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Reachability analysis

Reachable set computations are useful for

• Verification

problems such as proving that the system does not reach a ‘bad’ state

• Controller synthesis

problems such as determining the set of states from which it is possible

to reach a target set while avoiding a forbidden set

Many existing methods and tools (see the next slide)
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Reachability analysis

Direct methods

• Track the evolution of the reachable set under the flow of the system.

Various set representations: e.g. polyhedra, ellipsoids, level sets

• Exact results, or accurate approximations with error bounds. Using

symbolic or numerical computations

• Tools: Coho, CheckMate, d/dt, HysDel, VeriShift, Vertdict, Requiem,

Level-set toolbox, ..

Indirect methods

• Abstraction methods: reducing to a simpler system that preserves the

property (e.g. Tiwari & Khanna 02; Alur et al. 02; Clarke et al. 03)

• Prove the property without computing reachable sets: e.g. Barrier

certificates Prajna & Jadbabaie04, polynomial invariants Tiwari & Khanna04.

? Scalability is still challenging (complexity and size of real-life systems)
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Our progress in reachability analysis

Accurate approximations

• Complexity of the dynamics

– Hybridization methods for non-linear systems

– Extension to differential algebraic systems

• Size of the system

– Reachability technique using zonotopes ⇒ large scale systems

Abstraction methods: predicate abstraction, projection
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Plan

• Hybridization methods for non-linear systems

• Extension to differential algebraic systems

• Reachability computations using zonotopes

• Abstraction by projection
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Plan

• Hybridization methods for non-linear systems [Asarin, Dang,

Girard 03, 05]

• Extension to differential algebraic systems

• Reachability computations using zonotopes

• Abstraction by projection
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Hybridization methods

Hybridization: Principle
System ∆ : ẋ = f (x), x ∈ X , f is Lipschitz

Step 1: Construction of the approximate system:

• Partition the state space X into disjoint regions of size h and assign

to each region an approximate vector field

• h: space discretization size

• fh: resulting vector field over the whole state space X

• Approximation error ε(h) = supx∈X ||f(x)− fh(x)||

• Conservative approximate system

System ∆h : ẋ = fh(x) + u

u(·): disturbance taking values in Ball(ε(h))
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Hybridization methods

Hybridization: Principle (cont’d)

Step 2. Using ∆h to yield approximate analysis results for ∆

Convergence results: If ∆h is continuous

• The distance between the reachable sets dH (Reach(∆), Reach(∆h))

is O(ε(h))

• The reachable set of ∆h converges to the reachable sets of ∆ with the

same rate as fh converges to f

We developed two methods for constructing approximate systems with

good error bound ε(h)

• Piecewise affine systems

• Piecewise multi-affine systems
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Hybridization methods

Piecewise affine approximation

• Using a simplicial mesh, each cell Ci is a simplex of size h (edge length)

• Define for each Ci a linear function fh interpolating f at its vertices

• Piecewise linear function fh is continuous over the state space

Approximation error

If f is C2 on X with bounded second order derivatives ⇒ quadratic

error: ε(h) = O(h2).

Mesh construction: decompose a hypercube into n! simplices

• Reachability computations for ∆h: various existing techniques

• Our implementation using reachability procedures of the tool d/dt
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Hybridization methods

Piecewise multi-affine approximation

• Using a rectangular mesh, each cell Ci is a hypercube of size h

• Define for each cell Ci a multi-linear function fh interpolating f at its

vertices ⇒ iteratively applying linear interpolation on each dimension

• Piecewise multi-linear function fh is continuous over the state space

Approximation error: If f is C2 on X with bounded second order

derivatives ⇒ quadratic error: ε(h) = O(h2).
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Hybridization methods

Piecewise multi-affine approximation
(cont’d)

? Advantage comparison

Simplicial meshes Rectangular meshes

smaller number of cells

less complex geometric structure

available techniques ???

for approximate systems

? Reachability computations for piecewise multi-affine systems with

input

• Use projection to obtain a uncertain bilinear control system

• Then, use our reachability technique for bilinear control systems
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Plan

• Hybridization methods for nonlinear systems

• Extension to differential algebraic systems [Dang, Donze, Maler

FMCAD04]

• Reachability computations using zonotopes

• Abstraction by projection
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Differential Algebraic Equations

Motivations

• DAEs arise in numerous applications: e.g. electrical circuits, con-

strained mechanical systems, chemical reaction kinetics, singular per-

turbation problems

• Our interest in applications of hybrid systems techniques to verification

of analog and mixed-signal circuits
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Extension to DAEs

