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Stability and stabilization of hybrid systems

Mikael Johansson
Department of Signals, Sensors and Systems
KTH, Stockholm, Sweden

Goals and class structure

Goal: After these lectures, you should

= Have an overview of some key results on stability and stabilization of hybrid systems
« Be familiar with the computational methods for piecewise linear systems

« Understand how the tools can be applied to (relatively) practical systems

Three lectures:

1. Stability theory

2. Computational tools for piecewise linear systems
3. Applications

Part | — Stability theory

Outline:

= A hybrid systems model and stability concepts

= Lyapunov theory for smooth systems

= Lyapunov theory for stability and stabilization of hybrid systems

Acknowledgements: M. Heemels, ESI

A hybrid systems model

We consider hybrid systems on the form
#(8) = F{=(8).%1))
#(H) = o{z(), i(5)
where
=(1) C B® is the continuous stabe wechor
i(t) £ {1,2,..., M} is the dixrete sate

The discrete state indexes vector fields F{##) = fi{®) while »(x,7)
is the (discontinuous) transition function describing the evolution of the discrete state.

Unless stated otherwise, we will assume that #{#) is piecewise continuous
(i.e., that there is only a finite number of mode changes per unit time interval).

For now, disregard issues with sliding modes, zeno, ... (precise statements in refs)

Example: a switched linear system

(L) = Aypx(l)
i) = 2 it)=1and mo = —10m
1 ifift) =2 and z0 = 23

(numerical values for the matrices A, can be found in the notes for Lecture 2)

Stability concepts

Focus: stability of equilibrium point (in the continuous state-space)® = @

Global asymptotic stability (GAS): ensure that

lim z(i) =0 for all initial states (x(0).i(0))
Global uniform asymptotic stability (GUAS): ensure that

for all initial skates (x(0), #0))

him x(£) =0
b and Tor all plecewise continpous #(£)
(i.e., uniformly in #{£))
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Three fundamental problems
Problem P1: Under what conditions is

#1) = f(=(4),#(£))

GAS for all (piecewise continuous) switching signals #{i] ?

Problem P2: Given vector fields fi(x,3) = f{=£). design switching strategy s{x, %) :
#(6) = f(=(2),%(2))
i(eH) = o(=(8). ()

is globally asymptotically stable.

Problem P3: determine if a given switched system
&(8) = J(z(2).i(2))
#(ET) = v(=(1),3(6)

is globally asymptotically stable. 7

Part | — Stability theory

Outline:

= A hybrid systems model and stability concepts

= Lyapunov theory for smooth systems

= Lyapunov theory for stability and stabilization of hybrid systems

Aim: establishing common grounds by reviewing fundamentals.

Lyapunov theory for smooth systems

Theorem. Lat = = 0 be an equilibrium point. of £ = f(x), and lol
¥ :k® — R be a continuously differontiable function such that

(i} V() >0 as|[x]| — oo {radially unbounded)
(i) V(0)=0 and V{z) >0 ifz #0 (positive definite)
(i} V(@) =%f(x) <0 forall z#0 {decreasing)

then = = 0 is glohally asymptotically stabic.

Interpretation: Lyapunov function is an abstract measure of system energy
System energy should decrease along all trajectories.

Converse theorem

Under appropriate technical conditions (mainly smoothness of the vector fields)

Theorem. If z = 0 & a GAS equilibrium of £ = f(x). then there
exists a radially unbounded | yapunov function V{z)

Consequence: worthwhile to search for Lyapunov functions (but how?)

Stability of linear systems

Theorem. The following statements are equivalent:

{7) T he linear system & = Az I5 asympictically stable
(i) There is 3 quadratic | yapumav function
Viz)=2 Pz
for some pasitive definite matrix 1* > D such that
AP+ PA<O
Moreover, Tor every asymptotically stable A and for any @ > 0 there
is @ P >0 such thal Lhe Tollowing 1 yapunov equality holds
ATP | PA=— 0
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Partial proof

(iD—{): Assume that there is P > D such that A7P+ P4 <D.
Then there exdisis an e > 0 such that

ATP 4+ PA+ P <D
Letting V{x) =« Pz, then Tor all i C R

%V(x(t)) + eV {(1)) =" (D) (AT P 4 PAY() + ex” () P(R)
= (AP PAL P <O
Aftex imtegration, this vields for all £ < #,,
= (N P=(t) < 3" (o) Pxltn)e *
Now use that Apin(F)[=]> £ 27 PE < I P)|js]” to nfer

l={E)I* < ll=(2ad]] (B < ;




Stability of discrete-time systems

Theorem. Let z—0 be an equifibrium point of o(tx 1) = f(stk))
and fet V - B* - B be 2 continuousily differenitiabie funciion s.

