulg jzri Vf-F(x,d) <0
the easier safety verification becomes sup inf Vf-F(x,d) <0
4D, <D

% Penn % Penn

Nonlinear systems

:) 5
X1 =-(1+01x3)x,
2
S 1-0Ixf yp = 0x g +x
e S B A X O X))
Y2 =X3 !
x3 :—2(1—0.1x1)x27%y3
S
z2 =-lz2 +22, ~ 2
2 - I, = {0} x[46]
23=_222_EZ3 Y2=%3

Using S.0.S., we obtained

£ = \1.205(x, — 2,)? +1.202(x, — 2,)? + 0.059xZ + 0.007x;"
d,(5,,5,) <0590

Nonlinear systems

3D nonlinear system with 2D output.

Reachable sets of the three dimensional nonlinear system,
and of a two dimensional linear approximation.

&Penn

Next steps

Metrics for hybrid systems
d(H,,H,)
Compositional approximations

52,52 515, 5115,

Robust, logical equivalence

S = 52_—551':(0 < SkEe

#Penn

&lenn
Main ideas
Meftrics for discrete and continuous systems
Approximate language inclusion, bi-simulation
Fixed-point (game-theoretic) characterization
Lyapunov-like relaxations
Thanks again |
School Organizers
Alberto Bemporad
Maurice Heemels
and HYCON
#Penn

21

