
4

HYSCOM
IEEE CSS Technical Committee on Hybrid Systems

scimanyd suounitnoc enibmoc smetsys dirbyH
lacipyt (snoitauqe ecnereffid ro laitnereffid)

scimanyd etercsid dna stnalp lacisyhp fo
fo lacipyt (snoitidnoc lacigol dna atamotua)

fo senilpicsid gninibmoc yB .cigol lortnoc
,yroeht lortnoc dna smetsys dna ecneics retupmoc

dilos a edivorp smetsys dirbyh no hcraeser
,sisylana eht rof sloot lanoitatupmoc dna yroeht
fo ngised lortnoc dna ,noitacifirev ,noitalumis
egral a ni desu era dna ,''smetsys deddebme``

ria ,smetsys evitomotua) snoitacilppa fo yteirav
ssecorp ,smetsys lacigoloib ,tnemeganam ciffart

.(srehto ynam dna ,seirtsudni

www.ist-hycon.orgwww.unisi.it

1 HYCON PhD School on Hybrid Systemsst

Siena, July 19-22, 2005 - Rectorate of the University of Siena

Models for Hybrid Systems

Bart De Schutter
TU Delft, The Netherlands

b.deschutter@its.tudelft.nl

1st HYCON Summer School on Hybrid Systems
Siena, Italy, July 13–18, 2005

Models for Hybrid Systems
Bart De Schutter (b.deschutter@dcsc.tudelft.nl)

Delft Center for Systems and Control
Delft University of Technology

Models for Hybrid Systems

Overview
1. Hybrid systems — Definition, examples & challenges
2. Hybrid system models — Overview & issues
3. Models for event-driven systems — Automata
4. Hybrid automata
5. PWA systems and related model classes (MLD, LC, MMPS)
6. Timed automata
7. (Timed Petri nets)
8. Summary

1. Hybrid systems

1.1 Informal definition

• Hybrid = combination of continuous and discrete dynamics
• Temperature control system:

on mode
Ṫ = fon(T,w)

off mode
Ṫ = foff(T,w)

T > Tupp

T < Tlow

hs models.1

1.2 More formal definition

• System can be in one of several modes
• In each mode: behavior described by system of

difference or differential equations
•Mode switches due to occurrence of “events”

ẋ1 = f1(x1,u)

ẋ2 = f2(x2,u)

ẋ3 = f3(x3,u)
y= g1(x1,u)

y= g2(x2,u)

y= g3(x3,u)

hs models.2

1.2 More formal definition (continued)

• At switching time instant:
→ possible state reset or state dimension change

•Mode transitions may be caused by
– external control signal
– internal control signal
– dynamics of system itself (crossing of boundary in state space)

hs models.3

1.3 Examples

• Hierarchical control in process industry
• Telecommunication systems
•Manufacturing systems
• Air traffic coordination and control
• Batch processes
(e.g. beer brewing)

holding vessel

wort separation
water

boiling whirlpool

cooling

airconditioning
maturation/

water
malt

mashing

packaging

filtration
fermentation

Human intervention in smooth systems→ hybrid hs models.4

1.3 Examples (continued)

• Traffic control
• Automatic platooning
• Evolution of rigid bodies
(contact/no contact)

• Electrical networks (switching, diodes)
• Fermentation process
(lag, growth, stationary, inactivation)

• Saturation, hysteresis
• Actuator and sensor failures

Switching between dynamical regimes→ hybrid

hs models.5

1.4 Challenges

• Analysis and control
• Nowadays:
– often still heuristic & ad-hoc
– often focus still exclusively on either continuous or discrete
dynamics

→ structured approach necessary
• Consider hybrid nature of systems
• Combination of systems & control, computer science,
mathematics, and simulation

hs models.6

2. Hybrid system models

2.1 Introduction

• Continuous-state / discrete-state
• Continuous-time / discrete-time
• Time-driven / event-driven
– time-driven→ state changes as time progresses,
i.e., continuously (for CT), or at every tick of clock (for DT)
– event-driven→ state changes due to occurrence of event
event:
∗ start or end of an activity
∗ asynchronous (occurrence times not necessarily equidistant)

