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Key issues:

• Solution concepts

• Well-posedness: existence & uniqueness of solutions given an initial
condition

Outline lecture

• Smooth systems: differential equations

• Switched systems: Discontinuous differential equations: “classics”

• Hybrid automata

• Zenoness: importance of choice of solution concept

• Some piecewise linear, linear relay and complementarity systems

• Summary
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Solution concept

Description format / syntax / model
↓

solutions / trajectories / executions/ semantics/ behavior

⇒
Well-posedness: given initial condition does there exists a solution and is it
unique?

Let’s start simple ...
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Smooth differential equations

Example ẋ = f (t, x) x(t0) = x0.

A solution trajectory is a function x : [t0, t1] 7→ Rn that is continuous,
differentiable and satisfies x(t0) = x0 and

ẋ(t) = f (t, x(t)) for all t ∈ (t0, t1)

Well-posedness: given initial condition does there exists a solution and is it
unique?
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Well-posedness

Example ẋ = 2
√

x, x(0) = 0. Solutions: x(t) = 0 and x(t) = t2.

Local existence and uniqueness of solutions given an initial condition:

Theorem 1 Let f (t, x) be piecewise continuous in t and satisfy the following
Lipschitz condition: there exist an L > 0 and r > 0 such that

‖f (t, x)− f (t, y)‖ ≤ L‖x− y‖

and all x and y in a neighborhood B := {x ∈ Rn | ‖x − x0‖ < r} of x0
and for all t ∈ [t0, t1].

⇓

There is a δ > 0 s.t. a unique solution exists on [t0, t0 + δ] starting in x0 at
t0.
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Global well-posedness

Example ẋ = x2 + 1, x(0) = 0. Solution: x(t) = tan t. Local on [0, π/2).

• Note that we have limt↑π/2 x(t) = ∞. Finite escape time!

Theorem 2 (Global Lipschitz condition) Suppose f (t, x) is piecewise con-
tinuous in t and satisfies

‖f (t, x)− f (t, y)‖ ≤ L‖x− y‖

for all x, y in Rn and for all t ∈ [t0, t1]. Then, a unique solution exists on
[t0, t1] for any initial state x0 at t0.

• Not necessary: ẋ = −x3 not glob. Lipsch., but unique global solutions.

• Also in hybrid systems, but even more awkward stuff (Zeno)
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Discontinuous differential equations: a class of switched systems
C+

C-

x' = f (x)+

x' = f (x)-

φ(x)=0

ẋ =

{
f+(x) , if x ∈ C+ := {x ∈ Rn | φ(x) > 0}
f−(x) , if x ∈ C− := {x ∈ Rn | φ(x) < 0}

• x in interior of C− or C+: just follow!

• f−(x) and f+(x) point in same direction: just follow!

n(x) =
∇φ(x)

‖∇φ(x)‖
then (n(x)T f−(x)) · (n(x)T f+(x)) > 0

• n(x)T f+(x) > 0 (f+(x) points towards C+) and n(x)T f−(x) < 0 (f−(x) points towards C−):
At least two trajectories
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Sliding modes

C+

C-

f (x )+ 0

x0

f (x )- 0

φ(x)=0

n(x)T f+(x) < 0 (f+(x) points towards C−) and n(x)T f−(x) > 0 (f−(x) points towards C+).

No classical solution

• Relaxation: spatial (hysteresis) ∆, time delay τ , smoothing ε

• Chattering / infinitely fast switching (limit case ∆ ↓ 0, ε ↓ 0, and τ ↓ 0)

Filippov’s convex definition: convex combination of both dynamics

ẋ = λf+(x) + (1− λ)f−(x) with 0 ≤ λ ≤ 1

such that x moves (“slides”) along φ(x) = 0. “Third mode ... ”
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Differential inclusions

ẋ =


f+(x), if φ(x) > 0

λf+(x) + (1− λ)f−(x), if φ(x) = 0, 0 ≤ λ ≤ 1

f−(x), if φ(x) < 0,

Differential inclusion ẋ ∈ F (x) with set-valued

F (x) =


{f+(x)}, φ(x) > 0

{λf+(x) + (1− λ)f−(x) | λ ∈ [0, 1]}, φ(x) = 0

{f−(x)}, φ(x) < 0

Definition 3 A function x : [a, b] 7→ Rn is a solution of ẋ ∈ F (x), if x is
absolutely continuous and satisfies ẋ(t) ∈ F (x(t)) for almost all t ∈ [a, b].
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A well-posedness result