D Vi) racasx] >
(i) V(IO)=0and V() >0 ifx#£0
(i) AV(z) =V(K=(1))) - V(x()) <0 for alt 2 £ 0

ihen x =0 i globally asympintically stable

Interpretation: System energy should decrease at every sampling instant (event)

Performance analysis

Lyapunov-like techniques are also useful for estimating system performance.

Theorem. I there exisis 2 rafally unbounded, positive defintte shor-
age function V(x) satisfing

B 1 m) < il ~ Il

then the smooth nonlinepr sysbem

() = J(=(i).w(i))
¥(1) = o(=(1))

has Lr-gain fess than y (ie. [} lp(@I? de < 2 [} [m(a)?ds v )

YV, ™

Part | — Stability theory

Outline:

= A hybrid systems model and stability concepts

= Lyapunov theory for smooth systems

= Lyapunov theory for stability and stabilization of hybrid systems

Content:
— Guaranteeing stability independent of switching strategy
— Design a stabilizing switching strategy
— Prove stability for a given switching strategy

Switching between stable systems

Question: does switching between stable linear dynamics always create stable motions?
Answer: no, not necessarily.
&= Agyyz for z € X; with Ay =(1'1 _}) A,:(o} 10

Both systems are stable, share the same eigenvalues, but stability depends on switching!

P1: Stability for arbitrary switching signals

Problem: when is the switched system

#(£) = S((t),3(£)) = Lun{=())

globally asymptotically stable for all (piecewise continuous) switching signals#{£] ?

Claim: only if there is a radially unbounded Lyapunov function for each subsystem

&(F) = Fi(=(8))

(can you explain why?)

The common Lyapunov function approach

In fact, if the submodels are smooth, the following results hold.

Thaorem. I alf submadels share 3 common pasithve dafinite radially
unbounded [ yapunav function, then the swiltched system Is GUAS.

Theorem. IF the swiltched system s GUAS, then all submodels shame
a positive definite radially unbosndedt common Lyapunov funclion.

Hence, common Lyapunov functions necessary and sufficient.
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Switched linear systems

For switched linear systems
E(L) = Ayn(=(2))
it is natural to look for a common quadratic Lyapunov function
Viz) =1 Pz with P >0
V(I) is a common Lyapunov function if

V(z)=2"(ATP+PA)z<Oforall i=1,2,... . M

Common quadratic Lyapunov function found by solving linear matrix inequalities

r>0 AP PA<Oforali=12,... . M

(systems that admit quadratic Lyapunov function are sometimes called quadratically stable;

19

Infeasibility test

It is also possible to prove that there is no common quadratic Lyapunov function:

I heorem. IF there exist positive definite matrices B; > 0 such that

Ar
Y maT+ AR>0
w=T

then thore i no P > 0 such that
ATP 4+ PA <D wWefl,... M}

20

Example

Question: Does GUAS of switched linear system imply existence of a common
quadratic Lyapunov function?

Answer: No, the system given by
-1 -1 -1 10
A‘_(l -1 A2=lg1 -1
is GUAS, but does not admit any common quadratic Lyapunov function since

By = 02996 0.7048 Bo— 02123 —0.5532
TAOTOAB 24704 T A—-05532 19719

satisfy the infeasibility condition.

(there is, however, a common piecewise quadratic Lyapunov function)

21

Example
Sample trajectories of switched system (under two different switching strategies)
1
Ok e
X -1
2
o 2 g 0
Time
1
05\,
- - ]
o o 2 8 10
Time

Even if solutions are very different, all possible motions are asymptotically stable

P2: Stabilization

Problem formulation: given matrices A;, find switching rule v(x,i) such that
=(t) = Ay=(t)
i) = v(=(D),i(®)

is asymptotically stable.

23

Stabilization of switched linear systems

Theorem. If there exist o > 0 wfﬂlziaizl such that
) =) aidiz(s) = Aeaa(s)

&5 glohally asymptotically stabie, then thore odsts a switching strat-

Note: it only two subsystems, then condition 5 also necessary.