Combinations→ “hybrid”
hs models.7

2.2 Models for time-driven systems

• Continuous-time time-driven systems:
ẋ(t) = f (x(t),u(t))
y(t) = g(x(t),u(t))

• Discrete-time (or sampled) time-driven systems:
x(k+1) = f (x(k),u(k))
y(k) = g(x(k),u(k)

hs models.8

2.3 Models for event-driven systems

•Z Automata
•Z Petri nets
• (max,+) algebraic models
•Markov chains / Markov processes
• Extended state machines
• Generalized semi-Markov processes
• Networks of waiting queues
• . . .
⇒ no general framework

Note: see also lecture on “Discrete-event modeling and diagnosis of
quantized systems” hs models.9

2.3 Models for event-driven systems (continued)

• No general framework (similar situation for hybrid systems)
• Basic trade-off:

modeling power↔ decision power

⇒ application-specific

hs models.10

2.4 Models for hybrid systems

•Z Timed or hybrid Petri nets
• Differential automata
•Z Hybrid automata
• Brockett’s model
•Z Mixed logical dynamic models
• Duration calculus
• Real-time temporal logics
• Timed communicating sequential processes
• Switched bond graphs
• ../..

hs models.11

2.4 Models for hybrid systems (continued)

• Computer simulation models
• Predicate calculus
•Z Piecewise-affine models
•Z Timed automata
• . . .

Note: focus in this lecture is on non-stochastic models
(see also lectures on “Stochastic Hybrid Systems”)

hs models.12

2.5 Models for hybrid systems — Issues

⇒ no general modeling & analysis framework

modeling power ↔ decision power

+ computational complexity (NP-hard, undecidable)
⇒ special subclasses
hierarchical / modular approach

hs models.13

Intermezzo: Undecidable and NP-hard problems

• Undecidable problems
→ no algorithm at all can be given for solving the
problem in general

• NP-complete and NP-hard problems

– decision problem: solution is either “yes” or “no”
e.g., traveling salesman decision problem:

Given a network of cities, intercity distances, and a
number B, does there exist a tour with length � B?

– search problem
e.g., traveling salesman problem:

Given a network of cities, intercity distances, what
is the shortest tour?

intermezzo.1

P and NP-complete decision problems

• time complexity function T (n): largest amount of time needed to
solve problem instance of size n (worst case!)

• polynomial time algorithm:
T (n) � |p(n)| for some polynomial p

→ class P: solvable by polynomial time algorithm
• nondeterministic computer:
– guessing stage (tour)
– checking stage (compute length of tour + compare it with B)
→ class NP: “nondeterministically polynomial ”

i.e., time complexity of checking stage is polynomial

intermezzo.2

P and NP-complete decision problems

• Each problem in NP can be solved in exponential time: T (n) � 2n
k

• NP-complete problems: “hardest” class in NP:
– any NP-complete problem solvable in polynomial time
⇒ every problem in NP solvable in polynomial time
– any problem in NP intractable
⇒ NP-complete problems also intractable

NP

PNP-complete

if P�=NP

intermezzo.3

NP-hard problems

• decision problem is NP-complete⇒ search problem is NP-hard
• NP-hard problems: at least as hard as NP-complete problems
– NP-complete (decision problem)
→ solvable in polynomial time if and only if P = NP
– NP-hard (search problem)
→ cannot be solved in polynomial time unless P = NP

intermezzo.4

Examples of NP-hard and undecidable problems

• Consider simple hybrid system:

x(k+1) =

{
A1x(k) if cTx(k) � 0

A2x(k) if cTx(k) < 0

→ deciding whether system is stable or not is NP-hard
• Given two Petri nets, do they have the same reachability set?
→ undecidable

intermezzo.5

Back to the main topic — Hybrid system models

•Many modeling frameworks for hybrid systems
⇒ trade-off: modeling power↔ decision power, tractability

• Hybrid automata:
– very general, high modeling power, but low decision power
– analysis and control→ computationally hard