C+

C-

x' = f (x)+

x' = f (x)-

φ(x)=0

• f− and f+ are continuously differentiable (C1)

• φ is C2

• the discontinuity vector h(x) := f+(x)− f−(x) is C1

If for each point x with φ(x) = 0 at least one of the two inequalities
n(x)Tf+(x) < 0 or n(x)Tf−(x) > 0 (for different points a different in-
equality may hold), then the Filippov solutions exist and are unique.
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Alternative: Utkin’s equivalent control definition

ẋ = f (x, u) with u =

{
g+(x), ξ(x) > 0

g−(x), ξ(x) < 0

• Sliding mode: f+(x) := f (x, g+(x)) and f−(x) := f (x, g−(x)) point
outside C+ and C−, resp.

uequiv ∈ U(x) :=


{g+(x)}, if ξ(x) > 0

{λg+(x) + (1− λ)g−(x) | λ ∈ [0, 1]}, if ξ(x) = 0

{g−(x)}, if ξ(x) < 0

Differential inclusion

ẋ ∈ F (x) := f (x, U(x)) = {f (x, u) | u ∈ U(x)}

“Idealization” determines Filippov/ Utkin / different solution concept!
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Example

ẋ1 = −x1 + x2 − u

ẋ2 = 2x2(u
2 − u− 1)

u =

{
1, if x1 > 0

−1, if x1 < 0.

Two “original” dynamics:

• C+: x1 > 0: ẋ = f+(x)

ẋ1 = −x1 + x2 − 1

ẋ2 = −2x2

• C−: x1 < 0: ẋ = f−(x)

ẋ1 = −x1 + x2 + 1

ẋ2 = 2x2
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Vector fields
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Vector fields: zoom
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Sliding modes?

Two “original” dynamics:

• C+: x1 > 0: ẋ = f+(x)

ẋ1 = −x1 + x2 − 1

ẋ2 = −2x2

• C−: x1 < 0: ẋ = f−(x)

ẋ1 = −x1 + x2 + 1

ẋ2 = 2x2

• n(x)Tf+(x) = x2 − 1 < 0 −→ x2 < 1

• n(x)Tf−(x) = x2 + 1 > 0 −→ x2 > −1

• Sliding possible in x1 = 0 and x2 ∈ [−1, 1].
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Filippov’s solution concept

Two “original” dynamics:

• C+: x1 > 0: ẋ = f+(x)

ẋ1 = −x1 + x2 − 1

ẋ2 = −2x2

• C−: x1 < 0: ẋ = f−(x)

ẋ1 = −x1 + x2 + 1

ẋ2 = 2x2

• Filippov: Take convex combination of dynamics such that state slides on
x1 = 0: Hence, x1 = ẋ1 = 0.

• λ(x2 − 1) + (1− λ)(x2 + 1) = 0 implies λ = 1
2(x2 + 1)

• Hence, ẋ2 = λ(−2x2) + (1− λ)(2x2) = −2x2
2

• 0 is unstable equilibrium.
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Vector fields: Filippov’s case
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Utkin’s solution concept

ẋ1 = −x1 + x2 − u

ẋ2 = 2x2(u
2 − u− 1)

u =

{
1, if x1 > 0

−1, if x1 < 0.

• The equivalent control uequiv is such that state slides along x1 = 0. Hence,
x1 = ẋ1 = 0 and thus uequiv = x2 and

ẋ2 = 2x2(x
2
2 − x2 − 1)

• Equilibria: -0.618 (unstable) and 0 (stable)
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Vector fields



JJ J N I II 20/62JJ J N I II 20/62

Solution trajectories
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Two relaxations

• Smoothing u(t) = tanh(x1/ε)

• hysteresis type of switching parameter ∆
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Solution trajectories: Filippov’s case + hysteresis
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Solution trajectories: Utkin’s case + smoothing
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Conclusions on discontinuous dynamical systems

• Two mathematical solutions concepts: Filippov + Utkin

• Both limit cases (“idealizations”) of very fast switching

• Which one you use depends on non-ideal cases (regularizations)

• Sliding mode might be seen as third mode in hybrid automaton. Some
subtleties in HA solution concept!
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From classical to modern solution concepts
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Hybrid Systems

