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Lecture goals

Why hybrid systems ?
Emphasis on some engineering examples

Modeling of hybrid systems
Emphasis on abstraction and refinement

Analysis of hybrid systems
Emphasis on algorithmic verification

Approximations of discrete and continuous systems
Emphasis on approximate (bi)-simulation

Warning : All questions and answers are biased and incomplete!

Outline of lectures
Lecture 1 Lecture 1 

Examples of hybrid systems and hybrid automata

A crash course in formal methods

Lecture 2 
Abstraction and refinement notions
Discrete abstractions for hybrid systems verification

Lecture 3 
Approximation metrics for discrete/continuous systems
Game theoretic interpretation of bisimulation

Why hybrid ?
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Enabling technologies

Advances in sensor and actuator technology
GPS, control of quantum systems

Invasion of powerful microprocessors in physical devices
Sophisticated software/hardware on board

Networking everywhere
Interconnects subsystems

Emerging applications…

Latest BMW : 72 networked microprocessors
Boeing 777   : 1280 networked microprocessors

Networked embedded systems…

Sensor

Controller
SW/HW

Actuator

Physical
System

Sensor

Controller
SW/HW

Actuator

Physical
System

Network

Physical system is continuous, software is discrete

Networked embedded systems…

Sensor

Controller
SW/HW

Actuator

Physical
System

Sensor

Controller
SW/HW

Actuator

Physical
System

Network

Discrete and Continuous 

Control Theory
Continuous systems 
Stability, control
Feedback, robustness

Computer Science
Transition systems
Composition, abstraction
Concurrency models

Hybrid Systems
Software controlled systems
Multi-modal systems
Embedded real-time systems
Multi-agent systems

Exporting Science 

Control Theory
Continuous systems 
Stability, control
Feedback, robustness

Computer Science
Transition systems
Composition, abstraction
Concurrency models

Composition 
Abstraction
Concurrency

Robustness
Feedback
Stability
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Different views…

Computer science perspective
View the physics from the eyes of the software
Modeling result : Hybrid automaton

Control theory perspective
View the software from the eyes of the physics 
Modeling result : Switched control systems

Embedded System Architecture

Hybrid behavior arises in
Hybrid dynamics

Hybrid model is a simplification of a larger nonlinear model
Quantized control of continuous systems

Input and observation sets are finite
Logic based switching

Software is designed to supervise various dynamics/controllers
Partial synchronization of many continuous systems

Resource allocation for competing multi-agent systems
Hybrid specifications of continuous systems

Plant is continuous, but specification is discrete or hybrid...

Logic based switching

Nuclear reactor example
Without rods

With rod 1

With rod 2

Rod  1 and 2 cannot be used simultaneously
Once a rod is removed, you cannot use it for 10 minutes

Specification : Keep temperature between 510 and 550 degrees.   
If T=550 then either a rod is available or we shutdown the plant.

50T 0.1
.
T −=

60T 0.1
.
T −=

56T 0.1
.
T −=

Software model of nuclear reactor

NoRodRod1 Rod2

Shutdown
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Hybrid model of nuclear reactor

550T ≤

NoRodRod1 Rod2

Shutdown

10y10y510T 21 =∧=∧=

50T 0.1
.
T −=

10y550T 2 ≥∧=10y550T 1 ≥∧=

56T 0.1
.
T −=

510T ≥

60T 0.1
.
T −=

510T ≥

50T 0.1
.
T −=

1
.
y1 = 1

.
y2 = 1

.
y1 = 1

.
y2 = 1

.
y1 = 1

.
y2 =

1
.
y1 = 1

.
y2 =

0y510T 1 =→= : 0y510T 2 =→= :

true

10y10y550T 21 <∧<∧=

Analysis : Is shutdown reachable ?Analysis : Is shutdown reachable ?

Algorithmic verification :  NO  Algorithmic verification :  NO  

Partial synchronization
(Concurrency)

The train gate

Safety specification : If train is within 10 meters of the crossing, then 
gate should completely closed.   

Liveness specification : Keep gate open as much as possible.

x

approach exit

θ

lower
raise

Controller

Controller || Gate || Train  System =

Train model

0x ≥

nearfar past

2000 x ≥

0x =

40x 50-
.

−≤≤

1000x ≥ -100x ≥

1000x =

30x 50-
.

−≤≤ 30x 50-
.

−≤≤approach

)[2000,x'  010x ∞∈→−=

exit

Gate model

90θ =

openraising

90θ ≤

9θ
.
=

lowering closed

0θ
.
=

90θ =
lower

9θ
.

−=

0θ ≥

0θ
.
=

0θ =

90θ =

raise
lowerraise

0θ =

raise

lowerlower

raise

Controller model

idletolower Going raise to Going

true

0:y =

dy ≤

1y
.
=

approach

true

exit
1y

.
=

raise

0:y =

lower

1y
.
=

dy ≤

0:y =

approach

0:y =

exit
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Synchronized transitions

idletolower Going raise to Going

true

0:y =

dy ≤

1y
.
=approach

true

exit 1y
.
=

raise

0:y =

lower

1y
.
=

dy ≤

0:y =

approach

0:y =

exit

0x ≥

nearfar past

2000 x≥

0x =

40x 50-
.

−≤≤

1000x ≥ -100x ≥

1000x =

30x 50-
.

−≤≤ 30x 50-
.

−≤≤approach

)[2000,x'  010x ∞∈→−=
exit

Verifying the controller

Safety specification : Can we avoid the set                                 ?