24




Stabilizing switching rules (1)

A state-dependent switching strategy can be designed from Lyapunov function for A,

Solve Lyapunov equality AaP 4 PAen = — . It follows that
Z s 3" (ATP + PAYz = 2" (ALP + PAeg)s = —3"Qz < 0
i

Consequence: for each x, at least one mode satisfies ST(A;!'P +PADz(Y <0

This implies, in turn, that the switching rule

w(z) = argminz” (AT P + PA)x

is well-defined for all x and that it generates
globally asymptotically stable motions.

Stabilizing switching rules (I1)
An alternative switching strategy is to activate mode i a fraction o, of the time, e.g.,

1 If0<i<mT
FogT < "

N ifFENlog<icT

(the strategy repeats after a duty cycle of T seconds). The “average dynamics” is then
T = Apnz
and for sufficiently small T the spectral radius of

(Ao T) e AzaaT) - - o AxanT)

is less than one (i.e., the state at the beginning of each duty cycle will tend to zero)

Example

Consider the two subsystems given by
_f{-05 1 (-1 -100
M={100 -1 42=|_ps
Both subsystems are unstable, but the matrix A,;=0.5A,+0.5A, is stable.

State-dependent switching: set Q=I, solve Lyapunov equation to find

p— (05700 0.0015
=\oo0o15 05728

Time-dependent switching: choose duty cycle T such that spectral radius of
exp{ AT/ 2) eop{ AT/ 2)

is less than one. Alternate between modes each T/2 seconds.

Example cont’'d

Time-driven switching State-dependent switching

BN WAWAWAAY e
I VRYAYEY )
I AWAIAY v
NAVERYRVALV, ’ —

P3: Stability for a given switching strategy

Problem: how can we verify that the switched system
®(€) = Fl=(£),%(#))
i) = v(z(), i)

is globally asymptotically stable?

29

Stability for given switching strategy

For simplicity, consider a system with two modes, and assume that
z(£) = fHi(=(£)) i=1,2

are globally asymptotically stable with Lyapunov functions V;

Even if there is no common Lyapunov function, stability follows if

Ve 0@ 0)) = Vg =(0)) vE=1,2,...

where t, denote the switching times.

Reason: V, is a continuous Lyapunov function for the switched system.

30




Multiple Lyapunov function approach
Theorem. Consider the switched syshem where all submodels © —
Fi(®) are giohally asymyiobically stabie with Lyapunov Smctions V.

Suppose thal for cach pair of swiicling times (b, L), k& < [ with
i) = i) =7 and i{lx) 77 for b < by <4, we have

Valw(t)) < Vil (4} — o= (8c))
then the swiiched sysiem s globally aympiobically siabie.

Multiple Lyapunov function approach

Weaker versions exist:

— No need to require that submodels are stable, sufficient to require that all
submodels admit Lyapunov-like functions:

Vi(z) >0
Wi’) B <0 for = € Xs

where X; contains all x for which submodel f; can be activated.

for z € X,

— Can weaken the condition that V; should decrease along trajectories of f,(x)

See the references for details and precise statements.

Summary

A whirlwind tour:
= selected results on stability and stabilization of hybrid systems

Three specific problems

= Guaranteeing stability independent of switching signal
= Design a stabilizing switching strategy (stabilizability)
« Prove stability for a given switching strategy

Focus has been on Lyapunov-function techniques
= Alternative approaches exist!

Strong theoretical results, but hard to apply in practice
= Can be overcome by developing automated numerical techniques (Lecture 2!)
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Stability and stabilization of hybrid systems

Mikael Johansson
Department of Signals, Sensors and Systems
KTH, Stockholm, Sweden

Switching between stable systems

Question: does switching between stable linear dynamics always create stable motions?

Answer: no, not necessarily.

&= Nigyx Tor z € X; with 4y =(:'}‘é _o1 3

A= 1 o1

Both systems are stable, share the same eigenvalues, but stability depends on switching!

Switching between stable systems

unstable

Part 11 — Computational tools

Piecewise linear systems
Well-posedness and solution concepts
Linear matrix inequalities

Piecewise quadratic stability
Extensions

Computational stability analysis: philosophy

Aim: develop analysis tools that
— are computationally efficient (e.g. run in polynomial time)
— work for most practical problem instances
— produce guaranteed results (when they work)

Piecewise linear systems

Piecewise linear system:
1. a subdivision of B® into regions Xj
A
U X; CR"
=
we will assume that X are polyhedral and disjoint (only share common boundaries)

2. (possibly different) affine dynamics in each region

#(£) = Aee(t) + a; + Bral(D)

