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Two Parts

A unified framework for optimal and sub-optimal control in the presence of
adversaries

A concrete example: scheduling under uncertainty (sketch)
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Unified Framework for Optimal Control

How to evaluate/optimize open systems

Dynamic games

Bounded horizon

Dynamic programming

Best first forward search
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How to Evaluate/Optimize Open Systems I

Two player games:

We, the good guys, the controller

They, the rest of the world, disturbances, the environment

The controller chooses actions u ∈ U the environment picks v ∈ V and this
determines the outcome

The controller wants to optimize the outcome according to some criterion

The environment is indifferent
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How to Evaluate/Optimize Open Systems II

Consider a one-shot game a-la von Neumann and Morgenstern

The outcome be defined as c : U × V → R

c v1 v2

u1 c11 c12

u2 c21 c22

Worst-case: u = argmin max{c(u, v1), c(u, v2)}
Average case: u = argmin p(v1) · c(u, v1) + p(v2) · c(u, v2)
Typical case: u = argmin c(u, v1)

Remark: when c is a continuous function the probabilistic approach is still
standard function optimization
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Dynamic Games I

Reactive systems, ongoing interaction between controller and environment

State-space X and a dynamic rule of the form x′ = f(x, u, v), which
determines the next state as a function of the actions of the two players

In discrete time: xi = f(xi−1, ui, vi)

Differential games: ẋ = f(x, u, v)

There are other more “asynchronous” games

Initial state x0. Notation for sequences: x̄ = x[0], x[1], . . . , x[k], ū and v̄ for
sequences of players actions.
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Dynamic Games II

The predicate (constraint) B(x̄, ū, v̄) means that x̄ is the behavior of
the system when the two players apply the action sequences ū and v̄,
respectively:

B(x̄, ū, v̄) iff x[0] = x0

and x[t] = f(x[t − 1], u[t], v[t]) ∀t

x[0]
u[1],v[1]
−→ x[1] · · ·

u[k],v[k]
−→ x[k]

x5 x6 x7 x8 x9 x10x11 x12 x16x17x18x19x15x14x13

x0

x1 x2 x3 x4

x20

u2u2 u2 u2

v2

u2u1

v1

u1 u1 u1 u1

v1 v2 v1 v2
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Evaluating Single Behaviors

Given a behavior x[0]
u[1],v[1]
−→ x[1] · · ·

u[k],v[k]
−→ x[k] we can assign costs in

various ways.

Any cost function c : X → R on individual states can be extended to
sequences:

Sum of costs: c(x̄) =
∑k

t=1 c(x[t])
Max of costs: c(x̄) = max{c(x[t]) : t ∈ 1..k}
Time to reach a goal: c(x̄) = min{t : x[t] ∈ F )}

One can add costs associated with actions of both players

Sometimes the cost function is chosen for historical reasons (quadratic
norms)
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Bounded Horizon Problems

Comparing strategies based on behaviors of fixed length

Motivations:

1) In many problems of “control to target” and “shortest path” all reasonable
behaviors reach the same state after finitely many steps

2) Looking too far in the future is anyway unreliable (model-predictive control)

3) The problem can be reduced to standard finite dimensional optimization
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Bounded Horizon Problems without Adversary

For x′ = f(x, u) we look for a sequence ū = u[1], . . . , u[k] which is the solution
of the constrained optimization problem

min
ū

c(x̄) subject to B(x̄, ū)

The cost is based only on x̄ while the fact that x̄ is the result of following the
dynamics f under control ū is part of the constraints

For linear dynamics, x′ = Ax + Bu, this reduces to linear programming

In discrete verification this reduces to Boolean satisfiability (bounded model
checking).
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Strategy without Adversary = Plan

In the absence of external disturbances ū completely determines x̄ and no
feed-back from x is needed