Parametric HyTech verification : 

x

approach exit

θ

lower
raise

Controller

Controller || Gate || Train  System =

 10)x(-10  0θ ≤≤∧>

5
49d   if   YES ≤

Research Issues 
Modeling Issues

Well posedness, robustness, zenoness
Analysis 

Stability issues, qualitative theory, parametric analysis 
Verification

Algorithmic methods that verify system performance
Controller Synthesis

Algorithmic methods that design hybrid controllers
Simulation

Mixed signal simulation, event detection, modularity
Code generation

From hybrid models to embedded code
Complexity

Compositionality and hierarchies

Tools : HyTech, Checkmate, d/dt, HYSDEL, Stateflow, Charon

Outline of lectures
Lecture 1 Lecture 1 

Examples of hybrid systems and hybrid automata

A crash course in formal methods

Lecture 2 
Abstraction and refinement notions
Discrete abstractions for hybrid systems verification

Lecture 3 
Approximation metrics for discrete/continuous systems
Game theoretic interpretation of bisimulation

Transition Systems
A transition system  

consists of 
A set of states Q 
A subset of initial states
A set of events 
A set of observations 
The transition relation
The observation map 

We assume systems to be non-blocking, possibly nondeterministic
The sets Q,    , and     may be infinite
Language L(S) is all initialized sequences of observations

)  Π, ,Σ,,QQ, (S 0 ⋅→=

q'q
σ
→

Σ

Σ

πq =

QQ0 ⊆

Π
Σ ΠS

Π

} L(S) by reachable is  π  |  Ππ{  Reach(S) ∈=

A discrete example
The parking meter

0 1 2 3 604 5
tick tick tick tick tick tick tick

tick

5p
5p

5p

5p

States Q ={0,1,2,…,60}

Events  {tick,5p}

Observations {exp,act} 

A possible string of observations 

exp act actactact actact

...actactexp ticktick5p ⎯⎯→⎯⎯⎯→⎯⎯→⎯
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A continuous example

1T
d)F(x,x'=

g(x)y =

nRX  Q  set State ==

+= R Σ  set Label

pR Y Π   set nObservatio ==

g(x)x  Map nObservatio Linear =

XRX   Relation Transition ××⊆→ +

  xx 2

t

1 ⇔→
 t  s  0  with  d(s) x(s),   ≤≤∃

andxx(t) and xx(0)  21 ==

 I  x(0) ∈

)  Π, ,Σ,,QQ, (S 0 ⋅→=

...}yy{ yL(S) 1
2

0.5
1

5
0 ⎯→⎯⎯→⎯⎯→⎯=

d(s))F(x(s),(s)x' =

Non-deterministic 

 D  d∈

Transition Systems
A region is a subset of states  

We define the following operators

Q P ⊆

p}q    Pp|Q{q(P)Pre
σ

σ →∈∃∈=

p}q    Pp    Σσ|Q{qPre(P)
σ
→∈∃∈∃∈=

q}p    Pp|Q{q(P)Post
σ

σ →∈∃∈=

q}p    Pp    Σσ|Q{qPost(P)
σ
→∈∃∈∃∈=

Transition Systems
We can recursively define

Similarly for the other operators.  Also  

(P))(PrePre(P)Pre 1-n
σσ

n
σ =

(P)Pre(P)Pre σ
1
σ =

U
Nn

n* (P)Pre(P)Pre
∈

=

U
Nn

n* (P)Post(P)Post
∈

=

Safety and Invariance

Safety problemSafety problem

Given transition system S, we consider two problems

empty?  Π  Reach(S)  Is F∩

Invariance problemInvariance problem

?  Π  Reach(S)  Is F⊆

If S is finite, then algorithm terminates (decidability).
Complexity : 

Forward reachability algorithm

Forward Forward ReachabilityReachability AlgorithmAlgorithm

initialize   
while    TRUE     do

if                     return UNSAFE ; end if;
if                     return SAFE   ; end if;

end while

R := P

R∩ S6=∅

R := R∪ Post(R)

Post(R) ò R

O(nI+mR)

reachable
transitions

initial
states

If S is infinite, then there is no guarantee of termination.

Backward reachability algorithm

Backward Backward ReachabilityReachability AlgorithmAlgorithm

initialize   
while    TRUE     do

if                     return UNSAFE ; end if;
if                     return SAFE   ; end if;

end while

R := S

R∩ P 6=∅

R := R∪ Pre(R)

Pre(R) ò R
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Representation issues
Enumeration for finite sets
Symbolic representation for infinite (or finite) sets

Operations on sets
Boolean operations
Pre and Post computations (closure?)

Algorithmic termination (decidability)
Guaranteed for finite transition systems
No guarantee for infinite transition systems

Algorithmic issues

More sophisticated properties can be expressed using 
Linear Temporal Logic (LTL)
Computation Tree Logic (CTL)
CTL*
mu-calculus

More complicated problems

Model checking

Basic verification problemBasic verification problem

S |=ϕ

Given transition system S, and temporal logic formula  ϕ

Two main approaches

Model checking : Algorithmic, restrictive
Deductive methods : Semi-automated, general 

Express temporal specifications along sequences

Informally Syntax Semantics

Eventually p

Always p

If p then next q 

p until q  

Linear temporal logic (informally)

♦p

p ⇒ í q

p U q

qqqqqqqqqqqqp

qqqqqqqqpq

pppppppppppppppq

p pppppppppppppp

Linear temporal logic syntax

The LTL formulas are defined inductively as follows

Atomic propositions 
All observation symbols p are formulas

Boolean operators
If       and        are formulas then  

Temporal operators
If       and         are formulas then

Linear temporal logic (formally)

ϕ1 ϕ2

ϕ1 ϕ2

ϕ1 ∨ ϕ2 ¬ϕ1

ϕ1 U ϕ2 íϕ1

The LTL formulas are interpreted over infinite (omega) words

w = p0 p1 p2 p3 p4. . .