#(8) = Caxld) + o + Dim(£) for et} c X dcl




Example
Saturated linear system: & = Az bsatly), v= K=

Three disjoint regions: negative saturation, linear operation, and positive saturation

Ax— b zcXy
2= (A—W)x xmcXa
Acs+b *EX3

Cells are polyhedral (i.e., can be described by a set of linear inequalities)

Well-posedness and solutions

Definition. Let o) € Licr Xz be an absolutely continunos function.
W say that x{i) is a trajectory of the sysham
(1) = Awlf) o + Hem(f)
) = Gty + e+ Dosft)

on [ig, if] it for atmost aRt & ¢ [ig.i;]. the equation £(i) = Ass(@)+
a5 1 Baal(£) holds Tor alf ¢ with =(f) & X;.

forzs(}c X; icrl

I T

Trajectories: existence and uniqueness

Observation: trajectories may not be unique, or may not exist.

Example:

{:h = —2zy — 22500 (z1)
#2 = x2 + Sx15gn(z1)

Initial values in & = {= | x1. = 0 A %2 < 0} create non-unique trajectories.

Trajectories that reach 5,!' = {= [ @1, = 0 Amz > O} cannot be continued

Attractive sliding modes

Would like to single out situations with non-existence of solutions.
Definitlion. The sysiom

(1) = Aax{f) + oz + Bie(r)

3t} = Cex() + o + Don(E) for =(t) € X;

ict

s sald o have an altraciive sliding mode at =, i theme cdsis a
trajectory with final state =, but no irajectory with initial siate x,..

Generalized solutions

Solution concepts for sliding modes typically averages dynamics in neighboring regions.

A

Al A

Definttion. Let x(1) & U X; be an absolutely continuous funchion.
We say that x(i) & a Filippov solution of (1) on [in, i) &

#@) € *?m {A4:%(2) + oz + Ben(#) ]

for almost alf &, whare K is Lhe sof of indicies such thal =(8) & X

Note: Filippov solutions may remain on cell boundaries, but are not necessarily unique.
11

Example: Piecewise linear system

T1 = —2x1 — 2x25an{x1)
T2 = w2 +Az15gn(=1)

on & = {z|z1=0Az >0}

Filippov solution should satisfy (£} € ad1z{£) + (1 — &)Axx{t) for somem € [0, 1]
If x(t) should stay on &,*, we must have #{t} =0, i.e.,
w2+ (1— o) - (—2m) =ma{4e—2) =0
The only solution is given by a=1/2, resulting in the unique sliding mode dynamics
f1=0, ==

12




Non-uniqueness of sliding dynamics

Observation: sliding mode dynamics on intersecting boundaries often non-unique

Example:
w1 = wg — sgnlw)
# = za— sgn{xz)

din = 2wy — Amz — Amn — s (a)san(= + 1)

Filippov solutions on the set &z ={x [ =1 =0A x2 =0 A |za] £ 1} are not unique.
(can you explain why?)

Valid Filippov solutions on S,, have time constant that differ a factor four or more.

Establishing attractivity of sliding modes

Observation: non-trivial to detect that a pwl system has attractive sliding modes

Example: The piecewise linear system

&1 = —sanx } 1+ 2son(z:) e
Sz = — (=1} — sonfxa)

has a sliding mode at the origin.

However, determining that it is attractive is not easy
— Vector field considerations or quadratic Lyapunov functions cannot be used (why?)
— Finite-time convergence to the origin can be established by noting that

2 il i) =2

Key points

Piecewise linear systems: polyhedral partition and locally affine dynamics

#(8) = Ax() + oi + Ball)

1) = Cin() + = + D(2) for 3(2) € X;

el

For general piecewise linear systems, solution concepts are non-trivial
— Trajectories may not be unique, or may not exist (unless continuous right-hand side)
— Meaningful solution concepts for attractive sliding modes exist (e.g. Filippov solutions)

Introducing “new modes” on cell boundaries with equivalent sliding dynamics is not easy
— Sliding modes may occur on any intersection of cell boundaries
— Hard to determine if potential sliding mode is attractive
— Dynamics of sliding modes may be non-unique and non-linear

Part 11 — Computational tools

« Piecewise linear systems

= Well-posedness and solution concepts
« Linear matrix inequalities

= Piecewise quadratic stability

= Discrete-time hybrid systems

Linear matrix inequalities

Linear matrix inequality (LMI): An inequality on the form
"
F)=FR+ Y, %F>0
=1

where F; are symmetric matrices, and X>0 denotes that X is positive definite.