• Smooth phases (governed by differential equations)

• Discrete events and actions

Smooth phases separated by event times ...
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Event times

x1 x2

ẋ1(t) = x3(t)

ẋ2(t) = x4(t)

ẋ3(t) = −2x1(t) + x2(t) + z(t)

ẋ4(t) = x1(t)− x2(t)

w(t) = x1(t)

w(t) ≥ 0, z(t) ≥ 0, {w(t) = 0 or z(t) = 0}

unconstrained constrained
ẋ1(t) = x3(t) ẋ1(t) = x3(t)

ẋ2(t) = x4(t) ẋ2(t) = x4(t)

ẋ3(t) = −2x1(t) + x2(t) ẋ3(t) = −2x1(t) + x2(t) + z(t)

ẋ4(t) = x1(t) + x2(t) ẋ4(t) = x1(t) + x2(t)

z(t) = 0 w(t) = x1(t) = 0.

unconstrained constrained
w(t) ≥ 0 z(t) ≥ 0
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x1 x2

• Event times set E is {0, 1, 1 + π
2}
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Example: Bouncing ball

• Reset x2(τ+) := −cx2(τ−) when x1(τ−) = 0 and x2(τ−) ≤ 0

• The event times: τi+1 = τi + 2cix2(0)
g

when x1(0) = 0 and x2(0) > 0.

• limi→∞ τi = τ ∗ = 2x2(0)
g−gc

< ∞
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Zeno of Elea and one of his paradoxes

Distance Travelled (m) by Achilles

1
0.5
0.25
0.125
0.0625
0.03125
0.015625
0.0078125
0.00390625
0.001953125

Event times of A reaching previous T posi-
tion

1
1.5
1.75
1.875
1.9375
1.96875
1.984375
1.9921875
1.99609375
1.998046875
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Definition 4 A set E ⊂ R+ is called an admissible event times set, if it is closed
and countable, and 0 ∈ E . E.g. E = {τ0, τ1, τ2, . . .}.

• An element t of a set E is said to be a left accumulation point of E , if for
all t′ > t (t, t′) ∩ E is not empty.

• It is called a right accumulation point, if for all t′ < t (t′, t) ∩ E is not
empty

Definition 5 An admissible event times set E (or the corresponding solu-
tion) is said to be left (right) Zeno free, if it does not contain any left (right)
accumulation points.

• Bouncing ball→ right accumulation point ...

• Time-reversed bouncing ball:
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Two-tank system and Zeno behavior
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A simulation

h1 = h2 = 1, q1 = 2, q2 = 3, qin = 4, x1(0) = x2(0) = 2, q(0) = v1
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Two-tank system and Zeno behavior

• Assume total outflow q1 + q2 > qin

• Control objective cannot be met and tanks will be empty in finite time

• Infinitely many switchings in finite time (right accumulation point)→
right Zeno behavior

Using a non-Zeno solution concept: analysis will show that tanks do not get
empty! Analysis depends crucially on solution concept!
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Hybrid automaton

Hybrid automaton H is collection H = (Q,X, f, Init, Inv, E, G, R) with

• Q = {q1, . . . , qN} is finite set of discrete states or modes

• X = Rn is set of continuous states

• f : Q×X → X is vector field

• Init ⊆ Q×X is set of initial states

• Inv : Q → P (X) describes the invariants

• E ⊆ Q×Q is set of edges or transitions

• G : E → P (X) is guard condition

• R : E → P (X ×X) is reset map
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What is what?

Hybrid automaton H = (Q, X, f, Init, Inv, E, G, R)

• Hybrid state: (q, x)

• Evolution of continuous state in mode q: ẋ = f (q, x)

• Invariant Inv: describes conditions that continuous state has to satisfy
at given mode

• Guard G: specifies subset of state space where certain transition is en-
abled

• Reset map R: specifies how new continuous states are related to previ-
ous continuous states
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Evolution of hybrid automaton

• Initial hybrid state (q0, x0) ∈ Init

• Continuous state x evolves according to

ẋ = f (q0, x) with x(0) = x0

discrete state q remains constant: q(t) = q0

• Continuous evolution can go on as long as x ∈ Inv(q0)

• If at some point state x reaches guard G(q0, q1), then

– transition q0 → q1 is enabled

– discrete state may change to q1, continuous state then jumps from
current value x− to new value x+ with (x−, x+) ∈ R(q0, q1)

• Next, continuous evolution resumes and whole process is repeated
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Hybrid time trajectory

Definition 6 A hybrid time trajectory τ = {Ii}N
i=0 is a finite (N < ∞) or

infinite (N = ∞) sequence of intervals of the real line, such that

• Ii = [τi, τ
′
i ] with τi ≤ τ ′i = τi+1 for 0 ≤ i < N ;

• if N < ∞, either IN = [τN , τ ′N ] or IN = [τN , τ ′N) with τN ≤ τ ′N ≤ ∞.