(w, i) |=p iff pi = p

(w, i) |=ϕ1 ∨ ϕ2 iff (w, i) |=ϕ1

(w, i) |=ϕ1 U ϕ2

(w, i) |= íϕ1 iff (w, i +1)|=ϕ1

or (w, i) |=ϕ2

(w, i) |=¬ϕ1 iff (w, i) 6 |=ϕ1

Linear temporal logic semantics

∃j õ i (w, j) |=ϕ2 and ∀ i ô k < j (w, k) |=ϕ1

w |=þ iff (w, 0) |= ϕ

T |=þ iff ∀w ∈ L(T) w |= ϕ
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Syntactic boolean abbreviations

Conjunction
Implication
Equivalence

Syntactic temporal abbreviations

Eventually
Always
In 3 steps 

Linear temporal logic

♦ ϕ = > U ϕ
ϕ = ¬♦ ¬ϕ

ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2)
ϕ1 ⇒ ϕ2 = ¬ϕ1 ∨ ϕ2

ϕ1 ⇔ ϕ2 = (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)

í3 ϕ = íííϕ

Two processors want to access a critical section.  Each processor can has three 
observable states

p1={inCS, outCS, reqCS}
p2={inCS, outCS, reqCS}

Mutual exclusion  
Both processors are not in the critical section at the same time.

Starvation freedom
If process 1 requests entry, then it eventually enters the critical section.

LTL examples

¬(p1 = inCS ∧ p2 = inCS)

p1 = reqCS⇒♦p1 = inCS

LTL Model Checking

LTL model checkingLTL model checking

S |=ϕ

Given finite transition system and LTL formula we have

Tools : SPIN (automata), SMV (BDD), SAT-based

Complexity : 

Determine if 

O((n+m)(k+ l)2O(k))

states transitions formula
length

System verified

Counterexample

Outline of lectures
Lecture 1Lecture 1

Examples of hybrid systems and hybrid automata
A crash course in formal methods

Lecture 2 
Abstraction and refinement notions
Discrete abstractions for hybrid systems verification

Lecture 3 
Approximation metrics for discrete/continuous systems
Game theoretic interpretation of bisimulation

Dealing with model complexity

Bi-simulation

Simulation

Language Inclusion

Language Equivalence
Consider two transition systems        and       over same      and 

Languanges are equivalent 

     1S  2S Σ

 2S0o
 1S

σσ σ

σ σ σσ

Π

a

a

a

a a

b c b c

c...}caa                        

b...,baa{ )L(S)L(S

σσσ

σσσ
21

⎯→⎯⎯→⎯⎯→⎯

⎯→⎯⎯→⎯⎯→⎯==

σ σ σ σ
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Safety equivalence

Language equivalence and inclusion are difficult to check 

Language equivalenceLanguage equivalence

If L(S1) = L(S2) then Reach(S1) = Reach(S2)

Language inclusionLanguage inclusion

If L(S1) ò L(S2) then Reach(S1) ò Reach(S2)

Simulation Relations
Consider two transition systems

A relation                     is called a simulation relation if it
1. Respects initial states

2. Respects observations

3. Respects transitions

     21 Q  Q  R ×⊆

 R)q,(q   Qq   Qq 21
0
22

0
11 ∈∈∃∈∀

21 SS ≤
) Π,, Σ,,Q ,Q (S 11

0
111 〈⋅〉→=

'
11 q q

σ
→

'
22 q q

σ
→

 R  R

) Π,, Σ,,Q ,Q (S 22
0
222 〈⋅〉→=

221121 qq then  R)q,(q if =∈

 then  R)q,(q if 21 ∈

Simulation Games
Simulation is a matching game between the systems

Note that                but  it is not true that 

The transition systems are bisimilar iff and 

 2S0o
 1S

σσ σ

σ σ σσ

a

a

a

a a

b c b c

σ σ σ σ

21 SS ≤ 12 SS ≤

21 SS ≤ 12 SS ≤

The parking example
The parking meter

A coarser model

0 1 2 3 604 5
tick tick tick tick tick tick tick

tick

5p
5p

5p

5p

exp act actactact actact

5p

0
tick

tick

exp
many

5p

act

tick

many)}(60,many),...,(1,{(0,0), R =

Simulation relations
Consider two transition systems        and       

Complexity of 
Complexity of 

     1S  2S

Simulation implies language inclusionSimulation implies language inclusion

BiBi--simulation implies language equivalencesimulation implies language equivalence

If S1 ô S2 then L(S1) ò L(S2)

L(S1) ò L(S2) O((n1 +m1)2
n2)

S1 ô S2 O((n1 +m1)(n2 +m2))

If S1 =
ø S2 then L(S1) = L(S2)

Exact Relationships

S1 =
ø S2

L(S1) = L(S2)

Reach(S1) = Reach(S2) Reach(S1) ò Reach(S2)

L(S1) ò L(S2)

S1 ô S2
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Two important cases

Abstraction Refinement

21 TT ≤

1T

2T

21 TT ≤

1T

2T

≈≤ /TT

T

≈/T

Special quotients

Abstraction

When is the quotient language equivalent or bisimilar to T ?

Quotient Transition Systems
Given a transition system  

and an observation preserving partition                       , define  

naturally using
1.  Observation Map

2. Transition  Relation

)  O, , Σ, Q, (T ⋅→=
QQ ×⊆≈

)  O, , Σ, ,Q/ ( T/ ≈≈ ⋅→≈=≈

o  p with Pp  exists there iff  o  P =∈=
≈

p'  p with P'p'P,p  exists there iff  P'  P
σσ
→∈∈→≈

Outline of lectures
Lecture 1Lecture 1

Examples of hybrid systems and hybrid automata
A crash course in formal methods

Lecture 2 
Abstraction and refinement notions
Discrete abstractions for hybrid systems verification

Lecture 3 
Approximation metrics for discrete/continuous systems
Game theoretic interpretation of bisimulation

Bisimulation Algorithm
Quotient system            always simulates the original system 

When does original system      simulate the quotient system     ? 