Example: The condition #* > 0 on standard form:

?n[; g +m2[(1) 11, +m[g 2])-0

LMI features

= Optimization under LMI constraints is a convex optimization problem
— Strong and useful theory, e.g. duality (we have already used it once — when?)

* Multiple LMIs is an LMI
— Example: Lyapunov inequalities I 2 0, ATPHPA <O equivalent to single LMI

r o
[o —ATP PA] >0
= Efficient software and convenient user interfaces publicly available

— Example: YALMIP interface by J. Lofberg at ETHZ

* S-procedure, Shur complements, ... and much more!

18




Example: Quadratic stabilization

Recall from Lecture 1 that ¥ {&) = x¥ Pz quarantees that
i) = Ayqn(=(F))
is GAS for all switching signals i(t) (i.e., GUAS) if there exists P such that

P>0

ATP4 PA <0 VMie{l,2,...,M}

an LMI condition!

Consequence: quadratic Lyapunov function found efficiently (if it exists)!

Quadratic stability of PwL systems

¥(z)}==x"Px is a Lyapunov function for the piecewise linear system

&= A xC X;
if we have
FTPx>D  Vr#AD
Z (ATP 4 PAYx <D Vx € XA\D

Note: unnecessary to require that A-?'P-l-PAi <0

How can we bring the restricted decreasing conditions into the LMI framework?

S-procedure

When does it hold that, for all x,

FRx>0-=32x Px>0

(i.e., that non-negativity of quadratic form = Rz implies non-neagivity of = P )

Simple condition: there exists T €R | satisfying the LMI P> TR

Extension to multiple quadratic forms: if there exist % 2 0 such that
P33 mh>0
i
then (3 Rym > QYA (5 Hpx > 0) - > 55 Px > D

(non-trivial fact: the simple condition is necessary if there exists an u: ' Bu > o)

21

Bounding polyedra by quadratic forms

Example: The polyhedron

X=fxmllls ™~ 7 = 7 0 T A2 0))
can be described ;‘4\
ats) =r{x+1 |
for v 0

In general: for polyhedra ¥z = {& | x4+ ex += 0} the quadratic form

= wiff]) u(m ff]) =[] mwos]

is non-negative for all # € X; if W; has non-negative entries

22

Quadratic stability cont’d
Consider the piecewise linear system
&g=Az  forzcX;={z|Ex}0}

(no affine terms, all regions contain the origin). Then, we can state the following
Theorem. IF there odsis a positive definite matrix 1* and matrices
7; with non-negative enliies such that

AP+ PA+ EUE <O
then every Filippov solution tends to zern exponentiatly.

23

Example

Recall the switching system & = Ayx Tor zaza > 0, £ = Aax Tor xiz> < 0 with

A=(01 1 ) Ay (_Eil 1o

—1a -0.1

from Lecture 1. Applying the above procedure, we find P= I, e.g., V{(x) = T

(stability cannot be verified without S-procedure terms — can you explain why?)




Piecewise quadratic Lyapunov functions

Natural to consider continuous, piecewise quadratic, Lyapunov functions

7l ]

Surprisingly, such functions can also be computed via optimization over LMls.

V(:)::sTP-r+2q.Tr+ri=[ﬂT[3 Tor x & X;

Relation to multiple Lyapunov functions:

« Local expressions for V(x) are Lyapunov-like functions for associated dynamics
(stronger relationship will emerge in the extensions)

Convenient notation

Use the augmented state vector
- I=
B

and re-write system dynamics as

1= [ 8o | B = [E 451 2

When analyzing properties of the equilibrium® =10 we let

In C I be the sci of indices for regions containing origin
£1 C.I be the sof of indices for regions that do not contain origin

and assume thatm; = e =1 for i € Ip

Enforcing continuity

How to ensure that the Lyapunov function candidate

v =[] [3 2] -==

is continuous across cell boundaries?

forz e X;

Proposition. TPz =xTPz for all z C XN X; =
if and only if there exisis Ty € B such that

By = By + Wty + Gy

= Kz=0)

Enforce one linear equality for each cell boundary.