• For instance,

τ = {[0, 2], [2, 3], {3}, {3}, [3, 4.5], {4.5}, [4.5, 6]}

τ = {[0, 2], [2, 3], [3, 4.5], {4.5}, [4.5, 6], [6,∞)}
Ii = [1− 2i, 1− 2i+1]

• E = {τ0, τ1, τ2, . . .}
• No left-accumulations of event times ...
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Execution of hybrid automaton

Definition 7 An execution χ of a HA consists of χ = (τ, q, x)

• τ a hybrid time trajectory;

• q = {qi}N
i=0 with qi : Ii → Q; and

• x = {xi}N
i=0 with xi : Ii → X

Initial condition (q(τ0), x(τ0)) ∈ Init;

Continuous evolution for all i

• qi is constant, i.e. qi(t) = qi(τi) for all t ∈ Ii;

• xi is solution to ẋ(t) = f(qi(t), x(t)) on Ii with initial condition xi(τi) at τi;

• for all t ∈ [τi, τ
′
i) it holds that xi(t) ∈ Inv(qi(t)).

Discrete evolution for all i,

• e = (qi(τ
′
i), qi+1(τi+1)) ∈ E,

• x(τ ′i) ∈ G(e);

• (xi(τ
′
i), xi+1(τi+1)) ∈ R(e).
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Well-posedness for hybrid automata

• H∞
(q0,x0): infinite executions: τ is an infinite sequence or if

∑
i(τ

′
i − τi) =

∞
• HM

(q0,x0): maximal executions: τ is not a strict prefix of another one!

• A hybrid automaton is called non-blocking, ifH∞
(q0,x0) is non-empty for all

(q0, x0) ∈ Init.

• It is called deterministic, if HM
(q0,x0) contains at most one element for all

(q0, x0) ∈ Init.
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Well-posedness for hybrid automata - continued

Assumption

• The vector field f (q, ·) is globally Lipschitz continuous for all q ∈ Q.

• The edge e = (q, q′) is contained in E if and only if G(e) 6= ∅ and
x ∈ G(e) if and only if there is an x′ ∈ X such that (x, x′) ∈ R(e).

A state (q̂, x̂) ∈ Reach, if there exists a finite execution (τ, q, x) with τ =
{[τi, τ

′
i ]}N

i=0 and (q(τ ′N), x(τ ′N)) = (q̂, x̂).

The set of states from which continuous evolution is impossible :

Out = {(q0, x0) ∈ Q×X | ∀ε > 0∃t ∈ [0, ε) xq0,x0
(t) 6∈ Inv(q0)}

in which xq0,x0
(·) denotes the unique solution to ẋ = f (q0, x) with x(0) =

x0.
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Well-posedness theorems

Theorem A hybrid automaton is non-blocking, if for all (q, x) ∈ Reach ∩
Out, there exists e = (q, q′) ∈ E with x ∈ G(e). In case the automaton is
deterministic, this condition is also necessary.

Theorem A hybrid automaton is deterministic, if and only if for all (q, x) ∈
Reach

• if x ∈ G((q, q′)) for some (q, q′) ∈ E, then (q, x) ∈ Out;

• if (q, q′) ∈ E and (q, q′′) ∈ E with q′ 6= q′′, then x 6∈ G((q, q′)) ∩
G((q, q′′)); and

• if (q, q′) ∈ E and x ∈ G((q, q′)), then there is at most one x′ ∈ X with
(x, x′) ∈ R((q, q′)).

−→ no explicit / algebraic conditions and not easily verifiable→ can we do
more (like for DDE)?
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Well-posedness issues

• Initial well-posedness: non-blocking + deterministic, i.e. absence of

• dead-lock: no smooth continuation and no jump

• splitting of trajectories

However, no statements by HA theory on existence beyond

• live-lock: an infinite number of jumps at one time instant, no solution
on [0, ε) for some ε > 0.