≈/T T

T ≈/T

1o

2oσ

σ

Bisimulation Algorithm
Quotient system            always simulates the original system 

When does original system      simulate the quotient system     ? 

≈/T T

T ≈/T

1o

2oσ

σ
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If T is finite, then algorithm computes coarsest quotient.
If T is infinite, there is no guarantee of termination

Bisimulation algorithm

BisimulationBisimulation AlgorithmAlgorithm

initialize   
while             such that

end while

Q/ø = {p ø q iff < q >=< p >}
∅ 6= ò P ∩ Pre(P0)6= ò P0

P1 := P ∩ Pre(P0)

∃P,P0 ∈ Q/ø

P2 := P \ Pre(P0)

Q/ø := (Q/ø \ {P}) ∪ {P1, P2}

Relationships

Bisimulation

Simulation

Language Inclusion

Strongest, more properties, easiest to check

Weaker, less properties, easy to check

Weakest, less properties, difficult to check

Complexity comparisons

Bisimulation

Simulation

Language Equivalence

O(m á log(n))

O(m á n)

O(m á 2n)

≈≡ /TT

T

≈/T

Hybrid to discrete

Abstraction

Goal : Finite quotients of hybrid systems

Hybrid

Discrete

Hybrid System Model
A hybrid system                                        consists of

is a finite set of states
is the continuous state space
is the state space of the hybrid system
is the set of initial states
maps a diff. inclusion to each discrete state  
maps invariant sets to each discrete state 
is a relation capturing discontinuous changes

Define

H = (V,<n,X0, F, Inv,R)

<n

X = Vâ<n

X0 òX
F(l, x) ò<n

V

Inv(l) ò<n

R òXâX

E = {(l, l0)| ∃x ∈ Inv(l), x0 ∈ Inv(l0) ((l, x), (l0, x0)) ∈ R}
Init(l) = {x ∈ Inv(l) | (l, x) ∈ X0}
Guard(e) = {x ∈ Inv(l)| ∃x0 ∈ Inv(l0) ((l, x), (l0, x0)) ∈ R}
Reset(e, x) = {x0 ∈ Inv(l0)| ((l, x), (l0, x0)) ∈ R}

An example

550T ≤

NoRodRod1 Rod2

Shutdown

10y10y510T 21 =∧=∧=

50T 0.1
.
T −=

10y550T 2 ≥∧=10y550T 1 ≥∧=

56T 0.1
.
T −=

510T ≥

60T 0.1
.
T −=

510T ≥

50T 0.1
.
T −=

1
.
y1 = 1

.
y2 = 1

.
y1 = 1

.
y2 = 1

.
y1 = 1

.
y2 =

1
.
y1 = 1

.
y2 =

0y510T 1 =→= : 0y510T 2 =→= :

true

10y10y550T 21 <∧<∧=
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Transitions of Hybrid Systems
Hybrid systems can be embedded into transition systems
H = (V,<n,X0, F, Inv,R) TH = (Q,Q0,Σ,→,O,< á>)
Q = Vâ<n

Q0 =X0

Σ =E∪ {ü}
→òQâΣâ Q

(l1, x1)à→(l2, x2) iff x1 ∈ Guard(e), x2 ∈ Reset(e, x1)

(l1, x1)à→(l2, x2) iff l1 = l2 and ∃î õ 0 x(á ) : [0, î]→ <n

x(0) = x1, x(î) = x2, and ∀t ∈ [0, î]

xç ∈ F(l1, x(t)) and x(t) ∈ Inv(l1)

Discrete transitions

Continuous (time-abstract) transitions

Observation set and map 
depend on desired properties

e

ü

Rectangular hybrid automata

0x ≥

nearfar past

2000 x ≥

0x =

40x 50-
.

−≤≤

1000x ≥ -100x ≥

1000x =

30x 50-
.

−≤≤ 30x 50-
.

−≤≤approach

)[2000,x'  010x ∞∈→−=

exit

Rectangular sets :  
V

ixi ø ci ø∈ {<,ô,=,õ,>}, ci ∈ Q

Rectangular hybrid automata are hybrid systems where 

are rectangular sets  

Init(l), Inv(l), F(l, x),Guard(e),Reset(e, x)i

Multi-rate automata

0x ≥

1l3l

2000 x =

0x =

3x
.

−=

1000x ≥ -100x ≥

1000x =

2x
.

−= 1x
.

−=

2000x'  010x =→−=

Multi-rate automata are rectangular hybrid automata where 

are singleton sets  

Init(l), F(l, x),Reset(e, x)i

2l

Timed automata

5y <

1l3l

0 x =

3y >1x
.
=

10x < true

0:y 9x =→>

1:y0:x 20y 10x =∧=→>∧>

Timed automata are multi-rate automata where 

for all locations l and all variables. 

F(l, xi) = 1

2l

1y
.
=

1x
.
=

1y
.
=

1x
.
=

1y
.
=

Initialized automata

Rectangular hybrid automata are initializedinitialized if the following holds:

After a discrete transition, if the differential inclusion (equation) for
a variable changes, then the variable must be reset to a fixed interval.

Timed automata are always initialized. 

0x ≥

nearfar past

2000 x ≥

0x =

40x 50-
.

−≤≤

1000x ≥ -100x ≥

1000x =

30x 50-
.

−≤≤ 30x 50-
.

−≤≤approach

)[2000,x'  010x ∞∈→−=

exit

Bad news

UndecidabilityUndecidability barriers barriers 
Consider the class of uninitialized multi-rate automata with n-1 clock
variables, and one two slope variable (with two different rates).

The reachability problem is undecidable for this class.

No algorithmic procedure exists.

