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Overview

1. Hybrid systems — Definition, examples & challenges

2. Hybrid system models — Overview & issues

3. Models for event-driven systems — Automata

4. Hybrid automata

5. PWA systems and related model classes (MLD, LC, MMPS)
6. Timed automata

7. (Timed Petri nets)

8. Summary

1. Hybrid systems
1.1 Informal definition

e Hybrid = combination of continuous and discrete dynamics
e Temperature control system:

T > T

on mode ) off mode
T = fos(T,w)

T = fon(T,w)

T <Tow
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1.2 More formal definition

e System can be in one of several modes

e In each mode: behavior described by system of
difference or differential equations

o Mode switches due to occurrence of “events”

hs_models.2

1.2 More formal definition (continued)

o At switching time instant:
— possible state reset or state dimension change

e Mode transitions may be caused by

- external control signal
—internal control signal
—dynamics of system itself (crossing of boundary in state space)
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1.3 Examples

e Hierarchical control in process industry
e Telecommunication systems

e Manufacturing systems

e Air traffic coordination and control

e Batch processes 2
(e.g. beer brewing) MG o soparation PO MO

Human intervention in smooth systems — hybrid he models 4




1.3 Examples (continued)

o Traffic control
e Automatic platooning

e Evolution of rigid bodies
(contact/no contact)

o Electrical networks (switching, diodes)

e Fermentation process
(lag, growth, stationary, inactivation)

e Saturation, hysteresis

e Actuator and sensor failures

Switching between dynamical regimes — hybrid

1.4 Challenges

e Analysis and control
o Nowadays:

- often still heuristic & ad-hoc

- often focus still exclusively on either continuous or discrete
dynamics

— structured approach necessary
e Consider hybrid nature of systems

e Combination of systems & control, computer science,
mathematics, and simulation
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2. Hybrid system models 2.2 Models for time-driven systems
2.1 Introduction o Continuous-time time-driven systems:
o Continuous-state / discrete-state x(t) = fx(1),u(r))
 Continuous-time / discrete-time y(t) = g(x(1),u(t))
e Time-driven / event-driven
—time-driven — state changes as time progresses, o Discrete-time (or sampled) time-driven systems:
i.e., continuously (for CT), or at every tick of clock (for DT) x(k+1) = f(x(k), u(k))
- event-driven — state changes due to occurrence of event y(k) = g(x(k), u(k)
event:
+ start or end of an activity
+ asynchronous (occurrence times not necessarily equidistant)
Combinations — “hybrid”
hs_models.7 hs_models.8

2.3 Models for event-driven systems

15" ¢ Automata
=5 e Petri nets
e (max,+) algebraic models
e Markov chains / Markov processes
o Extended state machines
e Generalized semi-Markov processes
e Networks of waiting queues

= no general framework

Note: see also lecture on “Discrete-event modeling and diagnosis of
quantized systems” hs models.9

2.3 Models for event-driven systems (continued)

o No general framework (similar situation for hybrid systems)
o Basic trade-off:

| modeling power « decision power|

= application-specific

hs_models.10




2.4 Models for hybrid systems

=" e Timed or hybrid Petri nets
o Differential automata
=" e Hybrid automata
o Brockett’s model
=" ¢ Mixed logical dynamic models
e Duration calculus
o Real-time temporal logics
e Timed communicating sequential processes
e Switched bond graphs
[ ] /
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2.4 Models for hybrid systems (continued)

e Computer simulation models
o Predicate calculus
I e Piecewise-affine models
=" e Timed automata

Note: focus in this lecture is on non-stochastic models
(see also lectures on “Stochastic Hybrid Systems”)

hs_models.12

2.5 Models for hybrid systems — Issues

= no general modeling & analysis framework

modeling power — decision power|

+ computational complexity (NP-hard, undecidable)

= special subclasses
hierarchical / modular approach

hs_models.13

Intermezzo: Undecidable and NP-hard problems

e Undecidable problems

— no algorithm at all can be given for solving the
problem in general

o NP-complete and NP-hard problems

- decision problem: solution is either “yes” or “no”
e.g., traveling salesman decision problem:
Given a network of cities, intercity distances, and a
number B, does there exist a tour with length < B?
- search problem
e.g., traveling salesman problem:
Given a network of cities, intercity distances, what
is the shortest tour?

intermezzo.1

P and NP-complete decision problems

e time complexity function 7T'(n): largest amount of time needed to
solve problem instance of size n (worst case!)