The control “strategy” reduces to an open-loop “plan”: at each time instant t

apply the element u[t] of ū

This could be rephrased it as a feed-back function (strategy) s defined over
all x[t] in x̄ as s(x[t]) = u[t + 1] but that’s an overkill
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Reintroducing the Adversary

The same problem with adversary, applying the worst-case criterion, is:

minū maxv̄ c(x̄) subject to B(x̄, ū, v̄)

We can enumerate all the possible control sequences and compute their cost:

u1u1 : max{c(x5), c(x6), c(x9), c(x10)}
u1u2 : max{c(x7), c(x8), c(x11), c(x12)}
u2u1 : max{c(x13), c(x14), c(x17), c(x18)}
u2u2 : max{c(x15), c(x16), c(x19), c(x20)}

x5 x6 x7 x8 x9 x10x11 x12 x16x17x18x19x15x14x13

x0

x1 x2 x3 x4

x20

u2u2 u2 u2

v2

u2u1

v1

u1 u1 u1 u1

v1 v2 v1 v2
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Strategies based on Feedback

The resulting sequence is the optimal “open-loop”control achievable. It
ignores information obtained during execution

If max{c(x5), c(x6)} < max{c(x7), c(x8)}
but max{c(x9), c(x10)} > max{c(x11), c(x12)}

we should apply u1 when x[1] = x1 and u2 when x[1] = x2

x5 x6 x7 x8 x9 x10x11 x12

x0

x1 x2
u2 u2

v2

u1

v1

u1 u1

v1 v2
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Control Strategies

A control strategy is a function s : X → U telling the controller what to do at
any reachable state of the game

The following predicate indicates the fact that x̄ is the behavior of the system
in the presence of disturbance v̄ when the controller employs strategy s:

B(x̄, s, v̄) iff x[0] = x0

u[t] = s(x[t − 1]) ∀t

x[t] = f(x[t − 1], u[t], v[t]) ∀t

Finding the best strategy s is the following 2nd-order optimization problem:

mins maxv̄ c(x̄) subject to B(x̄, s, v̄)
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Computing Strategies by Optimization

Finding an optimal strategy is harder than finding an optimal sequence.

In discrete finite-state systems there are |U ||X| potential strategies and each
of them induces |V |k behaviors of length k.

In continuous domains (on continuous time) such a strategy is the solution of
a partial differential equation known as the Hamilton-Jacobi-Bellman-Isaacs
equation.

A strategy need not be defined all over X, only for elements reachable from
x0 when the controller employs that strategy.
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Dynamic Programming

Backward value iteration, a technique for computing optimal strategies in an
incremental way (Bellman)

For discrete systems the algorithm is polynomial in the size of the transition
graph, which is better than the exponential enumeration of strategies

However, this polynomiality is practically irrelevant because the transition
graph itself is typically exponential in the number of system variables

We illustrate it on a shortest path problem

15



Optimal Control with Adversaries Oded Maler

Shortest Path

A subset F of X is designated as a target set, and a cost c(x, u, v) is
associated with each transition

The cost of a path

x[0]
u[1],v[1]
−→ x[1] · · ·

u[k],v[k]
−→ x[k]

from the initial state to a target state is

c(x̄, ū, v̄) =
k

∑

t=1

c(x[t − 1], u[t], v[t])

and our goal is to find the strategy that minimizes the worst-case
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Value Function

An auxiliary function (value function, cost-to-go)
→

V : X → R is used

→

V (x) is the performance of the optimal strategy for the sub-game starting
from x

For “leveled” acyclic transition graphs (where all paths that reach a state x

from x0 have the same number of transitions) we have:

→

V (x) = 0 when x ∈ F
→

V (x) = min
u

max
v

(c(x, u, v)+
→

V (f(x, u, v))).
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Value Iteration

In the more general case
→

V is the fixed-point of the iteration:

→

V0 (x) =

{

0 when x ∈ F

∞ when x 6∈ F

→

Vi+1 (x) = min

{

→

V i (x),

minu maxv(c(x, u, v)+
→

V (f(x, u, v)))

}

If max is replaced by weighted sum this procedure gives the optimal average
case strategy (Markov decision processes)

If summation is replaced by max we obtain the backward synthesis algorithm
for automata.