Reachability analysis of DAEs

F (x, ẋ) = 0

• DAEs differ from ODEs (in theoretical and numerical properties)

• Differential index: minimal number of differentiations required to solve

for the derivatives ẋ

• We focus on DAEs of index 1
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Extension to DAEs

Reachability analysis of DAEs (cont’d)
We study the equivalent semi-explicit form:

ẋ = f (x, y)

0 = g(x, y)

• Transforming into ODEs :
Differentiating the algebraic eq. once gives ẏ = −g−1

y gxf where

gy(x, y) = ∂g/∂y. (Note that the DAEs are of index 1)
⇒ Obtain augmented ODEs with variables z = (x, y)T :

ż = (f,−g−1
y gxf )T = f̃

• Retain the algebraic constraint and intepret the original DAEs as the
augmented ODEs on a manifold :

ż = f̃ (z)

0 = g(z)
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Extension to DAEs

ODEs on manifolds
Remark: ODEs on manifolds are useful to study systems with invariants

ż(t) = f (z(t))

0 = g(z(t)) ⇒ defining a manifold M
z(0) ∈ R0

Combining reachability computations techniques for ODEs and ideas from
geometric integration using projection [Lubich,Hairer,Wanner 2003]
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Extension to DAEs

Algorithm for ODEs on manifolds

R0: initial set
repeat k = 0, 1, . . .

R̂k+1 = Reach[0,r](Rk) /* computed for the augmented ODEs */

Rk+1 = ΠM(R̂k+1) /* project on the manifold M */

until Rk+1 =
⋃k

i=1 Ri

• Projection:

ΠM(ẑ) = arg min
z
|ẑ − z| subject to g(z) = 0

• Convergence : same order as the convergence order of the technique for
ODEs (projection does not deteriorate the convergence)

• Second order method
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Extension to DAEs

Approximation of the projection
Manifold M : g(x) = 0

P is a convex polyhedron, computing ΠM(P )??

• If the algeb. constraint is linear, ΠM is computed using linear algebra.

• {v1, . . . , vm}: vertices of P , ΠM(P ) = conv{ΠM(v1), . . . ,ΠM(vm)}.
• Using ΠM(P ) to over-approximate the projection

– Estimate ρ, the maximum radius of curvature of M for x ∈ ΠM(P )

– Estimate the diameter δ of ΠM

– If ρ ≤ κδ, subdivide ΠM(P ) and then repeat the procedure for each
subpolyhedron. Otherwise, find a polyhedron enclosing ΠM(P ).

ρ

δ

ΠM(P )
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Extension to DAEs

Example: Biquad lowpass filter

[Hartong,Hedrich,Barke 2002]

u̇C1 =
uC2 + uo − uC1

C1R2
u̇C2 =

Ui − uC2 − uo

C2R1
− uC2 + uo − uC1

C2R2
, (1)

uo − Vmax tanh(
(uC2 − uo)Ve

Vmax
) + Uom = 0, (2)

Uom = V(i0), io = −C2 u̇C2, (3)

V(io) = K1io + 0.5
√

K1i2o − 2K2ioIs + K1I2
s + K2 − 0.5

√
K1i2o + 2K2ioIs + K1I2

s + K2. (4)
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Extension to DAEs

Biquad lowpass filter: verification results
The property to verify is the absence of overshoots .

• C1 = 0.5e− 8, C2 = 2e− 8, and R1 = R2 = 1e6 (highly damped case)

• The initial set: uC1 ∈ [−0.3, 0.3], uC2 ∈ [−0.3, 0.3] and uo ∈
[−0.2, 0.2]

• Reachability for the ODE part is done using a simplicial mesh
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Plan

• Hybridization methods for nonlinear systems

• Extension to differential algebraic systems

• Reachability computations using zonotopes [A. Girard 2005]

• Abstraction by projection
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Reachability computations using zonotopes

Linear Systems with uncertain inputs

ẋ = Ax + u, ||u(·)|| ≤ µ

• Reachr(X0) ⊆ erAX0 + Ball(αr)

• αr =
er||A|| − 1

||A||
µ

• Two required operations:

– Linear operator erA

– Minkowski sum (‘expanding’ the reachable set of the au-

tonomous system by αr)

• On zonotopes, these two operations can be efficiently performed (see

next)
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Reachability computations using zonotopes

Zonotopes

• Zonotope: Minkowski sum of a finite number of segments:

Z = {x ∈ Rn | x = c +

p∑
i=1

xigi, −1 ≤ xi ≤ 1}.

• c is the center of the zonotope, {g1, . . . ,gp} are the generators. The

ratio p/n is the order of the zonotope.