e polynomial time algorithm:
T(n) < |p(n)| for some polynomial p
— class P: solvable by polynomial time algorithm
e nondeterministic computer:
— guessing stage (tour)
- checking stage (compute length of tour + compare it with B)
— class NP: “nondeterministically polynomial”
i.e., time complexity of checking stage is polynomial

intermezzo.2

P and NP-complete decision problems
e Each problem in NP can be solved in exponential time: T'(n) < 2

o NP-complete problems: “hardest” class in NP:

—any NP-complete problem solvable in polynomial time
= every problem in NP solvable in polynomial time

—any problem in NP intractable
= NP-complete problems also intractable
NP

NP-complete

if PZNP

intermezzo.3




NP-hard problems

e decision problem is NP-complete = search problem is NP-hard
o NP-hard problems: at least as hard as NP-complete problems
- NP-complete (decision problem)
— solvable in polynomial time if and only if P = NP
—NP-hard (search problem)
— cannot be solved in polynomial time unless P = NP

intermezzo.4

Examples of NP-hard and undecidable problems
e Consider simple hybrid system:
T S
(k1) = Ax(k) !f c'x(k) >0
Apx(k) if cTx(k) <0
— deciding whether system is stable or not is NP-hard

e Given two Petri nets, do they have the same reachability set?
— undecidable

intermezzo.5

Back to the main topic — Hybrid system models

e Many modeling frameworks for hybrid systems
= trade-off: modeling power — decision power, tractability

o Hybrid automata:

- very general, high modeling power, but low decision power
—analysis and control — computationally hard
(NP-hard, undecidable problems)

hs_models.14

Hybrid system models (continued)

e Computer simulation and verification tools: Modelica, HyTech,
KRONOS, Chi, 20-sim, UPPAAL, ...

+ simulation models can represent plant with high degree of
detail (high modeling power)

- computationally very demanding for large systems

- difficult to understand from simulation how behavior depends
on model parameters

e In this lecture: special classes of hybrid systems for which

tractable analysis and control design techniques are available
(— see next lectures)
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3. Models for event-driven systems

3.1 Automata

Automaton

Automaton is defined by triple * = (2,% ,¢) with
o 2: finite or countable set of discrete states
e 7/ finite or countable set of discrete inputs (“input alphabet”)
o ¢ : 2 x%U — P(2): partial transition function.

where P(2) is power set of 2 (set of all subsets)

Finite automaton: 2 and % finite

hs_models.16

3.1 Automata (continued)
Evolution of automaton

o Given state g € 2 and discrete input symbol u € %,

transition function ¢ defines collection of next possible states:
o(q,u) € 2

o If each set of next states has 0 or 1 element:
— “deterministic” automaton

o If some set of next states has more than 1 element:
— “non-deterministic” automaton

hs_models.17




3.1 Automata (continued)
Deterministic automaton

¢ (qbusy7 B) = {qidle}
¢ (qlnusya 7/) = {qdown}

(p(qidlm a) = {qbusy}
‘p(qdowm 6) = {qidle}

hs_models.18

3.1 Automata (continued)
Non-deterministic automaton
o

D

B

o (q1,a) ={q1,92} 0(q2,B) = {q1}

hs_models.19

4. Hybrid automata
4.1 Definition
Hybrid automaton H is collection H = (Q,X, f, Init,Inv,E,G,R) with
e 0=1{qi,...,qn} is finite set of discrete states or modes
e X =" is set of continuous states
e f: 0 xX — X is vector field
e Init C O x X is set of initial states
e Inv: Q — P(X) describes the invariants
e £ C O x Qs set of edges or transitions
e G: E — P(X) is guard condition
eR:E — P(X xX) is reset map

hs_models.20

Hybrid automaton H = (Q,X, f, Init,Inv,E,G,R)
o Hybrid state: (g,x)
e Evolution of continuous state in mode ¢: x = f(q,x)

e Invariant Inv: describes conditions that continuous state has to
satisfy at given mode

e Guard G: specifies subset of state space where certain transition
is enabled

e Reset map R: specifies how new continuous states are related to
previous continuous states

hs_models.21

(QQ,)C()) € Init

R(q0,91)

q1
xX= f(CI],x)
x € lnv(q)

G(q0,92) G(q1,92)

G(q2,90)
G(q2,q1

R(q1,92)

R(q0,92) @
xX= f(qZﬁx)

x € Inv(q)

hs_models.22

Evolution of hybrid automaton

o Initial hybrid state (go,xo) € Init
e Continuous state x evolves according to
X = f(qo0,x) with x(0) =xo
discrete state ¢ remains constant: ¢(¢) = qo
o Continuous evolution can go on as long as x € Inv(qo)
o |f at some point state x reaches guard G(qo,q), then