(NP-hard, undecidable problems)

hs models.14

Hybrid system models (continued)

• Computer simulation and verification tools: Modelica, HyTech,
KRONOS, Chi, 20-sim, UPPAAL, . . .
+ simulation models can represent plant with high degree of
detail (high modeling power)
- computationally very demanding for large systems
- difficult to understand from simulation how behavior depends
on model parameters

• In this lecture: special classes of hybrid systems for which
tractable analysis and control design techniques are available
(→ see next lectures)

hs models.15

3. Models for event-driven systems

3.1 Automata

Automaton
Automaton is defined by triple Σ = (Q,U ,φ) with
• Q: finite or countable set of discrete states
• U : finite or countable set of discrete inputs (“input alphabet”)
• φ :Q×U �→ P(Q): partial transition function.
where P(Q) is power set of Q (set of all subsets)

Finite automaton: Q and U finite

hs models.16

3.1 Automata (continued)

Evolution of automaton

• Given state q ∈ Q and discrete input symbol u ∈ U ,
transition function φ defines collection of next possible states:
φ(q,u) ⊆ Q

• If each set of next states has 0 or 1 element:
→ “deterministic” automaton

• If some set of next states has more than 1 element:
→ “non-deterministic” automaton

hs models.17

3.1 Automata (continued)
Deterministic automaton

qidleqbusy

qdown

α

β

γ δ

φ(qbusy,β) = {qidle} φ(qidle,α) = {qbusy}

φ(qbusy,γ) = {qdown} φ(qdown,δ) = {qidle}
hs models.18

3.1 Automata (continued)

Non-deterministic automaton

q1 q2

α

α

β

φ(q1,α) = {q1,q2} φ(q2,β) = {q1}

hs models.19

4. Hybrid automata
4.1 Definition

Hybrid automaton H is collection H = (Q,X , f , Init, Inv,E,G,R) with
• Q= {q1, . . . ,qN} is finite set of discrete states or modes
• X = R

n is set of continuous states
• f : Q×X → X is vector field
• Init ⊆ Q×X is set of initial states
• Inv : Q→ P(X) describes the invariants
• E ⊆ Q×Q is set of edges or transitions
• G : E → P(X) is guard condition
• R : E → P(X×X) is reset map

hs models.20

Hybrid automaton H = (Q,X , f , Init, Inv,E,G,R)

• Hybrid state: (q,x)
• Evolution of continuous state in mode q: ẋ= f (q,x)

• Invariant Inv: describes conditions that continuous state has to
satisfy at given mode

• Guard G: specifies subset of state space where certain transition
is enabled

• Reset map R: specifies how new continuous states are related to
previous continuous states

hs models.21

(q0,x0) ∈ Init

q0
ẋ= f (q0,x)
x ∈ Inv(q0)

q1
ẋ= f (q1,x)
x ∈ Inv(q1)

q2
ẋ= f (q2,x)
x ∈ Inv(q2)

G(q0,q1)

G(q1,q0)

G(q1,q2)

G(q2,q1)

G(q0,q2)
G(q2,q0)

R(q0,q1)

R(q1,q0)

R(q1,q2)

R(q2,q1)

R(q0,q2)

R(q2,q0)

hs models.22

Evolution of hybrid automaton

• Initial hybrid state (q0,x0) ∈ Init

• Continuous state x evolves according to
ẋ= f (q0,x) with x(0) = x0

discrete state q remains constant: q(t) = q0

• Continuous evolution can go on as long as x ∈ Inv(q0)

• If at some point state x reaches guard G(q0,q1), then
– transition q0→ q1 is enabled
– discrete state may change to q1, continuous state then jumps
from current value x− to new value x+ with (x−,x+) ∈ R(q0,q1)

• Next, continuous evolution resumes and whole process is re-
peated

hs models.23

4.2 Examples of hybrid automata

1. Hysteresis
2. Water-level monitor

hs models.24

Hysteresis
Control system with hysteresis element in the feedback loop :