Two-dimensional zonotope with 3 generators
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Reachability computations using zonotopes

Computational advantages of zonotopes

• Encoding of a zonotope has a polynomial complexity wrt dimen-

sion (vs. exponential complexity for general convex polyhedra)

• Zonotopes are closed under linear transformation

Z = (c, 〈g1, . . . ,gp〉)

LZ = (Lc, 〈Lg1, . . . , Lgp〉)

• Zonotopes are closed under the Minkowski sum

Z1 = (c1, 〈g1, . . . ,gp〉), Z2 = (c2, 〈h1, . . . , hq〉)

Z1 + Z2 = (c1 + c2, 〈g1, . . . ,gp, h1, . . . , hq〉)

⇒ Important properties needed for reachability computations
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Reachability computations using zonotopes

Complexity reduction

At each iteration, the order of the zonotope increases (due to the

Minkowski sum) ⇒ Complexity is O(N2) where N is the number of

iterations

Controlling the order growth

• When the order is greater than m, over-approximate by a zonotope of

lower order ⇒ Efficient zonotope order reduction techniques exist

• Thus, the complexity of the algorithm is O(N)
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Reachability computations using zonotopes

Performance

Dimension 5 10 20 50 100

CPU time (s) 0.05 0.33 1.5 9.91 43.7

(Computation of Reach[0,1], 100 iterations, zonotope order=5)

A 5-dimensional system

Projections of Reach[0,1], 200 iterations, order of the zonotopes 40.
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Reachability computations using
zonotopes: Summary

• Efficient and scalable

• Handle systems up to 100 dimensions

• Can be extended to non-linear systems and hybrid systems

• Future work: Computational methods for zonotopes (intersection,

union)
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Plan

• Hybridization methods for nonlinear systems

• Extension to differential algebraic systems

• Reachability computations using zonotopes

• Abstraction by projection [Asarin & Dang 04]
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Abstraction by projection

Introduction

• Basic idea: project away some variables the evolution of which is

modeled as input

• Dimension reduction method for continuous systems

• A ‘hybridization’ method using ideas of qualitative simulation

• Goals:

– more precise than qualitative simulation

– less expensive than analyzing the original system (due

to lower dimension)
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Abstraction by projection

Principle
ẋ = f (x, y, z)

ẏ = g(x, y, z)

ż = h(x, y, z)

• We want to abstract away variable z

• Partition the domain of z into k disjoint intervals

{[l1, u1), [l2, u2), . . . [lk, uk]}

where li+1 = ui for all i

• If z ∈ I i
z = [li, ui], the dynamics of x and y can be approximated by

differential inclusion :{
ẋ ∈ Fi(x, y) = {f (x, y, z) | z ∈ I i

z}
ẏ ∈ Gi(x, y) = {g(x, y, z) | z ∈ I i

z}
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Abstraction by projection

Hybridization

• The original system is thus approximated by 2-dimensional hybrid

system with k different continuous dynamics

• Switching between adjacent intervals I i
z:

– Transition from I i
z = [li, ui) to I i+1

z = [li+1, ui+1) is possible if at

the boundary the derivative of z is positive, i.e. h(x, y, ui) > 0

– Similarly, transition from I i+1
z to I i

z if h(x, y, ui) < 0

– These switching conditions are not sufficient⇒ conservative

approximation
h(x, y, u1) > 0

h(x, y, u1) < 0 h(x, y, u2) < 0

h(x, y, u2) > 0

ẋ ∈ F1(x, y) ẋ ∈ F2(x, y)
ẏ ∈ G2(x, y)

. . .
ẋ ∈ Fk(x, y)
ẏ ∈ Gk(x, y)ẏ ∈ G1(x, y)
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Abstraction by projection

Remedy Discontinuities

• Our hybridization method introduces discontinuities

• “Convexify” the dynamics at switching surfaces (to guarantee exis-

tence of solution, error bound)

• Between adjacent intervals I i
z and Ij

z (j = i + 1), add a location:{
ẋ ∈ Fij(x, y) = co{Fi(x, y), Fj(x, y)}
ẏ ∈ Gij(x, y) = co{Gi(x, y), Gj(x, y)}

ẋ ∈ Fij(x, y)

ẏ ∈ Gij(x, y)

h(x, y, ui) = 0

ẋ ∈ Fi(x, y)

. . .

h(x, y, ui) ≤ 0

h(x, y, ui) ≥ 0

h(x, y, ui) < 0

h(x, y, ui) > 0

h(x, y, uj) < 0

h(x, y, uj) > 0

. . .
ẏ ∈ Gj(x, y)

ẋ ∈ Fj(x, y)