—transition ¢ — ¢, is enabled

- discrete state may change to ¢, continuous state then jumps
from current value x~ to new value x* with (x~,x*) € R(qo,q1)

e Next, continuous evolution resumes and whole process is re-
peated
hs models.23




4.2 Examples of hybrid automata Hysteresis
, Control system with hysteresis element in the feedback loop :
1. Hysteresis o
2. Water-level monitor *=Hx)+u
H
A
1 1
‘ :
A
1 1
—A, ! > X
. \
1 1
-1
hs_models.24 hs_models.25
H
Hysteresis (continued) - AELI Water-level monitor
. A e variables:
X=H(x)4u — A >

Guard: x> A

Guard: x < —A

hs_models.26

- y(r): water level, continuous
—x(1): time elapsed since last signal was sent by monitor, cont.
- P(r): status of pump, € {on,off}
- S(¢): nature of signal last sent by monitor, € {on,off}
e dynamics of system:
— water level rises 1 unit per second when pump is on and
falls 2 units per second when pump is off

—when water level rises to 10 units, monitor sends switch-off
signal; after delay of 2 seconds pump turns off
—when water level falls to 5 units, monitor sends switch-on sig-

nal; after delay of 2 seconds pump switches on
hs_models.27

mode: on,on mode: on,off

x=1 x=1
y=1 : y=1
y< 10 x<2

x=2

mode: off,off

y: water level
x: time since
last signal

hs_models.28

5. PWA systems and related model classes

1. Piecewise affine systems (PWA)

2. Mixed Logical Dynamical systems (MLD)

3. Linear Complementarity systems (LC)

4. Max-Min-Plus-Scaling systems (MMPS)

5. Equivalence of MLD, LC, ELC, PWA and MMPS systems

hs_models.29




5.1 Piecewise affine (PWA) systems

o PWA systems are described by
x(k+1) = Aix(k) +Bu(k) + fi for {x(k)
y(k) = Cix(k) + Diu(k) + g u(k)
e Q,...,Qu: convex polyhedra (i.e., given by finite number of linear
inequalities) in input/state space, non-overlapping interiors
o PWA can be used as approximation of nonlinear model
x(k+1) = A (x(k),u(k))
y(k) = A5(x(k), u(k))
— “simplest” extension of linear systems that can still model

non-linear & non-smooth processes with arbitrary accuracy
+ are capable of handling hybrid phenomena

}EQJ:L“”N

Example of PWA model
Integrator with upper saturation:

3 uk) if x(k) +u(k)
x“*”{l if (k) + u(k)
y(k) = x(k)

1
1

VA

u(k)
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5.2 Mixed Logical Dynamical (MLD) systems e Associate with literal X; logical variable §; € {0,1}:
Preliminaries 6=1iffX;=T,6=0iff X,=F
— compound statement can be transformed into
e Boolean operators: o . linear integer program
A (and), Vv (or), ~ (not), = (implies), < (iff), & (xor) « Examples:
X X[ XiAX, XiVXs ~X X=X X1eX XieX; “X,AX, equivalentto & =& 1
TT T T F T T F . .
‘ TF = T E F = T X1 VX, equivalentto 6,+6, > 1
FT F T T T F T *~X; equivalentto 6, =0
\F F F F T T T F *X; = X, equivalentto & —8 <0
s *X; < X, equivalentto 6, -6, =0
¢ Propertles.. *X1®X, equivalentto &,+6 =1
-X; = X, is same as ~X; VX,
—X; = X, is same as ~X, = ~X; eFor f:R"+— R and x € 2" with 2" bounded, define
-X; & Xyissame as (X; = Xo) A (X2 = Xi) Mdéfmaxf(x) mdéfminf(x)
hs_models.32 xeZ xeZ hs_models.33

e Equivalences:

*[f(x) <OIA[6 =1] trueiff f(x)—06<—1+m(1—9)

*[f(x) <0}V [6=1] trueiff f(x)<Md

*~[f(x) 0] trueiff f(x) >¢e (with e machine precision)
*[f(x) 0] = [6=1] trueiff f(x)>e+(m—¢)d
fx) <M(1-6)

flx)>e+(m—g)d
e Product 6,6, can be replaced by auxiliary variable 6; = 6,6,

Since [ =1]< [ =1]A[&=1],

*[f(x) 0] < [8 =1] true iff {

—-8,+6;<0
—5+8<0
Si+8—-6:<1

83 =010, isequivalentto

hs_models.34

e Product é f(x) can be replaced by auxiliary real variable
y=8f(x) with [§ = 0] = [y = 0], [§ = 1] = [y = f(x)],
or equivalently
y<M$§
y>md
y< f(x)=m(1-9)
y = f(x)—M(1-9)