ẋ= H(x)+u

H

Δ
−Δ x

1

−1

hs models.25

Hysteresis (continued)

ẋ= H(x)+u

H

Δ
−Δ x

1

−1

Guard: x� Δ

Guard: x� −Δ

H = 1
ẋ= 1+u

x ∈ {x | x� Δ}

H = −1
ẋ= −1+u

x ∈ {x | x� −Δ}

hs models.26

Water-level monitor

• variables:
– y(t): water level, continuous
– x(t): time elapsed since last signal was sent by monitor, cont.
– P(t): status of pump, ∈ {on,off}

– S(t): nature of signal last sent by monitor, ∈ {on,off}

• dynamics of system:
– water level rises 1 unit per second when pump is on and
falls 2 units per second when pump is off
– when water level rises to 10 units, monitor sends switch-off
signal; after delay of 2 seconds pump turns off
– when water level falls to 5 units, monitor sends switch-on sig-
nal; after delay of 2 seconds pump switches on

hs models.27

x= 2

x= 2

x := 0

x := 0

y= 5

y= 10

mode: on,on

ẋ= 1
ẏ= 1

y� 10

mode: on,off

ẋ= 1
ẏ= 1

x� 2

mode: off,off

ẋ= 1
ẏ= −2

y� 5

mode: off,on

ẋ= 1
ẏ= −2

x� 2

y: water level
x: time since
last signal

hs models.28

5. PWA systems and related model classes

1. Piecewise affine systems (PWA)
2. Mixed Logical Dynamical systems (MLD)
3. Linear Complementarity systems (LC)
4. Max-Min-Plus-Scaling systems (MMPS)
5. Equivalence of MLD, LC, ELC, PWA and MMPS systems

hs models.29

5.1 Piecewise affine (PWA) systems

• PWA systems are described by
x(k+1) = Aix(k)+Biu(k)+ fi
y(k) = Cix(k)+Diu(k)+gi

for
[
x(k)
u(k)

]
∈ Ωi, i= 1, . . . ,N

• Ω1, . . . ,ΩN: convex polyhedra (i.e., given by finite number of linear
inequalities) in input/state space, non-overlapping interiors

• PWA can be used as approximation of nonlinear model
x(k+1) = Nx(x(k),u(k))
y(k) = Ny(x(k),u(k))

→ “simplest” extension of linear systems that can still model
non-linear & non-smooth processes with arbitrary accuracy
+ are capable of handling hybrid phenomena

hs models.30

Example of PWA model
Integrator with upper saturation:

x(k+1) =

{
x(k)+u(k) if x(k)+u(k) � 1

1 if x(k)+u(k) � 1

y(k) = x(k)
u(k)

x(k)x(k)+u(k) < 1

x(k)+u(k) > 1

hs models.31

5.2 Mixed Logical Dynamical (MLD) systems

Preliminaries

• Boolean operators:
∧ (and), ∨ (or), ∼ (not),⇒ (implies),⇔ (iff), ⊕ (xor)
X1 X2 X1∧X2 X1∨X2 ∼X1 X1⇒ X2 X1⇔ X2 X1⊕X2
T T T T F T T F
T F F T F F F T
F T F T T T F T
F F F F T T T F

• Properties:
– X1⇒ X2 is same as ∼X1∨X2
– X1⇒ X2 is same as ∼X2⇒∼X1
– X1⇔ X2 is same as (X1⇒ X2)∧ (X2⇒ X1)

hs models.32

• Associate with literal Xi logical variable δi ∈ {0,1}:
δi = 1 iff Xi = T, δi = 0 iff Xi = F
→ compound statement can be transformed into
linear integer program

• Examples:
* X1∧X2 equivalent to δ1 = δ2 = 1

* X1∨X2 equivalent to δ1+δ2 � 1
* ∼X1 equivalent to δ1 = 0

* X1⇒ X2 equivalent to δ1−δ2 � 0
* X1⇔ X2 equivalent to δ1−δ2 = 0

* X1⊕X2 equivalent to δ1+δ2 = 1

• For f : Rn �→ R and x ∈ X withX bounded, define

M
def
= max
x∈X

f (x) m
def
= min
x∈X
f (x)

hs models.33

• Equivalences:
* [f (x) � 0]∧ [δ = 1] true iff f (x)−δ � −1+m(1−δ)