• right-accumulations of event times to prevent global existence.

or absence of

• left-accumulations of event times preventing uniqueness:
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Obstruction local existence

→ Live-lock: Infinitely many jumps at one time instant
V (0)=11 V (0)=02 V (0)=03

Ball 1 Ball 2 Ball 3 v1 : 1 1
2

1
2

3
8

3
8

11
32 . . . 1

3

v2 : 0 1
2

1
4

3
8

5
16

11
32 . . . 1

3

v3 : 0 0 1
4

1
4

5
16

5
16 . . . 1

3
• smooth continuation possible with constant velocity after an infinite num-
ber of events

−→ Exclude live-lock or show convergence of state x for local existence

• Discrete mode is a function of continuous state! not for general HA!!!
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Obstruction global existence: Zenoness

→ A right-accumulation of event times

ẋ1 = − sgn(x1) + 2 sgn(x2)

ẋ2 = −2 sgn(x1)− sgn(x2)

−1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

x_1

x_
2

• Exclude right-accumulations or show the existence of the left-limit
limt↑τ∗ x(t) for global existence.
• Discrete mode is a function of continuous state! not for general HA!!!
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Obstructions local uniqueness: Filippov’s example

ẋ1 = sgn(x1)− 2sgn(x2)

ẋ2 = 2sgn(x1) + sgn(x2),
−1 0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

4

5

x_1

x_
2

Left accumulation point ... E is not left Zeno free!

Well-posedness:

• Due to left-accumulations non-uniqueness in origin

• Using HA framework: non-blocking and deterministic

• Using Filippov’s solution: non-uniqueness!
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Well-posedness

• Initially solvable from each initial state there exists a state jump or a con-
tinuous hybrid solution on [0, ε) (non-blocking)

• Initially unique from each initial state the jump/hybrid solution is unique
(deterministic)

• Local well-posedness from each initial state there exists an ε > 0 and a
hybrid solution on [0, ε).

• Global well-posedness ... on [0,∞).
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Piecewise linear systems

SAT(A, B, C,D) ẋ(t) = Ax(t) + Bu(t) ei
2 − ei

1 > 0 and f i
1 ≥ f i

2

y(t) = Cx(t) + Du(t)

(u(t), y(t)) ∈ saturationi

-

6

S
S

S
S

S
S

S
S

ui

yi

ei
2

ei
1

f i
2

f i
1

Note that if f i
2 = f i

1, then relay-type of nonlinearity.
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Example of linear relay system: non-uniqueness

ẋ = x− u

y = x

u ∈ −sgn(y)

x(0) = 0:

• x(t) = et − 1, (y(t) = x(t) ≥ 0)

• x(t) = −et + 1, (y(t) = x(t) ≤ 0)

• x(t) = 0, (y(t) = x(t) = 0)
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Example of linear relay system: uniqueness

ẋ = x + u

y = x

u ∈ −sgn(y)

x(0) = 0:

• x(t) = 0, (y(t) = x(t) = 0)
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Piecewise linear systems

-

6

S
S

S
S

S
S

ui

yi

ei
2

ei
1

f i
2

f i
1

Consider SAT(A, B, C,D).

• Let R and S be the diagonal matrices with ei
2 − ei

1 and f i
2 − f i

1, resp.

• G(s) = C(sI − A)−1B + D

Suppose that G(σ)R − S is a P -matrix for all sufficiently large σ. Then,
there exists a unique (left Zeno free) hybrid execution of SAT(A, B, C,D)
for all initial states.

•M ∈ Rm×m is a P -matrix, if detMII > 0 for all I ⊆ {1, . . . ,m}.
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Linear relay systems and Filippov’s solution concept: left accumula-
tions

ẋ(t) = Ax(t) + Bu(t); y(t) = Cx(t); u(t) ∈ −sgn(y(t))

Previous result: If G(σ) = CBσ−1 + CABσ−2 + . . . > 0 for sufficiently
large σ, then existence and uniqueness of (left-Zeno free) executions.
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Other solution concept ...?

Filippov’s solutions include left-accumulations and satisfy ẋ ∈ F (x) almost
everywhere, with

• F (x) = {Ax + B} for Cx < 0

• F (x) = {Ax−B} for Cx > 0

• F (x) = {Ax + Bū | ū ∈ [−1, 1]} when Cx = 0

In case of relative degree 1 (CB > 0) and relative degree 2 (and order 2)
sufficient for Filippov uniqueness.