Model checking temporal logic formulas is also undecidable

Initialization is necessary for decidability  
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Timed automata

5y <

1l3l

0 x =

3y >1x
.
=

10x < true

0:y 9x =→>

1:y0:x 20y 10x =∧=→>∧>

All timed automata admit a finite All timed automata admit a finite bisimulationbisimulation

2l

1y
.
=

1x
.
=

1y
.
=

1x
.
=

1y
.
=

Hence CTL* model checking is decidable for timed automata 

Timed automata

5y <

1l3l

0 x =

3y >

true

0:y 9x =→>

1:y0:x 20y 10x =∧=→>∧>

2l
1x

.
=

1y
.
=

1x
.
=

1y
.
=

Approach : Discretize the clock dynamics using region equivalence

Region equivalence

3l

 x

y

Equivalence classes : 6 corner points 
14 open line segments
8 open regions

Multi-rate automata

0x ≥

1l3l

2000 x =

0x =

3x
.

−=

1000x ≥ -100x ≥

1000x =

2x
.

−= 1x
.

−=

2000x'  010x =→−=

2l

All initialized multiAll initialized multi--rate automata admit a finite rate automata admit a finite bisimulationbisimulation

Rectangular automata

0x ≥

1l3l

2000 x =

0x =

3x
.

−=

1000x ≥ -100x ≥

1000x =

2x
.

−= 1x
.

−=

2000x'  010x =→−=

2l

All initialized rectangular automata admit a finite All initialized rectangular automata admit a finite bisimulationbisimulation

Rectangular automata

0x ≥

1l3l

2000 x =

0x =

3x
.

−=

1000x ≥ -100x ≥

1000x =

2x
.

−= 1x
.

−=

2000x'  010x =→−=

2l

All initialized rectangular automata admit a finite All initialized rectangular automata admit a finite bisimulationbisimulation
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No finite bisimulation

Bisimulation algorithm never terminates 

2≤≤
.
y1

2≤≤
.
x1

1≤≤ x0
1≤≤ y0

1≤≤ y0
1≤≤ x0

0 y' Inv =→

0x'  Inv =→

but…

All initialized rectangular automata admit a finite language All initialized rectangular automata admit a finite language 
equivalence quotient which can be constructed effectively. equivalence quotient which can be constructed effectively. 

0x ≥

nearfar past

2000 x ≥

0x =

40x 50-
.

−≤≤

1000x ≥ -100x ≥

1000x =

30x 50-
.

−≤≤ 30x 50-
.

−≤≤approach

)[2000,x'  010x ∞∈→−=

exit

LTL model checking of rectangular automata is decidable. LTL model checking of rectangular automata is decidable. 

More complicated dynamics?

Bisimulation algorithm 
never terminates    !!

4}x0|{(x,0)P1 ≤≤=

0}x-4|{(x,0)P2 <≤=

)P(P\RP 21
2

3 ∪=

Sets Sets 

211
.

x0.2xx +=

Dynamics Dynamics 

212
.

0.2x-xx +=

Basic problems

Finite Finite bisimulationsbisimulations of continuous dynamical systems of continuous dynamical systems 
Given a vector field F(x) and a finite partition of       

1. Does there exist a finite bisimulation ?
2. Can we compute it ?

nR

Basic answers

Finite Finite bisimulationsbisimulations of continuous dynamical systems of continuous dynamical systems 
Consider a vector field X and a finite partition of  where  

1. The flow of the vector field is definable in an o-minimal theory
2. The finite partition is definable in the same o-minimal theory

Then a finite bisimulation always exists.

nR

Decidable problems for continuous systems

Consider linear vector fields of the form F(x)=Ax where

A is rational and nilpotent
A is rational, diagonalizable, with rational eigenvalues
A is rational, diagonalizable, with purely imaginary, rational eigenvalues

Then 

1. The reachability problem between semi-algebraic sets is decidable.

2. Consider a finite semi-algebraic partition of the state space.
Then a finite bisimulation always, exists and can be computed.

3. Consider a CTL* formula where atomic propositions denote
semi-algebraic sets.   Then CTL* model checking is decidable.
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Decidable problems for hybrid systems

A hybrid system H is said to be o-minimal if
1. In each discrete state, all relevant sets and the flow of the vector 

field are definable in the same o-minimal theory.
2. After every discrete transition, state is reset to a constant set 

(forced initialization)

All o-minimal hybrid systems admit a finite bisimulation.

CTL* model checking is decidable for the class of o-minimal hybrid systems.

Decidable problems for hybrid systems

Consider a linear hybrid system H where
1. For each discrete state, all relevant sets are semi-algebraic
2. After every discrete transition, state is reset to a constant 

semi-algebraic set (forced initialization)
3. In each discrete location,  the vector fields are of the form F(x)=Ax 

where
A is rational and nilpotent
A is rational, diagonalizable, with rational eigenvalues
A is rational, diagonalizable, with purely imaginary, rational eigenvalues

Then 

CTL* model checking is decidable for this class of linear hybrid systems.

The reachability problem is decidable for such linear hybrid systems.

Safety verification of hybrid systems 
Decidability boundary

Discrete abstraction of hybrid systems, Alur, Henzinger, Lafferriere, Pappas
What’s decidable about hybrid automata, Henzinger, Kopke, Puri, Varaiya
Piecewise affine systems, Sontag
Switched linear systems, Blondel, Tsitsiklis

Symbolic rechability approaches 
Linear hybrid automata, Henzinger, Alur, Courcoubetis, Puri, Varaiya
Computer algebra, Tiwari, Pappas, Manna, Mishra

Over-approximate rechability approaches
Level sets, Tomlin, Mitchell, Bayen, Sastry
Flowpipes, Krogh, Asarin, Maler, Pnueli
MILP, Bemporad, Morari
Ellipsoids, Kurzhanski, Varaiya
Zonotopes, Girard
Predicate abstraction, Alur, Clarke, Ivancic, Thang
Barrier certificates, Prajna, Jadbabaie, Pappas, Roozbehani, Feron, Megretski

