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Outline

• Motivation

• Embedded Software and Hybrid Systems

• Hybrid Systems and Verification Problems
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Common Situation in Industry

• Different hardware devices and architectures

• Increased complexity

• Non-standard tools and design processes

• Redundant development efforts

• Increased R&D and sustaining costs

• Lack of standardization results in greater quality risks

• Customer confusion
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Product Specification & Architecture Definition
(e.g., determination of Protocols and Communication standards)
System Partitioning and Subsystem Specification
Critical Software Development
System Integration

Automotive Supply Chain:
Car Manufacturers
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Electronics for the Car: 
A Distributed System

Information
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Mobile Communications Navigation

Fire
Wall

Access to 
WWWDAB

Gate
Way

Gate
Way

Theft warning

Door Module Light Module

Air
Conditioning

Shift by 
Wire

Engine
Management

ABS

Steer by 
Wire

Brake 
by Wire

MOSTMOST
FirewireFirewire

CANCAN
LinLin

CAN
TTCAN

FlexRay

Today, more
than 80
Microprocessors 
and millions of 
lines of code
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1 Transmission ECU
2 Actuation group
3 Engine ECU
4 DBW
5  Active shift display
6/7 Up/Down buttons 
8 City mode button
9 Up/Down lever
10 Accelerator pedal 

position sensor
11 Brake switch

Subsystem Partitioning 
Subsystem Integration
Software Design: Control Algorithms, Data Processing
Physical Implementation and Production

Automotive Supply Chain:
Tier 1 Subsystem Providers
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How Safe is Our Real-Time Software?
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Mars, December 3, 1999
Crashed due to un-initialized variable
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$4 billion development effort
40-50% system integration & validation cost
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Complexity, Quality, & Time To Market today 

* C++ CODE FABIO ROMEO, Magneti-Marelli
DAC, Las Vegas, June 20th, 2001

Memory

Lines Of Code

Changing Rate

Dev. Effort

Validation Time

Time To Market

INSTRUMENT
CLUSTER 

Productivity

Residual Defect
Rate @ End Of Dev

256 Kb

50.000

3 Years

40 Man-yr

5 Months

24 Months

PWT UNIT

6 Lines/Day

3000 Ppm

128 Kb

30.000

2 Years

12 Man-yr

1 Month

18 Months

BODY 
GATEWAY

10 Lines/Day

2500 ppm

184 Kb

45.000

1 Year

30 Man-yr

2 Months

12 Months

6 Lines/Day

2000ppm

8 Mb

300.000

< 1 Year

200 Man-yr

2 Months

< 12 Months

TELEMATIC
UNIT

10 Lines/Day*

1000 ppm
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What About Real Time?

“Make it faster!”
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Software Architecture Today

Poor common infrastructure. Weak specialization of 
functions. Poor resource management. Poor planning.
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Design “Practice”
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Design Science: 
Build upon Solid Foundations
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Mission of the School

To provide background for research on the design issues 
necessary for supporting next-generation embedded 
controllers. 

– Model-based design

– Tool-supported methodologies

For
– Real-time

– Fault-tolerant

– Robust

– Secure

– Heterogeneous

– Distributed
Software

The fate of 
computers 
lacking 
interaction with 
physical 
processes.

We are on the line to 
create a “new 
systems science” 
that is at once 
computational and 
physical.
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Embedded Systems

• Computational
– but not first-and-foremost a computer

• Integral with physical processes
– sensors, actuators

• Reactive
– at the speed of the environment

• Heterogeneous
– hardware/software, mixed 

architectures
• Networked

– shared, adaptive

Source: Edward A. Lee Copyright: A. Sangiovanni-Vincentelli
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The Long-term Fundamental Research 
Agenda

• To create a modern computational systems 
science and systems design practice with

– Concurrency

– Composability

– Time

– Hierarchy

– Heterogeneity

– Resource constraints

– Verifiability

– Understandability
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A Traditional Systems Science –
Feedback Control Systems

• Models of continuous-time dynamics

• Stability analysis

• But not accurate for software controllers
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Discretized Model –
A Step Towards Software

• Numerical integration techniques provided ways to get from the 
continuous idealizations to computable algorithms.

• Discrete-time signal processing techniques offer the same sophisticated 
stability analysis as continuous-time methods.

• But it’s still not accurate for software controllers
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Hybrid Systems –
Reconciliation of Continuous & Discrete

But it’s still not accurate for 
software controllers
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Timing in Software is More Complex Than 
What the Theory Deals With

An example models two controllers 
sharing a CPU under an RTOS. Under 
preemptive multitasking, only one can be 
made stable (depending on the relative 
priorities). Under non-preemptive 
multitasking, both can be made stable.

Where is the theory for this?
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Foundational Theory Research …

• The science of computation has systematically 
abstracted away the physical world. The science of 
physical systems has systematically ignored 
computational limitations.
Embedded software systems, however, engage the physical 
world in a computational manner. 

• It is time to construct a Hybrid Systems Science that 
is simultaneously computational and physical.                        
Time, concurrency, robustness, continuums, and resource 
management must be remarried to computation.
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Abstraction and Refinement
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What is a hybrid system?

• Combination of discrete and continuous time with a 
prescribed hierarchy 

• Models with “heterogeneous components”

xdtdx −=/ xdtdx =/
3≤x2≥x
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Why Hybrid Systems?