→

V i characterizes the states from which the controller cannot
postpone reaching a forbidden state for more than i steps.
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Forward Search

A dual shortest path algorithm (Dijkstra)

A “backward” value function
←

V (x), indicating the minimal cost for reaching x

from x0

We want to compute
←

V (x) for x ∈ F

←

V (x0) = 0
←

V (x) = min
u

(c(x′, u)+
←

V (f(x′, u)))

where x′ ranges over all the immediate predecessors of x.

Same complexity as Bellman (in fact, you can reverse the graph)
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A Generic Search Algorithm I

We view each incomplete path as a partial strategy defined only on states
encountered along the path

We store triples (s, x,
←

V) where s is a partial strategy, x is the last node in the
path and

←

V is the cost for reaching x along the path.

An exhaustive algorithm, a waiting list W containing partial paths that need
to be explored further

When nodes are inserted at the end of W we obtain a breadth first search
algorithm
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A Generic Search Algorithm II

W := {(∅, x0, 0)}
repeat

Pick a non-terminal node (s, x,
←

V) ∈ W

for every u ∈ U do

(s′, x′,
←

V
′
) :=

(s ∪ {x 7→ u}, f(x, u),
←

V +c(x, u))

Insert (s′, x′,
←

V
′
) into W

end
Remove (s, x,

←

V) from W

until W contains only terminal nodes
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Example

x3

x0

x1 x2

u1 u2 u1 u2

u2u1

s x
←
V

∅ x0 0

{x0 7→ u1} x1 c(x0, u1)

{x0 7→ u2} x2 c(x0, u2)

{x0 7→ u1, x1 7→ u1, } x3 c(x0, u1) + c(x1, u1)

{x0 7→ u1, x1 7→ u2, } x3 c(x0, u1) + c(x1, u2)

{x0 7→ u2, x2 7→ u1, } x3 c(x0, u2) + c(x2, u1)

{x0 7→ u2, x2 7→ u2, } x3 c(x0, u2) + c(x2, u2)
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Guided Search: Estimation Function

An estimation function which gives an approximation of the cost of any
extension of the path/strategy

This function is derived from domain-specific knowledge, macro reasoning

E(s, x,
←

V) =
←

V +
→

V(x)

←

V is the past component, something known, and
→

V is a future component, an
approximation of the cost-to-go function

→

V

As x gets deeper, the past component becomes more dominant and the
estimation more realistic.
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Best First Search

The same search algorithm with W ordered according to E explores the most
promising paths first

If
→

V is an under approximation of
→

V, then E is “optimistic”

In this case, we can stop the exploration when E(s, x,
←

V) for the first element in
W is worse than any previously found solution, without missing the optimum

If we relax optimality, we can find reasonable solutions while exploring only a
small fragment of the search space

Recall that all these problems are NP-hard and worse
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Forward Search on Game Graphs (BFS) I

The value function becomes

←

V (x) = min
u

max
v

(c(x′, u, v)+
←

V (f(x′, u, v)))

Because of the adversary, the result of applying a controller action u at state
x is a set of states:

f(x, u) = {f(x, u, v) : v ∈ V }

The u-successor of (s, x) with s being a partial strategy is

σ((s, x), u)) = (s ∪ {x 7→ u}, f(x, u))
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Forward Search on Game Graphs (BFS) II

Consider a node (s, L) where s is a partial strategy and L is the set of states
reachable while following s.