Tools : HyTech, Checkmate, d/dt, HYSDEL, Stateflow, Charon

Outline of lectures
Lecture 1Lecture 1

Examples of hybrid systems and hybrid automata
A crash course in formal methods

Lecture 2 
Abstraction and refinement notions
Discrete abstractions for hybrid systems verification

Lecture 3 
Approximation metrics for discrete/continuous systems
Game theoretic interpretation of bisimulation

Exact Relationships

S1 =
ø S2

L(S1) = L(S2)

Reach(S1) = Reach(S2) Reach(S1) ò Reach(S2)

L(S1) ò L(S2)

S1 ô S2

For deterministic systems

S1 =
ø S2

L(S1) = L(S2)

Reach(S1) = Reach(S2) Reach(S1) ò Reach(S2)

L(S1) ò L(S2)

S1 ô S2
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Bi-simulations of control systems *

*G.J. Pappas, Bisimilar linear systems, Automatica,  December 2003

(t)xC(t)y
(t)dE(t)uB(t)xA(t)x

111

1111111
.

=

++=(t)u1 (t)y1

(t)xC(t)y
(t)dE(t)uB(t)xA(t)x

222

2222222
.

=

++=(t)u2 (t)y2

*P. Tabuada and G.J. Pappas, Bisimilar control affine systems, Systems and Control Letters, May 2004.

*A. van der Schaft, Equivalence of dynamical system by bisimulation, IEEE TAC, December 2004

  equations} satisfying  (t)d(t),x|(t))y(t),{(u)L(S 11111 ∃=

  equations} satisfying  (t)d(t),x|(t))y(t),{(u)L(S 22222 ∃=

 1S

 2S

A relation R is a simulation relation if for all  

R is a bi-simulation if converse is true as well 

Non-deterministic dynamics

(t)xC(t)y
(t)dE(t)xA(t)x

111

11111
.

=

+= (t)y1

(t)xC(t)y
(t)dE(t)xA(t)x

222

22222
.

=

+= (t)y2

(t)x (0)x 2

(t)d

2

2

→

 R  R

(t)x (0)x 1

(t)d

1

1

→
(t)xC(t)xC 2211 =

(t)d    (t)d 21 ∃∀

 1S

 2S

Exact bi-simulation
Nonlinear systems

Unifying discrete and continuous notions

A.A.Julius, A.J. van der Schaft, A behavioral framework for compositionality, MTNS 2004 

Extensions to hybrid systems

G.J. Pappas and S.Simic, Consistent abstractions of affine control systems, IEEE TAC 2002.

P. Tabuada and G.J. Pappas, Abstractions of Hamiltonian systems, Automatica, 2003.

P. Tabuada and G.J. Pappas, Bisimilar control affine systems, Systems and control letters, 2003.

A. van der Schaft, Bisimulations of dynamical systems, Hybrid Systems : Computation and Control, 2004

K. Grasse, Admissibility of trajectories in Φ-related systems, MCSS 2003

A. van der Schaft, Bisimulations of dynamical systems, Hybrid Systems : Computation and Control, 2004

E. Hagverdi, P.Tabuada, G.J. Pappas, Bisimulations of discrete, continuous, and hybrid systems, Theoretical Computer Science,2005 

P. Tabuada, G.J. Pappas, P. Lima, Composing abstractions of hybrid systems, Discrete even dynamic systems, 2004

G. Pola, A. van der Schaft, M. di Bennedeto, Equivalence of switching linear systems by bisimulation, IEEE CDC 2004

Exact relationships useful for binary answers

When dealing with the physical world, we use approximations
Labeled Markov processes (Desharnais et. al., TCS 2004)
Quantitative transition systems (de Alfaro et. al., ICALP 2004)
Timed and hybrid systems

Approximate system relationships 
Enable larger system “compression”
Quantify error/complexity tradeoffs
Provide measures of robustness
Potentially introduce different algorithms

From exact to approximate

Define pseudo-metrics on the set of transition systems:

Exact notions captured as zero sections of pseudo-metrics.

How can we define such metrics and how are they related ?

Approximate Goal

2121B

2121S

2121L

2121L

SS iff0)S,(Sd
SS iff0)S,(Sd

)L(S )L(S iff 0)S,(Sd
)L(S )L(S iff 0)S,(Sd

≅=
≤=
==
⊆=

→

→

A. Girard and G.J. Pappas, Approximation metrics for discrete and continuous systems, 2005. Submitted.

Metrics
A metric d defined on a set E is a nonnegative function 

Satisfying the usual properties

1.
2.
3.  

Dropping property 1 results in a directed metric
Dropping       in property 2 results in a pseudo-metric

R  E E : d →×

)e,(e d)e,(e d 1221 =
1221 ee0)e,(e d =⇔=

)e,d(e)e,d(e)e,(e d 322131 +≤

⇒
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Hausdorff distances
Given subsets A and B of E, the Hausdorff distance is

The classical result follows

cl(B)cl(A)0B)(A,h ⊆⇔=→

  A))(B,hB),(A,h max(B)h(A, →→=

cl(B)cl(A)0B)h(A, =⇔=

b)d(a,  infsupB)(A,h
BbAa ∈∈

→ =    

Metric Transition Systems
A transition system  

is a called metric transition system if 

The set of states is equipped with a metric
The set of events has the discrete metric  
The set of observations is has a metric

Furthermore we assume that  1. Initial set is compact
2. Observation map is continuous
3. Post is continuous
4. Support(Post) is an open subset
5. Post(q) is compact

)  Π, ,Σ,,QQ, (S 0 ⋅→=

RΠΠ:dΠ →×

R  Q Q : dQ →×

Reachability metrics
Since                                           which is a metric space

The result follows

))cl(Reach(S))cl(Reach(S0)S,(Sd 2121R ⊆⇔=→

))Reach(S),(Reach(Sh)S,(Sd 2121R
→→ =

ΠReach(S),Reach(S 21 ⊆)