* [f (x) � 0]∨ [δ = 1] true iff f (x) �Mδ
* ∼[f (x) � 0] true iff f (x) � ε (with ε machine precision)
* [f (x) � 0] ⇒ [δ = 1] true iff f (x) � ε +(m− ε)δ

* [f (x) � 0] ⇔ [δ = 1] true iff
{
f (x) �M(1−δ)

f (x) � ε +(m− ε)δ

• Product δ1δ2 can be replaced by auxiliary variable δ3 = δ1δ2
Since [δ3 = 1] ⇔ [δ1 = 1]∧ [δ2 = 1],

δ3 = δ1δ2 is equivalent to

⎧⎪⎨
⎪⎩
−δ1+δ3 � 0
−δ2+δ3 � 0
δ1+δ2−δ3 � 1

hs models.34

• Product δ f (x) can be replaced by auxiliary real variable
y= δ f (x) with [δ = 0] ⇒ [y= 0], [δ = 1] ⇒ [y= f (x)],
or equivalently ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
y�Mδ
y� mδ
y� f (x)−m(1−δ)

y� f (x)−M(1−δ)

hs models.35

Mixed logical dynamical (MLD) systems

• x(k+1) = Ax(k)+B1u(k)+B2δ (k)+B3z(k)

y(k) =Cx(k)+D1u(k)+D2δ (k)+D3z(k)

E1x(k)+E2u(k)+E3δ (k)+E4z(k) � g5,

• x(k) = [xrT(k) xbT(k)]T with xr(k) real-valued, xb(k) boolean
z(k): real-valued auxiliary variables
δ (k): boolean auxiliary variables

• Applications: PWA systems, systems with discrete inputs, quali-
tative inputs, bilinear systems, finite state machines

• Reference: A. Bemporad and M. Morari, “Control of systems integrating
logic, dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
March 1999.

hs models.36

Example of an MLD system

• Consider PWA system:

x(k+1) =

{
0.8x(k)+u(k) if x(k) � 0

−0.8x(k)+u(k) if x(k) < 0

where x(k) ∈ [−10,10] and u(k) ∈ [−1,1]

• Associate binary variable δ (k) to condition x(k) � 0
such that [δ (k) = 1] ⇔ [x(k) � 0] or

−mδ (k) � x(k)−m

−(M+ ε)δ � −x− ε

where M = −m= 10, and ε is machine precision
• PWA system can be rewritten as

x(k+1) = 1.6δ (k)x(k)−0.8x(k)+u(k) hs models.37

• x(k+1) = 1.6δ (k)x(k)−0.8x(k)+u(k)

• Define new variable z(k) = δ (k)x(k) or
z(k) �Mδ (k)
z(k) � mδ (k)
z(k) � x(k)−m(1−δ (k))
z(k) � x(k)−M(1−δ (k))

• PWA system now becomes
x(k+1) = 1.6z(k)−0.8x(k)+u(k)

subject to linear constraints above→ MLD

hs models.38

5.3 Linear Complementarity (LC) systems

• LC systems:
x(k+1) = Ax(k)+B1u(k)+B2w(k)
y(k) = Cx(k)+D1u(k)+D2w(k)
v(k) = E1x(k)+E2u(k)+E3w(k)+g4

0� v(k) ⊥ w(k) � 0

• v(k), w(k): “complementarity variables” (real-valued)
• Applications: constrained mechanical systems, electrical networks
with ideal diodes, boost converter, dynamical systems with PWA
relations, variable-structure systems, projected dynamical sys-
tems

• Example: two-carts system (continuous-time LC system)

hs models.39

Example of an LC system

Two-carts system

• Two carts connected by spring
• Left cart attached to wall by spring;
motion constrained by completely inelastic stop
Stop is placed at equilibrium position of left cart