Enforcing continuity (I1)

Alternative: direct parameterization (when solver cannot treat equality constraints)

For each region, construct continuity matrices P,. =
Fx= F}i for all = C X; N X;
and consider Lyapunov functions on the form
V{z)=3"FTFz forx € X;

(the free variables are now collected in the symmetric matrix T)

[# £] such that

To make Lyapunov function quadratic in regions that contain origin, we also require
fi=0Torici

(construction automated in, for example, Pwltools)

Piecewise quadratic stability

Theorem {Piecewise Quadratic Stability). Consider symmetric ma-
trices T, U; and W; such thal 17; and W; have nonncgatha ontrics,
while . = FITF; and P. = FTTF, satisfy

0> ATR+ RA+ 39 .
{D<IA’: ETWiE; O ich
0> AR A PA+ ETULE, .
SR ke reh
Then overy trajectory £(8) € User X; satistving
=AMzt o forz e X;

tends to zern exponentially.

29

Example
Piecewise linear system with partition shown below,
Ar=Aa= [—uw

andax =58, w=1, e=0.1

Aax = Ag = [::,

3

(Clearly) not quadratically stable, but pwQ Lyapunov function readily found.

40/ /;;\ —’ Ny
< @ ®))

‘“\_/’,

3 2
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Potential sources of conservatism

1. Quadratic Lyapunov functions necessary and sufficient for linear systems, but
piecewise quadratic Lyapunov functions not necessary for stability of PWL systems.

2. S-procedure terms EW;E; are effectively the sum of several quadratic forms
- ——y
FEWER=)") (@D D
i 7
hence, S-procedure is not guaranteed to be loss-less (but better tools exist)

3. Use of affine terms and strict inequalities can also be conservative.

Extensions

Many extensions possible:

« determining regions of attraction (i.e. non-global stability properties)

= Lyapunov functions that guarantee stability of potential sliding modes

= nonlinear and uncertain dynamics in each region

= performance analysis (e.g. L,-gains)

* (some) control synthesis

= hybrid systems (overlapping regions) and discontinuous Lyapunov functions
« Lyapunov functionals and Lagrange stability

= stability of limit cycles

« similar tools for discrete-time hybrid systems

(too much to be covered in this lecture!)

We will sketch a couple of extensions

32

Performance analysis

Theorem {Upper Bownsd on 1z Gain}. Suy theere exdish Sy
ric mainkrs T, U; and W; sach el 11, and W, Tenve non-pegaiive
omtrics, wahiic It = FI'TF, and It = FI'TF, sxtisty

n>[p.ﬂs+4?ﬂ-&_c£&+'¥"kﬁ _'?;2;] forich
n}[nl;+¥ﬂ%ﬂ£&+ﬁi’m _';’2-,] acich

Then for every trajectory with a{0) =0. E‘(l:l;+|n|;)¢(m

[ Il <+ j: hBe

The besi upper bowndl an ihe L, nikiced gain i achieverd by mini-
micing v sudyect Lo U comsirainis defined by Lhe inequabilies.

Proof. Pre-and postmultiply with (x, u), note that LMIs imply dissipation inequality
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Example

Saturated linear system (unit saturation)

! -3
~o—{co P cao - S e T —
‘ Gals) = §+7
BT AP+ 3e 412

Quadratic storage functions fail to bound L,-gain.

Piecewise quadratic storage function yields bounds
552 <4 <554
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Linear hybrid dynamical systems

Linear hybrid dynamical system (LHDS)
#(F) = A;y=(t) +ayp)
i(tF) = v(=(8),i(0))
v described by finite automaton whose state changes when x hits transition surfaces

5= {=| Fgm =0}

and for each i, the feasible x can be bounded by a polyhedron X; = {= [ B;x » 0}

Discontinuous Lyapunov functions

Multiple quadratic (discontinuous, pwq) Lyapunov function via LMIs

Theorem. Conssder symmetyic matrices Uy, W, with non-negative
entries. ynmetric matrices B, P, and vectors ig. i such that

ng EEE{FWE ick m
0> AR+ R4+ EE
{n4§—ﬂ7& B il ©)

0<P— B+ Fadl + 8l GEET, jechakch (3)
D<PB-Rtfuth el GBeT, jkekh @)

Then overy trajectory of Hhe | HIOS tonds 1o xorn cxponcaitialy

Note: conditions (3,4) imply that V(t) decreases at (potential) points of discontinuity
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Example

£(t) = Aypyr(t)
ity = {2 i #(8) = 1 and =3 = —10%y
1 HiE) =2 and =5 — 2=
with

1 - 100 1 10
41:(10 —1) 42:(—100 1)

Trajectories (left) and multiple Lyapunov function found by LMI formulation (right)

