

1st HYCON PhD School on Hybrid Systems

Verification of Hybrid Systems

Jynamics of A A

show

George Pappas University of Pennsylvania, USA

pappasg@central.cis.upenn.edu

Outline of lectures

Lecture 1

Examples of hybrid systems and hybrid automata A crash course in formal methods

Lecture 2

Abstraction and refinement notions Discrete abstractions for hybrid systems verification

Lecture 3

Approximation metrics for discrete/continuous systems Game theoretic interpretation of bisimulation

Rem

🗟 Penn

Different views...

Computer science perspective View the physics from the eyes of the software Modeling result : Hybrid automaton

Control theory perspective View the software from the eyes of the physics Modeling result : Switched control systems

🗟 Renn

Logic based switching

🖗 Penn

Algorithmic issues

Representation issues Enumeration for finite sets Symbolic representation for infinite (or finite) sets

Operations on sets Boolean operations Pre and Post computations (closure?)

Algorithmic termination (decidability) Guaranteed for finite transition systems No guarantee for infinite transition systems

Renn

Linear temporal logic (informally)

Express temporal specifications along sequences

Informally	Syntax	Semantics
Eventually p	$\Diamond p$	qqqqqqqqqqqq
Always p	$\Box p$	ррррррррррррррр
If p then next q	$p \Rightarrow \bigcirc q$	qqqqqqqqpq
p until q	$p \ U \ q$	ppppppppppppppppp
** Dooro		
∞rem		

BRenn

Exact bi-simulation

Nonlinear systems

- G.J. Pappas and S.Simic, Consistent abstractions of affine control systems, IEEE TAC 2002.
 P. Tabuada and G.J. Pappas, Abstractions of Hamiltonian systems, Automatica, 2003.
- P. Tabuada and G.J. Pappas, Bisimilar control affine systems, Systems and control letters,
- K. Grasse, Admissibility of trajectories in Ø-related systems, MCSS 2003 A. von der Schaft, Bisimulations of dynamical systems, Hybrid Systems : Computation and Control, 2004
- Unifying discrete and continuous notions
- E. Hagverdi, P. Tabuada, G.J. Pappas, Bisimulations of discrete, continuous, and hybrid systems, Theoretical Computer Science, 20
- A.A.Julius, A.J. van der Schaft, A behavioral framework for compositionality, MTNS 2004

Extensions to hybrid systems

P. Tabuada, G.J. Pappas, P. Lima, Composing abstractions of hybrid systems, Discrete even dynamic systems, 2004

A. van der Schaft, Bisimulations of dynamical systems, Hybrid Systems : Computation and Control, 2004 G. Pola, A. van der Schaft, M. di Bennedeto, Equivalence of switching linear systems by bisimulation, IEEE CDC 2004

& <u>Rem</u>

Approximate Goal Define pseudo-metrics on the set of transition systems:					
	$\begin{aligned} d_{L}^{\rightarrow}(S_{1},S_{2}) &= 0 \\ d_{L}(S_{1},S_{2}) &= 0 \\ d_{S}^{-}(S_{1},S_{2}) &= 0 \\ d_{B}(S_{1},S_{2}) &= 0 \end{aligned}$	iff iff iff iff	$\begin{split} L(S_1) &\subseteq L(S_2) \\ L(S_1) &= L(S_2) \\ S_1 &\leq S_2 \\ S_1 &\cong S_2 \end{split}$		
Exact notio How can we	ns captured as z define such met	ero so trics o	ections of pseud and how are they	o-metrics. / related ?	
Rem * "	ard and G.J. Pappas, Approximation (metrics for a	discrete and continuous systems, 200	15. Submitted.	

Metrics				
A metric d defined on a set E is a nonnegative function				
$d\!:\!E\!\times\!E\!\rightarrow\!R$				
Satisfying the usual properties				
1. $d(e_1, e_2) = d(e_2, e_1)$ 2. $d(e_1, e_2) = 0 \Leftrightarrow e_2 = e_1$ 3. $d(e_1, e_3) \le d(e_1, e_2) + d(e_2, e_3)$				
Dropping property 1 results in a directed metric Dropping \Rightarrow in property 2 results in a pseudo -metric				
Perm				