•Masses of carts and spring constants = 1

x1 x2

hs models.40

Two-carts system (continued)
x1 x2

• x1, x2: deviations of left and right cart from equilibrium position
• x3,x4: velocities of left and right cart
• z: reaction force exerted by stop
• Evolution: ẋ1(t) = x3(t)

ẋ2(t) = x4(t)
ẋ3(t) = −2x1(t)+ x2(t)+ z(t)
ẋ4(t) = x1(t)− x2(t)

hs models.41

Two-carts system (continued)

To model stop:

x1 x2

• define w(t) = x1(t)

• w(t) � 0 (since is position of left cart w.r.t. stop)
• force exerted by stop can act only in positive direction→ z(t) � 0

• if left cart not at stop (w(t) > 0), reaction force vanishes: z(t) = 0

• if z(t) > 0 then cart must necessarily be at the stop: w(t) = 0

0� w(t)⊥z(t) � 0

→ (continuous-time) LC system

hs models.42

5.4 Max-Min-Plus-Scaling (MMPS) systems

•Max-min-plus-scaling expression:
f := xi|α|max(fk, fl)|min(fk, fl)| fk+ fl|β fk

with α, β ∈ R and fk, fl again MMPS expressions.
• Example: 5x1−3x2+7+max(min(2x1,−8x2),x2−3x3)
•MMPS systems:

x(k+1) = Mx(x(k),u(k),d(k))
y(k) = My(x(k),u(k),d(k))
Mc(x(k),u(k),d(k)) � c,

withMx,My,Mc MMPS expressions
• d(k): real-valued auxiliary variables

hs models.43

5.4 Max-Min-Plus-Scaling (MMPS) systems (continued)

• Applications:
– discrete-event systems (also max-plus)
– traffic-signal controlled intersection
– railway networks
–manufacturing systems
– systems with soft & hard synchronization constraints
– logistic systems

hs models.44

Example of MMPS system

• Integrator with upper saturation:

x(k+1) =

{
x(k)+u(k) if x(k)+u(k) � 1

1 if x(k)+u(k) � 1

y(k) = x(k)

can be recast as
x(k+1) =min(x(k)+u(k),1)
y(k) = x(k)

hs models.45

5.5 Equivalence of MLD, LC, PWA and MMPS systems

Equivalence between model classes A and B:
for each model ∈ A there exists model ∈ B with same
input/output behavior (+ vice versa)

MLD, LC, PWA and MMPS systems are equivalent:

*

*

*

*
MLD

LC

PWA MMPS

hs models.46

Equivalence of MLD, LC, PWA and MMPS systems (cont.)

• Each subclass has own advantages:
– stability criteria for PWA
– control and verification techniques for MLD
– control techniques for MMPS
– conditions of existence and uniqueness of solutions for LC
→ transfer techniques from one class to other

• It depends on the application which class is best suited

• Reference: W.P.M.H. Heemels, B. De Schutter, and A. Bemporad, “Equiva-
lence of hybrid dynamical models,” Automatica, vol. 37, no. 7, pp. 1085–1091,
July 2001.

hs models.47

6. Timed automata

• Timed automata involve simple continuous dynamics:
– all differential equations of form ẋ= 1,
– all invariants, guards, etc. involve comparison of real-valued
states with constants (e.g., x= 1, x< 2, x� 0, etc.)

• Timed automata are limited for modeling physical systems.
• However, very well suited for encoding timing constraints such as
“event A must take place at least 2 seconds after event B and not
more than 5 seconds before event C”

• Applications: multimedia, Internet, audio protocol verification

hs models.48

6.1 Rectangular sets

• Subset of R
n set is called rectangular if can be written as finite

boolean combination of constraints of form
xi � a, xi < b, xi = c, xi � d, xi > e

• Rectangular sets are “rectangles” or “boxes” in R
n whose sides

are aligned with the axes, or unions of such rectangles/boxes
• Examples:
– {(x1,x2) | (x1 � 0)∧ (x1 � 2)∧ (x2 � 1)∧ (x2 � 2)}