Discrete-time versions

Discrete-time piecewise linear systems
alk 4+ 1] = Acx¥] + a: + Biwls] #lk] C X,

and piecewise quadratic Lyapunov (not necessarily continuous) functions
V (k) = «fk]" Prlk] +2g]z 8]+ zlkl € X;

We have

AV{{E]) = V{z{k+ 1)) — V{={E])

= zlk" AT B Aib] + 2(a] Pz - qf A)2E - a] Fo: +2q7 e 475

- z[l:]”l‘flk] +2¢ xlk] +7:
TrATR A Trg. A g —
P [ e

forwldl € Xy =z | s € oA Aiz |- € X3} = {x | BF - 04 B Az > 0}

Discrete-time versions

Discrete-time globally asymptotically stable if there exist matrices P;, q;, r;, U;
where W; has non-negative entries, and a non-negative scalar ¢>0, such that

T A — 1L TP g — r o
[A' (S I 1’::;- Fogactes ﬁ] + Bty By < [ﬁs 0]

(note: in most solvers, you will need to treat X;, # € Jn separately)
Observations:

= Again, LMI conditions, hence efficiently verified!
« Potentially one LMI for every pair (i,j) of modes.

Comparison with alternatives

Biswas et al. generated optimal hybrid controllers for randomly generated
linear systems, and compared performance of several computational methods

Typical results:

rder LTT systems, 2 norm objective
[ 1 5l Unstable Svstems, N = 1
Tuccess | & Time | Sctup Time | Success | Solution Time | Setup Time
13/50 1.1 see.
50/ A0/ A0 1.9
x4 12/5 A2/50 114
Piecowise 808 order 4 | 35/50 2 v, 100,00 sec, 31 /50 S0,
Talde 2. The munber of regions were between 9 and 15 with 947 transitions.

Very strong performance, but computational effort increases rapidly (not shown here)

Summary

Computational tools for stability analysis of a particular class of hybrid systems

Piecewise linear systems

= Partition of state space into polyhedra with locally affine dynamics

= Solution concepts: trajectories and Flippov solutions

« Given a pwl model, it is non-trivial to detect attractive sliding modes

Piecewise quadratic Lyapunov functions
= Efficiently computed via optimization over linear matrix inequalities

= Potentially conservative, but strong practical performance

Many extensions, but much work remains!
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Stability and stabilization of hybrid systems
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Correction: Switching between stable systems

Question: does switching between stable linear dynamics always create stable motions?

Answer: no, not necessarily.

&= fiy® Tor = € X; with 4 Z(ﬁ'& -31) Rl

A= 1 o1

Both systems are stable, share the same eigenvalues, but stability depends on switching!

Clarification: Switching between...

unstable

Part 111 — Examples

= Constrained control via min-max selectors
« Substrate feeding control

< Automatic gear-box control

= A simple relay system

Constrained control via min-max selectors

Common “pre-HYCON” approach for constrained control

Aim: tracking of primary variable (y), while keeping secondary variable (z) within limits

[Johansson, 2002]

5

Numerical example

Specific example with
an

A3+
e Al T F

Gl = SmF L atam

s
e

and proportional constraint controllers.

Control without constraint handling Control with constraint handling




A loop transformation

Closed loop: linear system interconnected with 3-input/1-output static nonlinearity

Loop transformation reduces dimension of nonlinearity by one:

Iman—= hi

Yio —=
Zmin—- Gls)

Stability analysis

However, nonlinearity (and hence system) is piecewise linear:

T
)

LMI computations return quadratic Lyapunov function (but S-procedure needed)

Part 111 — Examples

= Constrained control via min-max selectors
* Substrate feeding control

= Automatic gear-box control

« A simple relay system

Fed-batch cultivation of E. coli

Recombinant (genetically modified) E. coli bacteria used to produce proteins.

Bioreactor operation: Feed (nutrition) and oxygen added to maximize cell growth.

Fed-batch: feed added continuously, at limiting rate

[Velut, 2005]

10

Control objective

Objective: maximize feed rate while ensuring that
= oxygen level does not drop too low (acetate production, inhibited growth)
= glucose is not in excess (“overflow metabolism™)

Feed rate

i}
- Ux_\'p{n\n‘&

transfor |

Probing control

Control strategy: increase feed while no acetate is formed, decrease otherwise

Acetate formation detected by probing: add pulse in feed, observe if oxygen consumed

12




A piecewise linear abstraction

Simplified model of reactor dynamics

= ex+bf{v) . O]

=

where f{®) is a piecewise linear function and

o) =wtul) L€ [T (k+1T] =1 1.

and r is a static reference.