The successors of (s, L), i.e. the partial strategies that extend s and their
respective sets of reachable states, are all combinations of all possible
choices of u for every x ∈ L

σ(s, L) =
⊗

x∈L

{(σ(s, x), u) : u ∈ U)}

where

L1 ⊗ L2 = {(s1 ∪ s2,m1 ∪ m2) : (s1,m1) ∈ L1, (s2,m2) ∈ L2}
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Example

x5 x6 x7 x8 x9 x10x11 x12 x16x17x18x19x15x14x13

x0

x1 x2 x3 x4

x20

u2 u2 u2

v2

u2

u2

v1

u1

u1

u1 u1u1

v2 v1v1 v2

σ(∅, {x0}) = {σ((∅, x0), u1), σ((∅, x0), u2)} =

{

({x0 7→ u1}, {x1, x2})
({x0 7→ u2}, {x3, x4})

}
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Example (cont.)

x5 x6 x7 x8x9 x10x11x12 x16x17x18x19x15x14x13

x0

x1 x2 x3 x4

x20

u2u2 u2 u2

v2

u2u1

v1

u1 u1 u1 u1

v1 v2 v1 v2

σ({x0 7→ u1}, {(x1, x2})) =



({x0 7→ u1, x1 7→ u1}, {x5, x6}),
({x0 7→ u1, x1 7→ u2}, {x7, x8})

ff

⊗



({x0 7→ u1, x2 7→ u1}, {x9, x10}),
({x0 7→ u1, x2 7→ u2}, {x11, x12})

ff

=
8

>

>

<

>

>

:

({x0 7→ u1, x1 7→ u1, x2 7→ u1}, {x5, x6, x9, x10}),
({x0 7→ u1, x1 7→ u1, x2 7→ u2}, {x5, x6, x11, x12}),
({x0 7→ u1, x1 7→ u2, x2 7→ u1}, {x7, x8, x9, x10}),
({x0 7→ u1, x1 7→ u2, x2 7→ u2}, {x7, x8, x11, x12})

9

>

>

=

>

>

;
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Interim Summary

The BFS exhaustive forward algorithm on games is exponential in the size of
the graph, so even worse than dynamic programming

A DFS forward algorithm with memorization has the same complexity as
dynamic programming

Combination of DFS with estimation function can be used (and has been
in game playing programs) for finding sub-optimal solutions with modest
computational cost

The main advantage of forward search is that you restrict the strategy to be
defined only on reachable states. If you go backwards there is no simple way
to restrict the search
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Application to Continuous and Hybrid Control

What do do when X, U and V are continuous?

One solution is to discretize U and V

Some toy examples:

Search-based verification (with J. Kapinski, B. Krogh and O. Stursberg)

Guiding a vehicle among obstacles (O. Ben Sik Ali)

Finding recovery sequences for power networks (A. Donze and S. Shapero)
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Part II: Application to Scheduling

Principles:

State-space based approach

State: which tasks are waiting, enabled, executing (for how long), terminated

Controller actions: to choose which enabled tasks to start (or to wait)

Adversary actions: arrival of tasks, termination of tasks, evaluation of
conditions, breaking of machines, change in criteria

Conceptual difficulty: not modeled naturally as synchronous games; more
event-triggered than time triggered

Solution: modeling as timed automata = dense time + discrete transitions
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Timed Systems

The model described so far assumes implicitly a uniform “synchronous” time
scale, where something happens every time instance

Some application domains such as scheduling, digital circuit timing analysis,
real-time systems, have a more “asynchronous” nature

A typical behavior consists of sparse events (starting, ending, rising, falling)
separated by long periods where the only thing that happens is the passage
of time

Timed automata are the natural dynamic model for such systems, on which
controller synthesis can be done
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Synchronous Modeling Style

p1

p2

p3

We can discretize time and have a similar type of a dynamical system where
actions of the controller are ⊥ (do nothing) and sti (start executing pi). The
actions of the environment are ⊥ and eni (terminate pi)

st1−→ p1
⊥
−→ p1

⊥
−→ p1

⊥,en1−→ ∅
⊥,
−→ ∅

⊥,st2−→ p2
⊥,st3−→ {p2, p3}

⊥
−→ {p2, p3}

⊥
−→ {p2, p3}

⊥
−→ {p2, p3}

⊥,en3−→ p2
⊥,en2−→ ∅
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Asynchronous, Event-Triggered, Timed Style