– {(x1,x2) | ((x1 � 0)∧ (x2 = 0))∨ ((x1 = 0)∧ (x2 � 0))}

– empty set (e.g., ∅ = {(x1,x2) | (x1 > 1)∧ (x1 � 0))}

• However, set {(x1,x2) | x1 = 2x2} is not rectangular

hs models.49

6.2 Timed automaton

• Timed automaton is hybrid automaton with following characteris-
tics:
– automaton involves differential equations of form ẋi = 1;
continuous variables governed by this differential equation are
called “clocks” or “timers”
– sets involved in definition of initial states, guards, and invari-
ants are rectangular sets
– reset maps involve either rectangular set, or may leave certain
states unchanged

hs models.50

6.3 Example of timed automaton

q1

ẋ1 = 1
ẋ2 = 1

x2 � 3

q2

ẋ1 = 1
ẋ2 = 1

x1 � 5

x2 > 2

x1 > 4

x1 := 3∧ x2 := 0

x1 := 0

x1 = x2 = 0

hs models.51

7. Timed Petri nets
7.1 Petri nets

• Graphical representation: bipartite directed multigraph
– places (circles)→ activities
– transitions (bars)→ events, actions

p1 p2

p3

p4 p5

t1

t2 t3

t4 t5

hs models.52

•marking→ tokens are assigned to places
• execution of Petri net:
– transition enabled if all input places (•t) contain at least 1 token
– enabled transition can fire:
∗ one token is removed from each input place (•t)
∗ one token is deposited in each output place (t•)

p1p1 p2p2

p3p3

p4p4 p5p5

t1t1

t2t2 t3t3

t4t4 t5t5

• synchronization & choice hs models.53

7.2 Timed Petri nets

• Untimed Petri net describes order in which events can occur,
but no timing

• Timed Petri → timing, transition should be executed within cer-
tain time interval after it becomes enabled
– discrete state variables (markings, mθ(p))
– continuous state variables (arrival times, Mθ(p))

•Mθ(p) := {θ1, . . . ,θmθ (p)} with arrival times θ1 � θ2 � . . . � θmθ (p) of
mθ(p) tokens in place p

• For each transition t we define interval [L(t),U(t)]

hs models.54

7.2 Timed Petri nets (continued)

• Transition t becomes enabled at
max
p∈•t
minMθ(p)

• Then transition t may fire at some time
θ ∈ [max

p∈•t
minMθ(p)+L(t),max

p∈•t
minMθ(p)+U(t)]

provided t is enabled during whole interval
• If enabling condition is still valid at final time of firing interval, then
transition is forced to fire

•Many techniques for untimed Petri nets can be extended to timed
Petri nets

• However, many problems are undecidable or NP-hard
hs models.55

8. Summary

• Hybrid: combination of discrete-event and continuous dynamics
•Many modeling frameworks
– trade-off: modeling power vs. decision power
– application specific

• In the next lectures: properties, analysis, control, identification,
fault diagnosis, and applications

hs models.56

Selected references

• P.J. Antsaklis and A. Nerode, eds., “Special issue on hybrid systems,” IEEE
Transactions on Automatic Control, vol. 43, no. 4, Apr. 1998.

• A. Bemporad and M. Morari, “Control of systems integrating logic, dynamics,
and constraints,” Automatica, vol. 35, no. 3, pp. 407–427, Mar. 1999.

• M.S. Branicky, Studies in Hybrid Systems: Modeling, Analysis, and Control.
PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, Massachusetts, June 1995.

• R. David and H. Alla, Discrete, Continuous, and Hybrid Petri Nets. Springer,
2005.

• A.S. Morse, C.C. Pantelides, S. Sastry, and J.M. Schumacher, eds., “Special
issue on hybrid systems,” Automatica, vol. 35, no. 3, Mar. 1999.

• A.J. van der Schaft and J.M. Schumacher, An Introduction to Hybrid Dynam-
ical Systems, vol. 251 of Lecture Notes in Control and Information Sciences.
London: Springer-Verlag, 2000.

hs models.57