hs_models.35




Mixed logical dynamical (MLD) systems

o x(k+1) = Ax(k) + Bu(k) + B,6 (k) + B3z(k)
y(k) = Cx(k) + Dyu(k) + D26 (k) + D3z(k)
Ex(k) 4+ Equ(k) + E36 (k) + Eaz(k) < gs,
o x(k) =[x (k) x," (k) |7 with x.(k) real-valued, x,(k) boolean
z(k): real-valued auxiliary variables
O(k): boolean auxiliary variables

o Applications: PWA systems, systems with discrete inputs, quali-
tative inputs, bilinear systems, finite state machines

e Reference: A. Bemporad and M. Morari, “Control of systems integrating
logic, dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407-427,
March 1999.

hs_models.36

Example of an MLD system
e Consider PWA system:
- [ >
(k1) = 0.8x(k) + u(k) !fx(k) 0
—0.8x(k)+u(k) ifx(k)<0
where x(k) € [-10,10] and u(k) € [—1,1]

e Associate binary variable & (k) to condition x(k) > 0
such that [§(k) = 1] < [x(k) > 0] or

—md (k) < x(k) —
—(M+¢€)d<—x—¢
where M = —m = 10, and ¢ is machine precision

e PWA system can be rewritten as
x(k + 1) =16 6(k)x(k) - 0'8x(k) + u(k) hs models.37

o x(k+1)=1.65(k)x(k) —0.8x(k) +u(k)
e Define new variable z(k) = & (k) x(k) or
z(k) <MS(k)
z(k) = md(k
2(k) < x(k) —m(1—8(k))

z(k) > x(k) = M(1 - &(k))
o PWA system now becomes

x(k+1) = 1.6z(k) — 0.8x(k) + u(k)
subject to linear constraints above — MLD

hs_models.38

5.3 Linear Complementarity (LC) systems
o LC systems:
x(k+1) = Ax(k) + Bju(k) + Byw(k)
y(k) = Cx(k) +Diu(k) +Daw(k)
v(k) = Eix(k) + Eau(k) + Esw(k) + g4
0<v(k) L wk)>0
e v(k), w(k): “complementarity variables” (real-valued)

o Applications: constrained mechanical systems, electrical networks
with ideal diodes, boost converter, dynamical systems with PWA
relations, variable-structure systems, projected dynamical sys-
tems

e Example: two-carts system (continuous-time LC system)

hs_models.39

Example of an LC system
Two-carts system
e Two carts connected by spring

e Left cart attached to wall by spring;
motion constrained by completely inelastic stop
Stop is placed at equilibrium position of left cart

e Masses of carts and spring constants = 1

|_>X1 |_>X2

FAAA
I C) ©) . ) )

hs_models.40

Two-carts system (continued)

>+ 12
%WHU O NI O O,

e x1, xo: deviations of left and right cart from equilibrium position

e x3,x4: velocities of left and right cart
e z: reaction force exerted by stop
e Evolution: xl( ) =x3(t)

Xo(t) = xa(t)
X3(t) = —2x1(t) +x2(1) +2(7)
Ha(t) = x1(t) —xa(t)

hs_models.41




X X
Two-carts system (continued) = =2
To model stop: o 5 Q)‘

o define w(r) = x (1)

e w(t) > 0 (since is position of left cart w.r.t. stop)

o force exerted by stop can act only in positive direction — z(¢) >0
o if left cart not at stop (w(r) > 0), reaction force vanishes: z(t) =0
e if z(t) > 0 then cart must necessarily be at the stop: w(r) =0

0<w(t)Llz(t) >0

— (continuous-time) LC system

5.4 Max-Min-Plus-Scaling (MMPS) systems
e Max-min-plus-scaling expression:
[ = x|l max(fi, fi)|min(fi, f) | fi + fil B fe
with a, B € R and fz, f; again MMPS expressions.
e Example: 5x; — 3x, + 7 4 max(min(2x;, —8x;),x, — 3x3)
o MMPS systems:
x(k+1) = A(x(k), u(k),d(k))
y(k) = Ay(x(k),u(k),d(k))
AM(x(K),u(k),d(K)) <,
with ., .#,, .#. MMPS expressions
o d(k): real-valued auxiliary variables
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5.4 Max-Min-Plus-Scaling (MMPS) systems (continued) Example of MMPS system
e Applications: o Integrator with upper saturation:
—discrete-event systems (also max-plus) x(k) +u(k) i x(k)+u(k) <1
- traffic-signal controlled intersection Mk+1)= 1 i x(k) + u(k) > 1
- railway netv.vorks y(k) = x(k)
- manufacturing systems
. - . can be recast as
- systems with soft & hard synchronization constraints '
— logistic systems x(k+1) = min(x(k) + u(k), 1)
y(k) = x(k)
hs_models.44 hs_models.45