))Reach(S),h(Reach(S)S,(Sd 2121R =

))cl(Reach(S))cl(Reach(S0)S,(Sd 2121R =⇔=

Language metrics
Lifting the metric to sequences (in the infinity sense)

The result follows

))cl(L(S))cl(L(S0)S,(Sd 2121L ⊆⇔=→

))cl(L(S))cl(L(S0)S,(Sd 2121L =⇔=

)r,(rd inf sup)S,(Sd 21Π)L(Sr)L(Sr
21L

2211
∈∈

→ =

 } )S,(Sd , )S,(Sd max{)S,(Sd 12L21L21L
→→=

Inequalities

)S,(Sd )S,(Sd 21L21R
→→ ≤

)S,(Sd )S,(Sd 21L21R ≤

))S,(Sd),N(Reach(S)Reach(S 21R21
→⊆

))S,(Sd),N(Reach(S 21L2
→⊆

Approximate Simulation Relations
Consider two transition systems and let            be given 

Relation                     is a    - simulation relation if it
1. Respects initial states

2. Respects observations

3. Respects transitions

     21 Q  Q  R ×⊆
 R)q,(q   Qq   Qq 21

0
22

0
11 ∈∈∃∈∀

) Π,, Σ,,Q ,Q (S 11
0
111 〈⋅〉→=

'
11 q q

σ
→

'
22 q q

σ
→

 R  R

) Π,, Σ,,Q ,Q (S 22
0
222 〈⋅〉→=

δ)q,q(d then  R)q,(q if 2211Π21 ≤∈

 then  R)q,(q if 21 ∈

0δ ≥

δ
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Approximate simulation
For         we recover exact simulation relation. 

For all             we have

0δ =

approximately simulates       (with precision         ), 

if there exists     -simulation relation R.δ

2S 1S 0δ ≥

2δ1 SS ≤

0δ'δ, ≥

1δ1 SS ≤

2δ'12δ1 SS then δδ' and  SS ≤≥≤

3δ'δ13δ'22δ1 SS then SS and  SS +≤≤≤

Simulation metrics

The simulation metric is defined as the tightest 
precision with which       simulates  

} SS{  inf)S,(Sd 21021S δ
δ

≤=
≥

→

2S 1S

For any transition system we have

For metric transition systems we have 
0)S,(Sd  then  SS  if 21S21 =≤ →

2121S SS   then  0)S,(Sd  if ≤=→

Bi-simulation metrics

The bi-simulation metric is defined as the tighest
precision with which       bi-simulates  

} SS{  inf)S,(Sd 2δ10δ21B ≅=
≥

2S 1S

For any transition system we have

For metric transition systems we have 

0)S,(Sd  then  SS  if 21B21 =≅

2121B SS   then  0)S,(Sd  if ≅=

Approximate relationships

)S,(Sd 21B )S,(Sd 21S
→

)S,(Sd 21L )S,(Sd 21L
→

)S,(Sd 21R )S,(Sd 21R
→

If metrics are zero then

S1 =
ø S2 S1 ô S2

cl(L(S1)) = cl(L(S2)) cl(L(S1)) ò cl(L(S2))

cl(Reach(S1)) = cl(Reach(S2)) cl(Reach(S1)) ò cl(Reach(S2))

Simulation algorithm
Maximal (coarsest) simulation relation can be computed 
using the following algorithm

We obtain that 

For          , we obtain the usual simulation algorithm

} δ )q,q(d  |)q,(q{ R 21Π21
0 ≤〉〈〉〈=   

} R  )q,(q  qq  q q   |R)q,(q{ R i'
2

'
1

'
222

'
111

i
21

1i ∈⎯→⎯∃⎯→⎯∀∈=+ σσ  

0δ  Given ≥

*RRii
0i =+∞=

=I
iRR* ⊆

0δ =
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Relations versus functions

Express relations as levels sets of functions

Simulation functions are obtained by a dual algorithm 

0δ  given any For ≥

} δ )q,(qf  |)q,(q{ R 21
i

21
i ≤=   

} δ )q,(qf  |)q,(q{ R 21
*

21
* ≤=   

)}q,(qf  inf  sup, )q,q(max{df
 )q,q(d f

'
2

'
1

i

qqqq
21Π

1i
21Π

0

'
222'

111
→→

+ 〉〈〉〈=

〉〈〉〈=

Simulation metric

The limit                   exists and is the minimal solution of

Simulation functions define the simulation metric

A similar story for bi-simulation metrics 

i

i
flimf*

+∞→
=

)}q,(qf  inf  sup, )q,q(max{df '
2

'
1

*

qqqq
21Π

*
'
222'

111
→→

〉〈〉〈=

 )q,(qf  inf sup )S,(Sd 21
*

QqQq
21S 0

220
11

∈∈

→ =

Bi-simulation algorithm
Maximal (coarsest) bi-simulation relation can be computed 
using the following algorithm

We obtain that 

For          , we obtain the usual bi-simulation algorithm

} δ )q,q(d  |)q,(q{ R 21Π21
0 ≤〉〈〉〈=   

} R  )q,(q  qq  q q   |R)q,(q{ R i'
2

'
1

'
222

'
111

i
21

1i ∈⎯→⎯∃⎯→⎯∀∈=+ σσ  

0δ  Given ≥

*RRii
0i =+∞=

=I
iRR* ⊆

0δ =

} R  )q,(q  qq  q q   and i'
2

'
1

'
111

'
222 ∈⎯→⎯∃⎯→⎯∀ σσ

Bi-simulation functions and metric

Bi-simulation functions are obtained by a dual algorithm

Using the limit                 of the algorithm we can define

)}q,(qf  inf  sup),q,(qf  inf  sup, )q,q(max{df
 )q,q(d f

'
2

'
1

i

qqqq

'
2

'
1

i

qqqq
21Π

1i
21Π

0

'
111'