Integrating the response over a pulse period, we find the discrete-time model
- Fm)
w10 = Axlel +8 | 5o, [y
- Fime)
#id =CadH + D [i(n-[—-ﬂ)]

Piecewise linear if u, is a linear in x.

Control strategy

Assume a linear integral control
wik + 1] = wit] + K (wes I — wis)

fixed length of probing cycle ¥ and probing pulse T —T;

To model saturation in glucose uptake, consider
F{) = minfe,v")

This results in a piecewise linear systems with three regions (why not two?)

Control objective is now to drive system towards saturation.

Control to saturation

The formulation in Lecture 2 does not return any feasible solution
= reason: integrator dynamics in unbounded regions - not exponentially stable

Two potential approaches:

= Prove convergence for initial values within (hopefully large but bounded) region
(can be done by adding S-procedure terms)

= Remove implicit equality constraints by state-transformation
(more satisfying, but more complex; see Velut)

With modifications, stability can (often) be proven using pwq Lyapunov functions.

Numerical results

Stability regions for one specific problem instance (reactor parameters)
= red dots bound region where stability can be established numerically
= shaded regions are shown to be unstable (via local analysis)

Performance analysis

Stability typically not enough with stability — would like to optimize performance
- for example, the ability to track time-varying saturation level

Can compute bound y on performance
Y G — ZcA B — Frl) <7 Y (el + 1] — {8
= &

for all reference trajectories r[k] via LMI computations.

Note: typically large system descriptions...

Numerical example

Simulations for specific r[k] vy for all rate-limited references

Parameter contours suggest optimal parameters K a: 1.4, T.= 1.3
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Tuning rules

Similar behavior can be observed for various parameter values of the process.

Based on this observation, Velut suggests the following tuning rules

1
o)
Wor ==y
1l<aTp <2

where o(t) is the unit step response of the linear dynamics.

Part 111 — Examples

= Constrained control via min-max selectors
« Substrate feeding control

< Automatic gear-box control

= A simple relay system

A simple model for car dynamics

Simple model:
Mé—=F-—F car dynamics
3 =hsun(s) — Mgsine load force
oear box relations
gear hoe relations

To emphasize this dependence, we write
® =1 =Py when using gear i

[Pettersson, 1999]
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Gear-switching

Gear-switching strategy:
W=D +1
=i 1

ifﬂ)%q
lfw(%

Can be represented by hybrid automaton with four discrete states
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Torque control and bumpless transfer

Base controller: non-linear Pl
T=P4+I4 'iin’signu
P= Ki(t}("l" —n)

ir_:ﬁﬂ(w_w)

[ Ty

Abrupt changes in acceleration when changing gears avoided via bumpless transfer:
niK; = wK;
H) =29 g
Higet)

for all feasible gear changes i=j. ( compatible values of K;, changes in integral state)
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Hybrid system model

Need extended hybrid model that allows for state jumps in the continuous state

#() = F{1), ()
(1) = po(2(2), i)
#Hh) = o). (1))

LMI formulation possible if jump map is affine in x.
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Numerical example

Closed loop system is switched linear system

ali]=[ R [ wreex

where £ = pgy —® and

n; = {50,32, 20, 14} .
K; = {3.75,5.86,0.37, 1338} i |
M = 1500, T, = 40, T,K; — 187.5

Simulation for ¥y — 30

Stability

If affine reset maps

2(t+) = Dygppupry3®

then, condition i{t"')TP_',':l_:(fF) < T(€)T Bx(#) is guaranteed by solution to LMI

0< - HEAfp-+ bt Gl

Allows extension of discontinuous Lyapunov function computations from Lecture 2.

Gear-box example: solution found - exponential convergence to v,

Remark: analysis needs to be repeated for each value of v, (compare bioreactor example)
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Part 111 — Examples

= Constrained control via min-max selectors
* Substrate feeding control

= Automatic gear-box control

« A simple relay system
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More of a theoretical challenge...

Consider a linear control system under hysteresis relay feedback...

AR

Ar + B

A= (8 &) n=(%) <=(3)

[Hassibi, 2000]

Extensive simulations suggest system is stable, yet no pwq Lyapunov function found.
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The challenge

Question: why do piecewise quadratic methods fail, and how can they be improved?

The more general challenge:

Put the methods to the test of challenging engineering problems, and
help to contribute to the development to improved analysis tools!
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