However, triple integrator d3x
dt3

= u counterexample due to:

So, (other) example of HA uniqueness (deterministic), but non-uniqueness in “Filippov”
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Linear complementarity systems

x1 x2

ẋ(t) = Ax(t) + Bz(t)

w(t) = Cx(t) + Dz(t)

0 ≤ w(t) ⊥ z(t) ≥ 0

{zi(t) = 0 and wi(t) ≥ 0} or {wi(t) = 0 and zi(t) ≥ 0}

•modes parameterized by I ⊆ {1, . . . , k} such that

ẋ(t) = Ax(t) + Bz(t

w(t) = Cx(t) + Dz(t)

wi = 0, i ∈ I and zi = 0, i 6∈ I

• Resets!
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Example 1

ẋ = x + z

w = x− z

0 ≤ w ⊥ z ≥ 0

• z = 0: ẋ = x, w = x ≥ 0

• w = 0: ẋ = 2x, z = x ≥ 0

Hence, x(0) = 1 two solutions and x(0) = −1 no solution trajectory!
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Example 2

ẋ = x + z

w = x + z

0 ≤ w ⊥ z ≥ 0

• z = 0: ẋ = x, w = x ≥ 0

• w = 0: ẋ = 0, z = −x ≥ 0

Existence and uniqueness!

Model test ...
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Well-posedness including jumps

• Initially solvable from each initial state there exists a state jump or a con-
tinuous hybrid solution on [0, ε) (non-blocking)

• Initially unique from each initial state the jump/hybrid solution is unique
(deterministic)

• Local well-posedness from each initial state there exists an ε > 0 and a
hybrid solution on [0, ε).

• Global well-posedness ... on [0,∞).
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Local well-posedness (including jumps)

ẋ(t) = Ax(t) + Bz(t), w(t) = Cx(t) + Dz(t), 0 ≤ z(t) ⊥ w(t) ≥ 0

Markov parameters: H0 = D and H i = CAi−1B, i = 1, 2, . . .

ηj = inf{i | H i
•j 6= 0}, ρj = inf{i | H i

j• 6= 0},

The leading row and column coefficient matricesM andN

M :=

 Hρ1

1•
...

Hρk

k•

 andN := (Hη1

•1 . . . Hηk

•k)

•M ∈ Rm×m is a P -matrix, if detMII > 0 for all I ⊆ {1, . . . ,m}.

If N andM are defined and P-matrices, then LCS(A, B, C,D) has for all
x0 a unique left Zeno free execution on an interval of the form [0, ε) for
some ε > 0.

•Moreover, live-lock does not occur: at most one jump
• Necessary and sufficient for global well-posedness for bimodal LCS
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Summary

• Smooth differential equations

– Solution concept straightforward

– Lipschitz continuity sufficient for well-posedness

– absence Lipschitz: possibly non-uniqueness

– absence global Lipschitz finite escape times and no global existence

• Switched systems (discontinuous differential equations)

– Sliding modes (Filippov’s convex or Utkin’s equivalent control defi-
nition)

– Solution concept from differential inclusions

– Well-posedness: directions of vector field at switching plane

“No events”
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Summary - continued

• Hybrid systems:

– Complications due to Zeno

– Relation between solution concept and well-posedness and analysis

∗ Tanks stay full along non-Zeno solutions!!!
∗ Filippov’s example has unique non-Zeno solutions, but non-
unique Zeno solutions

– Well-posedness

∗ Initial well-posedness (non-blocking and deterministic)
∗ Local well-posedness: [0, ε) (live-lock)
∗ Global well-posedness: [0,∞) (right-accumulations)

– Conditions for hybrid automata: implicit!

– Algebraic conditions for certain classes with more structure!



JJ J N I II 62/62JJ J N I II 62/62

Selected Literature

• A.F. Filippov, Differential Equations with Discontinuous Righthand Sides,
1988, Kluwer, Dordrecht, The Netherlands, Mathematics and Its Appli-
cations

• A.J. van der Schaft and J.M. Schumacher, An Introduction to Hybrid Dy-
namical Systems, Springer-Verlag, London, 2000.

• K.J. Johansson, J. Lygeros, S.N. Simić, J. Zhang and S. Sastry, Dynami-
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