222
'
222'

111
→→→→

+ 〉〈〉〈=

〉〈〉〈=

i

i
flimf*

+∞→
=

} )q,(qf  inf sup, )q,(qf  inf supmax{)S,(Sd 21
*

QqQq
21

*

QqQq
21B 0

110
22

0
220

11
∈∈∈∈

=

Exact Computation

Discrete* Continuous

)S,(Sd 21B

)S,(Sd 21L

*L. De Alfaro, M. Faella, and M Stoelinga, Metrics for quantitative transition systems, ICALP 2004 

PSPACE-complete

)O(n4

Impossible

One dynamic game
One static game

Bounding metrics

Relax the equality with inequality, and search for

Then  and therefore

A similar story for bi-simulation metrics 

)}q,f(q  inf  sup, )q,q(max{df '
2

'
1

qqqq
21Π '

222'
111

→→

〉〈〉〈≥

 )q,f(q  inf sup )S,(Sd 21
QqQq

21S 0
220

11
∈∈

→ ≤

*ff ≥
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Lyapunov-like conditions

Inequalities can be expressed in Lyapunov-like form as 

Similarly, for bi-simulation

 )q,q(d)q,f(q 21Π21 〉〈〉〈≥

)q,f(q  inf  sup)q,f(q '
2

'
1

qqqq
21 '

222'
111

→→

≥

 )q,q(d)q,f(q 21Π21 〉〈〉〈≥

)q,f(q  inf  sup)q,f(q '
2

'
1

qqqq
21 '

222'
111

→→

≥

)q,f(q  inf  sup)q,f(q '
2

'
1

qqqq
21 '

111'
222

→→

≥

Constrained linear systems

(t)y1

(t)y2

 1S

 2S

Restricting to quadratic functions                              we get Mxx)x,f(x T
21 =

CxCx)x,(xf TT
21

2 ≥

0  Ed)(Ax f   inf  sup
2211

DdDd
≤+∇

∈∈

0  Ed)(Ax f   inf  sup
1122

DdDd
≤+∇

∈∈

(t)xC(t)y
D(t)d (t),dE(t)xA(t)x

111

1111111
.

=

∈+=

(t)xC(t)y
D(t)d (t),dE(t)xA(t)x

222

2222222
.

=

∈+=

[ ].|,, 21
2

1

2

1 CCC 
A0

0A
A 

x
x
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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⎢
⎣

⎡
=

⎥
⎦
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⎢
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=
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1

E0
0E

E
d
d

d  ,

Constrained linear systems

(t)y1

(t)y2

 1S

 2S

Function                                                        satisfies conditions

(t)xy
2zy  x   z

dz        x -y

dzy-2xx

11

1111
.

1111

.
11111

.

=

−−=

++=

+++=

(t)xy
d        x -x

22

222
.

=

+=

1,1][d2 −∈

1,1][d1 −∈

|xzy||zyx|)x,z,y,f(x 2111112111 −++−−=

1 f  inf sup )S,(Sd
21

II
21S =≤→

0)S,(Sd 12S =→

1)S,(Sd 12B ≤

5}(0)x{2I 22 ≤≤=

4}(0)z6 9,(0)y8
1(0)z(0)y-(0)x{-1I

11

1111

−≤≤−≤≤

≤−≤=

),1)N(Reach(S)Reach(S1)S,(Sd 2112R ⊆⇒≤⇒

Reduces to solving Lyapunov equations

Reachable sets of the 1. 100 dimensional linear system, 
2. 6 dimensional approximation,
3. 10 dimensional approximation.

Deterministic linear systems

Reduces to solving Lyapunov equations

The more robustly safe the system,
the more we can compress the model

the easier safety verification becomes

Deterministic linear systems Constrained nonlinear systems

(t)y1

(t)y2

 1S

 2S

We are looking for functions          satisfying 
2
2

2 ||g(x)||(x)f ≥

0  d)F(x, f   inf  sup
2211

DdDd
≤⋅∇

∈∈

0  d)F(x, f   inf  sup
1122

DdDd
≤⋅∇

∈∈

)(xgy
D(t)d    )d,(xfx

111

111111
.

=

∈=
⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

x
x

x ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

d
d

d

)(xgy
D(t)d    )d,(xfx

222

222222
.

=

∈=

f(x)

⎥
⎦

⎤
⎢
⎣

⎡
=

)d,(xf
)d,(xf

d)F(x,
222

111

)(xg)(xgg(x) 2211 −=
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Nonlinear systems
 1S

 2S

Using S.O.S., we obtained 

3y
2
1

2)x10.1x-2(1- 3
.
x

32x2x
2

2
10.1x-1

 -2
.
x

1)x2
20.1x-(11

.
x

−=

+=

+=

323
.

322
.

z
2
12z -z

2zz
2
1 -z

−=

+=

0.590)S,(Sd 21B ≤

[4,6]{0}I2 ×=

[4,6]{0}[-2,2]I1 ××=
3x2y

2x10.1x1y

=

+=

3z2y
2z1y

=

=

4
1

2
1

2
33

2
22 0.007x0.059x)z1.202(x)z1.205(xf ++−+−=

3D nonlinear system with 2D output.

Reachable sets of the three dimensional nonlinear system, 
and of a two dimensional linear approximation.

Nonlinear systems

Main ideas

Metrics for discrete and continuous systems

Approximate language inclusion, bi-simulation

Fixed-point (game-theoretic) characterization

Lyapunov-like relaxations

Next steps

Metrics for hybrid systems

Compositional approximations

Robust, logical equivalence

)H,d(H 21

2δ1

?

2δ1 S||S S||S S  S ≅⇒≅

ϕϕ =⇔=⇒≅ 21

?

2δ1 S  S S  S

Thanks again !

School Organizers

Alberto Bemporad 

Maurice Heemels

and HYCON 



 