ẏ ∈ Gi(x, y)
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Abstraction by projection

Convergence result

• Resulting abstract system is upper semi-continuous and one-sided

Lipschitz

⇒ We can prove error bound:

– Distance between trajectories of the original system and the ab-

stract system is O(δ)

– δ: bound on the distance between the derivatives (which depends

on the size of the z-mesh)

• First order method
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Abstraction by projection

Abstraction with timing information

• So far, only the sign of ż is used to determine switching conditions

• The time the system can stay with a dynamics is omitted

• Inlude timing information to obtain more precise abstraction

– Additionally discretize derivatives ż into disjoint intervals

– Each location corresponds to an interval I i
z of z and an interval Ij

ż

of ż

– Then, we can estimate bounds on the staying times⇒ embed

in the switching conditions.
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Abstraction by projection

Computation Issues

• Linear Systems: abstract system is a linear system with uncertain

input.

• Non-linear systems: abstract system is a general differential in-

clusions

• We focus on the case of multi-affine systems (which have numerous

applications in biology, economy)
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Abstraction by projection

Abstraction of multi-affine systems

Given a system {
ẋ1 = a1x1 + b1x2 + c1x1x2

ẋ2 = a2x1 + b2x2 + c2x1x2

Abstract away x2 ⇒ Dynamics of each cell:{
ẋ1 = a1x1 + b1u + c1ux2

||u(·)|| ≤ µ

⇒ bilinear control system
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Abstraction by projection

Reachability analysis of Bilinear Control
Systems

A bilinear control system with additive and multiplicative inputs

ẋ(t) = f (x(t), u(t)) = Ax(t) +

l∑
j=1

uj(t)Bjx(t) + Cu(t)

Basic idea: Applying the Maximum principle to find ‘optimal’ input ũ ⇒
require solving an optimal control problem for a bilinear system.

For tractability purposes,

1. Restrict to piecesiwe constant inputs

2. To solve bilinear diff equations, treat the bilinear term as independent

input (see next)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Abstraction by projection

Applying the Maximum Principe

? Represent the initial set X0 as intersection of half-spaces.

? For each half-space H = (q, x) with normal vector q and support-

ing point x.

˙̃x = Ax̃ + ũBx̃ + Cũ

˙̃q = −∂H

∂x
(x̃, q̃, ũ) where H(q, x, u) = 〈q, Ax + ubx + cu〉

ũ(t) ∈ argmax{〈q̃(t), uBx̃(t) + Cu〉 | u ∈ U}

with initial conditions: q̃(0) = q, x̃(0) = x.

Then,

• For all t > 0, the half-space H(q̃(t), x̃(t)) contains Reacht(X0)

• Its hyperplane is a supporting hyperplane of Reacht(X0).
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Abstraction by projection

Bilinear Control Systems

? Solving the optimal control problem for arbitrary inputs is hard ⇒
restrict to piecewise constant inputs u(t) = uk for t ∈ [tk, tk+1).

? Solving bilinear systems with piecewise constant input: r is time step

xk+1 = eAhxk +

∫ r

0

eA(r−τ)ukbx(τ ) dτ +

∫ r

0

eA(r−τ)cuk dτ

• Approximate x(τ ) for τ ∈ [0, r) by: π(τ ) = ατ 3 + βτ 2 + γτ + σ

satisfying Hermite interpolation conditions: π(0) = x(tk), π̇(0) =

ẋ(tk), π(r) = x(tk+1), π̇(r) = ẋ(tk+1)

• Replacing x(τ ) by π(τ ) in the integral, we obtain: Mxk+1 = Dxk + d

• We can prove that the error is quadratic in time step O(r2)
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Abstraction by projection

Example: A biological system

A multi-affine system, used to model the gene transcription control in the

Vibrio fischeri bacteria [Belta et al 03].
ẋ1 = k2x2 − k1x1x3 + u1

ẋ2 = k1x1x3 − k2x2

ẋ3 = k2x2 − k1x1x3 − nx3 + nu2

(5)

State variables x1, x2, x3 represent cellular concentration of different

species

Parameters k1, k2, n are binding, dissociation and diffusion constants.

Control variables u1 and u2 are plasmid and external source of autoinducer.

Goal: drive the system through to the face x2 = 2
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Abstraction by projection

Example: A biological system (cont’d)
Results obtained by abstracting away x1. Location x1 ∈ [1.0, 1.5]

uncontrolled system (u = 0)

controlled system
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Ongoing and Future work

• Zonotopic calculus

• Efficient method for multi-affine systems

• Hybridization: Hierarchical mesh construction

• Randomized simulation with coverage criteria

• Guided abstraction refinement
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