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Recent Blackouts in Power Systems

Sweden / Denmark
September 23, 2003

London
August 08, 2003

USA / Canada
August 14, 2003
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Rome
June 26, 2003

Italy
September 28, 2003

Athens
October 06, 2003 Georgia

September 23, 2003

Helsinki
August 09, 2003

Jordan
August 10, 2004

Shanghai
August 27, 2003

Bahrain
August 08, 2004

Greece
July 12, 2004

Malaysia
January 13, 2005
M

Australia
August 14, 2004

Kuwait
November 1, 2004




Swedish Blackout Aug. 2003

Scandinavian Blackout of 9/23/2003

(key infrastructure numbered by saqueme; of disturbance)

What happened?
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At 12:37 the largest
generator | Sweden, T[/‘J
Oskarshamn 3 carrying |4 f‘,
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1135 MW tripped. About
five minutes later a
unrelated failure in
Ringhals substation
caused tripping of two
generators carrying 920
and 885 MW. After that
a very fast collapse of
the grid in Sweden and
Denmark followed.
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Failed Disconnector
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Failed Disconnector
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Source of instability - | - Tap Changer Control

(~—C5D

generation transmission 130/50 kV

50/20 kV 20/10 kV
130 kV Voltage 50 kV Voltage m Used to control customer voltage
1084 = Relay control
m Time delay + Deadband
1.04 -
§ m Uses a local viewpoint
¢ m Bad for System Stability !
0.96 ~ | ~ \ ~ ! ~ !
0 6 12 18 24 hours
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Source of instability - Il - Generator Overload Limits

m Generators normally under terminal voltage control
m [f the generator is overloaded, voltage control is lost

Tap Controlled Load Generator Voltage
1 05 Overload limit

/ reached

0.95

—_—

Tap Changer

Control

0.9- | | |
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Typical Instability Scenario

Line or generator outage reduces the voltage in an area
Temporary load reduction

Transfer capacity to the area is reduced

Load demand recovers (distribution voltage control, inherent
dynamics)

Voltage is further reduced

6. Generator overload protection activated

7. Collapse !

w2

o

Time scale: seconds to several minutes




Emergency Voltage Control
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transmission
corridor

m Obijectives
m Stabilize unstable voltage dynamics
m Switched controls
m tap changers
m capacitors
m Load shedding

Voltage

Power Margin

PML

—»

Power Transfer

—

% L Without J
=1M] Emergency
S0.8; Control |
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Original "Small scale” benchmark
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inf

L1 m Disturbance Input
. e m Line tri
Y
- G m Discrete Step Controls
X m Tap changer reference voltage
h-&« - m Load Shedding
|_J m Capacitor Switching

m Hybrid Behaviour
m  Generator overload protection
m Transformer Relay Control
m Discrete controls

gshg

m  Nonlinearity

m ,sign change® in tap changer
control




Collapse Scenario
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m Line tripping (L3) after 100 s
m Inherent Load Recovery

m Tap Changer Tries to Restore Voltage
m Generator field limit activated at 286 s
|

Collapse

Tap Controlled Load

Generator Voltage

| ——

1.05
o .
1= \ﬁ\\
0.95
0.9 | | |
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400

Overload limit

reached

Tap Changer

Control




Control Objectives

Ginf

(0

Bus1

Q m Stabilize all voltages within
0.9-1.1p.u.

®m Use minimal amount of load
shedding

G1

m Control voltage at bus 4 as
close as possible to 1 p.u.

m Capacitor and tap changer
control can be used freely




,Mini“ Testcase

Ty

Bus1 H Bus?2 Bus3

= A simplified version of the small scale benchmarks
= Allows analytical modelling - crucial for understanding

m Still captures the essential hybrid behaviour




Overview - “Medium Scale” ABB Test Case
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Strong |
Network
Area 1
T o
\
Ly 3
Area 2 Ine Iy
. NN
- R4
|
Area 3

Three copies of small case
Similar control objectives

Recovery dynamics in :
load (continuous)
Transformers (discrete) (optional)

Inputs:
Line impedances (fault)
3 Capacitors
3 Voltage Refs. Transformer (optional)
3 Load shedding

Outputs:
3 Load voltages
2 Generator field voltages




Contributions Through EU Control & Computation
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m ETH Zlrich
m Predictive control based on Mixed-logical Dynamical (MLD) models