The time index is not time but the events
p1

p2

p3

st1−→ (p1, 0)
3
−→ (p1, 3)

en1−→ ∅
1
−→ (p2, 0)

1
−→ (p2, 1)

st3−→ {(p2, 1), (p3, 0)}
4
−→ {(p2, 5), (p3, 4)}

en2−→ (p2, 5)
1
−→ (p2, 6)

en2−→ ∅

Timed automata express processes that alternate between time passage
(without a-priori commitment to a time step) and discrete transitions. Clocks
measure elapsed time since transitions and are part of the state-space
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Example: Deterministic Job-Shop Scheduling

J1 : (m1, 4), (m2, 5) J2 : (m1, 3)

Determine the execution times of the steps/tasks such that:

The termination time of the last step is minimal

Precedence and resource constraints are satisfied

0 4 7 0 3 7 12
J2

J1

J2

m1 m2

m1 m1

m1 m2

9

J1

Sometimes it is better not to start a step although the machine is idle
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Constrained Optimization (Bounded Horizon)

minimize x4 (makespan) minimize x4

subject to subject to
x2 ≥ x1 + 4 x2 − x1 ≥ 4
x4 ≥ x2 + 5 (precedence) x4 − x2 ≥ 5
x4 ≥ x3 + 3 x4 − x3 ≥ 3
[x1, x1 + 4]∩ (mutual x3 − x1 ≥ 4 ∨
[x3, x3 + 3] exclusion) x1 − x3 ≥ 3

0

x2

x3

x4 x4

x3

x1 x2 x1
J1m2

m1

m1 m2

J2

m1

J2m1

J1
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Modeling with Timed Automata

Start

Waiting

Active

End

Finished

c1 := 0 c1 = 4 c1 := 0 c1 = 5

c2 := 0

c2 = 3

?

m1

m1

m1 m1 m2 m2 ?

Each automaton represents the set of all possible behaviors of each task/job
in isolation (respecting the precedence constraints)

The Start transitions are issued by the controller/scheduler and the End
transitions by the environment
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The Global Automaton
Resource constraints expressed via forbidden states in the product
automaton

c1 = 4 c1 := 0c1 := 0 c1 = 5

c2 := 0 c2 := 0 c2 := 0 c2 := 0

c1 := 0 c1 = 5

c2 = 3 c2 = 3

c1 := 0 c1 = 4 c1 := 0 c1 = 5

?m1 ?m1 ?m2

c2 = 3 c2 = 3

???m2

m1m2 m1?m1m2

m1?m1m2m1m2m1m1m1m1

m1m1

Optimal scheduling = shortest path problem timed automata
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State-of-this-Art

Deterministic Job-Shop: search algorithms on automata (with heuristics) are not worse than
other methods (with Y. Abdeddaı̈m, 2001)

Extension to deterministic task-graph problem. More general precedence constraints than in
job-shop, uniform machines (Y. Abdeddaı̈m and A. Kerbaa 2003)

Extension to preemptive job-shop using stopwatch automata (Y. Abdeddaı̈m, 2002)

Strategy synthesis for job-shop with uncertainty in task durations. Steps of the form
(m1, [2, 5]). Strategy better than static worst-case (E. Asarin and Y. Abdeddaı̈m 2003)

Strategy synthesis for conditional precedence graph. Whether or not some tasks need to be
executed will be known only after termination of other tasks (M. Bozga and A. Kerbaa)
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Summary

Dynamic games are a natural model for many many problems in system
design. The interesting questions about games are not necessarily those
asked by “game theorists”

Clean semantic modeling precedes (but of course, does not replace)
optimization algorithms

Scheduling could benefit from a general theory based on these principles
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