• Modeling abstraction of
– Continuous systems with phased operation (e.g. walking robots, mechanical 

systems with collisions, circuits with diodes)
– Continuous systems controlled by discrete inputs (e.g. switches, valves, digital 

computers)
– Coordinating processes (multi-agent systems)

• Important in applications
– Hardware verification/CAD, real time software
– Manufacturing, chemical process control,
– communication networks, multimedia

• Large scale, multi-agent systems
– Automated Highway Systems (AHS)
– Air Traffic Management Systems (ATM)
– Uninhabited Aerial Vehicles (UAV), Power Networks

Copyright: A. Sangiovanni-Vincentelli
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Control Theory
Control of individual agents
Continuous models
Differential equations

Computer Science
Models of computation
Communication models
Discrete event systems

Hybrid Systems
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Hybrid Automata (B. De Schutter)
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Problem Formulation:
Engine Control

• Engine Control Problem subdivided in “modes”, i.e., a mode 
corresponds to a particular set of external inputs (e.g., position of 
accelerator pedal, gear)

• Each mode corresponds to different plant models and cost function 
for control 

• Important to decouple mode diagram from other considerations, e.g., 
control algorithm, requirements

Copyright: A. Sangiovanni-Vincentelli
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Air Traffic Management (J. Lygeros, M. Prandini)

• Large number of semiautonomous agents

• Coordinate to

– Make efficient use of common resource

– Achieve a common goal

• Individual agents have various modes of operation 

• Agents optimize locally, coordinate to resolve conflicts

• System architecture is hierarchical and distributed

• Safety critical systems

Challenge: Develop models, analysis, and synthesis tools for designing 
and verifying the safety of multi-agent systems

Stochastic Hybrid Systems are an essential modeling tool!
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Model of Power-train (Application Day)

Manifold
(continuous system)

Engine sub-
system

Drive-line    

(continuous system with 
changing dynamics)

Throttle 
opening angle

Spark timing Torque

Manifold 
pressure

Clutch 
Insertion/
Release

Gear  
change

Vehicle 
Speed

Simple?
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CTSCTS

CTSCTS

Engine and Drive-line
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Engine and Drive-line
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Single Cylinder Hybrid Model
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positive spark advance:
the spark is given before
the TDC between C and E

negative spark advance:
the spark is given after
the TDC between C and E

FSM for a single cylinder
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• Mean-Value Model: accurate over a longer time window

– regulation control problems

– low performance transient problems

• Hybrid Model: cycle accurate

– transient control problems 

– stability of delay-sensitive control algorithms

– high performance control algorithms

Hybrid Model vs Mean-Value Model:
Control of Hybrid Systems (B. Piccoli)
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The Hybrid System Nightmare

“Femme se coiffant”
Pablo Ruiz Picasso
1940
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Validating Designs (G. Pappas)

• By construction

– property is inherent.

• By verification

– property is provable syntactically.

• By simulation

– check behavior for all inputs.

• By intuition

– property is true. I just know it is.

• By assertion

– property is true. Wanna make something of it?

• By intimidation

– Don’t even try to doubt whether it is true

It is generally better to be higher in this list
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A Hybrid Systems Science

Environment Processes (physical models)

Software Processes (models of computation) 

Schedulability

Reactivity

Embedded System Design
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Effects of controller implementation in 
the controlled plant performance 
(Palopoli)

d

Controller

y     
Plant wu

r
Δw

Δr 
Δu +

nu

+

+

nr

nw

• modeling of implementation non-idealities:

– Δu, Δr, Δw : time-domain perturbations

– control loop delays, sample & hold , etc.

– nu , nr , nw :value-domain perturbations

– quantization error, computation imprecision, etc.
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Control Algorithm Implementation

• The control algorithms are mapped to the target platform to 
achieve the best performance/cost trade-off

• In most cases the platform can accommodate in software the 
control algorithms, if not:

– New platform services or

– New hardware components or

– New control algorithms

• Float to fixed transformation
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Synthesis of Control Algorithms
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Model
Compiler

void integratutto4_initializer( void )
{

/* Initialize machine's broadcast event variable */
_sfEvent_ = CALL_EVENT;

_integratutto4MachineNumber_ =
sf_debug_initialize_machine("integratutto4","sfun",0,3,0,0,0);

sf_debug_set_machine_event_thresholds(_integratutto4MachineNumber_,0,0);
sf_debug_set_machine_data_thresholds(_integratutto4MachineNumber_,0);

}

Handwritten
Code

void integratutto4_initializer( void )
{

/* Initialize machine's broadcast event variable */
_sfEvent_ = CALL_EVENT;

_integratutto4MachineNumber_ =
sf_debug_initialize_machine("integratutto4","sfun",0,3,0,0,0);

sf_debug_set_machine_event_thresholds(_integratutto4MachineNumber_,0,0
sf_debug_set_machine_data_thresholds(_integratutto4MachineNumber_,0);

}

void integratutto4_initializer( void )
{

/* Initialize machine's broadcast event variable */
_sfEvent_ = CALL_EVENT;

_integratutto4MachineNumber_ =
sf_debug_initialize_machine("integratutto4","sfun",0,3,0,0,0);

sf_debug_set_machine_event_thresholds(_integratutto4MachineNumber_,0,0);
sf_debug_set_machine_data_thresholds(_integratutto4MachineNumber_,0);

}
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Conclusions

• New System Theory: marrying physical with abstract (control 
vs. computer science)

• Hybrid Systems powerful mechanism for the design of 
embedded systems

• Hybrid Systems are quite complex: need a different theory

• Hybrid Systems are increasingly finding important applications