5.5 Equivalence of MLD, LC, PWA and MMPS systems

Equivalence between model classes <« and :
for each model € < there exists model € & with same
input/output behavior (+ vice versa)

MLD, LC, PWA and MMPS systems are equivalent:

hs_models.46

Equivalence of MLD, LC, PWA and MMPS systems (cont.)

e Each subclass has own advantages:

— stability criteria for PWA

- control and verification techniques for MLD

— control techniques for MMPS

- conditions of existence and uniqueness of solutions for LC

— transfer techniques from one class to other

e |t depends on the application which class is best suited

e Reference: W.PM.H. Heemels, B. De Schutter, and A. Bemporad, “Equiva-
lence of hybrid dynamical models,” Automatica, vol. 37, no. 7, pp. 1085-1091,
July 2001.
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6. Timed automata

e Timed automata involve simple continuous dynamics:

- all differential equations of form x =1,
—all invariants, guards, etc. involve comparison of real-valued
states with constants (e.g., x=1,x<2,x >0, etc.)

e Timed automata are limited for modeling physical systems.

o However, very well suited for encoding timing constraints such as
“event A must take place at least 2 seconds after event B and not
more than 5 seconds before event C”

e Applications: multimedia, Internet, audio protocol verification

hs_models.48

6.1 Rectangular sets

e Subset of R” set is called rectangular if can be written as finite
boolean combination of constraints of form

xi<a, x;i<b, xi=c, x;>d, x;>e
e Rectangular sets are “rectangles” or “boxes” in R" whose sides
are aligned with the axes, or unions of such rectangles/boxes
e Examples:
={G10) [ Z0)A 1 K2)A (> DA (R <2)}
= {(e1,x2) [ ((x1 2 0) A (2 =0)) V ((x1 = 0) A (x2 > 0))}
—empty set (e.9., @ = {(x1,x2) | (x1 > 1) A (x; <0))}
e However, set {(x1,x2) | x; = 2x»} is not rectangular

hs_models.49

6.2 Timed automaton

e Timed automaton is hybrid automaton with following characteris-
tics:

- automaton involves differential equations of form x; = 1;
continuous variables governed by this differential equation are
called “clocks” or “timers”

- sets involved in definition of initial states, guards, and invari-
ants are rectangular sets

—reset maps involve either rectangular set, or may leave certain
states unchanged

hs_models.50

6.3 Example of timed automaton

x1=x=0

x1:=3Ax:=0

hs_models.51

7. Timed Petri nets
7.1 Petri nets

e Graphical representation: bipartite directed multigraph

- places (circles) — activities
- transitions (bars) — events, actions
pP1 D2

hs_models.52

e marking — tokens are assigned to places
e execution of Petri net:

—transition enabled if all input places (*¢) contain at least 1 token
—enabled transition can fire:

* one token is removed from each input place (°f)

x one token is deposited in each output place (¢*)

R TET

[\—6 ﬁﬁf ps L—é ﬁif ps

e synchronization & choice hs models.53




7.2 Timed Petri nets
e Untimed Petri net describes order in which events can occur,
but no timing

e Timed Petri — timing, transition should be executed within cer-
tain time interval after it becomes enabled

—discrete state variables (markings, mg(p))
- continuous state variables (arrival times, Mg(p))

o My(p) :={61,...,0,,(,} With arrival times 6, < 6, < ... < 6, Of
mg(p) tokens in place p

e For each transition ¢ we define interval [L(z),U (7)]

hs_models.54

7.2 Timed Petri nets (continued)
e Transition r becomes enabled at

maxminMy(p)
pet

e Then transition + may fire at some time
0 € [maxminMe(p) + L(t), max min My (p) + U (1)]
pE*t

pE*t
provided ¢ is enabled during whole interval

o |f enabling condition is still valid at final time of firing interval, then
transition is forced to fire

e Many techniques for untimed Petri nets can be extended to timed
Petri nets

e However, many problems are undecidable or NP-hard

hs_models.55

8. Summary
e Hybrid: combination of discrete-event and continuous dynamics
e Many modeling frameworks
- trade-off: modeling power vs. decision power
- application specific

e In the next lectures: properties, analysis, control, identification,
fault diagnosis, and applications
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