= Lund University
m Feedback/Feedforward control laws for indvidual tap changers

m Grenoble / LAG
m Nonlinear predictive controller with reduced order open-loop parameterization
m Combined use of global control approach and local feedback strategies

m Grenoble / VERIMAG
= Nonlinear predictive controller with search algorithm over branching tree

= ABB
= Online equivalencing of complex networks
= Predictive control




ETH Zurich - Modelling (1/2)
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r Small scale benchmark model:
- N * 4-bus network non-linearities accurately modelled with
bus3 | PWA model
Ea— ) manst. e Full description of all logics involved (e.g. tap changer

Finite State Machine)

* MLD framework captures PWA approximations and
logics

Strong
Network

Medium scale benchmark model:

Area 1
* Three area network equations linearized

* Considers four different linearizations according to stat
of generators

Area 2

* Retains full description of logics

* System with PWA dynamics converted to MLD form

Area 3




ETH Zirich - Model Predictive Control (2/2)
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MPC approach:

* MPC explicitly takes into account constraints
* Tuning of cost function is straightforward

* Resulting MILP problem efficiently solved

* MPC effectively stabilizes voltages
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Lund
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Transformer switching via impedance estimates

V \%
ZLN 1 2

E. OLTC

V.. v, %r_
FF MLm= pp

Vre f

Using a simplified network model, feedback and feedforward
loops from impedance estimates to switches in the transformer
ratio have been analytically designed by the Lund node in
close contact with ABB. A preliminary patent has been granted.




Grenoble / LAG: the small scale benchmark - (1/3)
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Ginf

Bus2

£sng

Use of the nonlinear DAE model without any approximation
Gl Reduced order open—loop control parameterization
Constant capacitors
Constant load shedding
Monotonic transformer ratio dynamic.
Using a virtual free—finite escape time behavior
Handling priority in decision variables manipulation

(use of load shedding as a last resort)

AN Open-loop control profiles
g
dn Transformer ratio
N
S S S . S . ... ................. Load shedding
bt 20 i 0 e s b m— . m— s — — — Capacitor bank
§ position
G G+ ]:\:JC)-,— (G + Np)T
Reduced order parameterization of
Open-loop control profiles

Open loop parameterization used in the Receding
Horizon based controller AL 1D D




Grenoble / LAG : the small scale benchmark - (2/3)
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Bus voltages (p.u)
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Grenoble / LAG : the medium scale benchmark - (3/3)
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/Use of the nonlinear DAE model without any approximation
Use of Local feedback strategies to update the OLTC setpoints

~

Direct inversion of the state automata dynamics

Constant capacitors

Constant load shedding

Handling priority in decision variables manipulation

Use of an efficient ordering technique

Use of a Global Nonlinear Predictive Control approach with a reduced
order open-loop control parameterization
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Grenoble / VERIMAG
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B adobe Reader =]

VERIMAG
Predictive control based on search

Mini testcase with Ex. Impedance X jumps from .25 to .6

e Three inputs: tap ratio n, capacitance p, load ol
shedding &

o8

e Cost function minimizing |V =V and amount ~ _ ==~
of use of k .

1]

og

o Nonlinear Model Predictive Controller with search o [

over the 2 x 5 x 3 branching tree

Size reduction of the search tree

e Using caracteristics of the different inputs (mono-
tonicity, response amplitude)

o Using long term worst case estimations analyt-
ically derived and computed from expression of

DAE

e Search methods: best-first search, branch-and-
bound method

Preliminary work engaged on Medium Scale Test Case
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ABB - Network Equivalencing
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On-line computation of
reduced simplified
equivalents

In many cases, resulting
models can be as simple as

the EU CC benchmark
problems

Can vastly reduce
computational requirements




Implementation Platform | - New Measurement Technology

Phasor Measurement Units
(PMU)

Synchronization by GPS
clock

Timestamp accuracy < 1
microsecond

Angle accuracy < 0.1 degree

Allows monitoring of voltage
dynamics




Implementation platform Il - Wide-area Monitoring and Control
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Conclusion
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m  Substantial and industrially relevant contributions have been made
through the EU CC project

m Predictive Control
= Analytical Methods

m Computational complexity is a major issue
m Efficient solution techniques
m Reduced network models

= Not only Control & Computation - Analysis and Engineering is also
required

m Technology is available now

m ABB has already offered a voltage stability control system based on predictive
control to a customer (no order yet)







