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Continuous dynamics:
Discrete jumps:

1

Minimize
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Four steps of approximate value iteration
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After four iterations we have one 30 x 30 matrix P* for each
node such that the following switch law is within a factor 3.81
from optimality:

{Jump to node n if 2l [AT P"A;, + Qi,]z < 2" [AL P™A;, + Qin]2

Jump to node m else



») Main messages of today

 There is a rich set of optimal control problems which have
simple approximative solutions

 There are algorithms that find such solutions whenever
they exist
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(%2 The key: Simplified valuation

Exact value-iteration gives absurd complexity.

Every subcontractor of Volvo would have to modify his prices
when Andersson expands his garage.

Of course, pricing is not done like that.
Approximations are done in every step.
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Dynamic programming in discrete time

.5

Minimize il(x(k),u(k))
k=0

subject to x(k+1)=f(x(k),u(k)) k=0,1,2,...
x(0) = x9

Given xo, let VH(xy) denote the minimal value. The value
function V" satisfies the Bellman equation

VHx) = muin [VH(f(x,u)) + 1(x,u)]

In some cases V" can be computed by recursive iteration:
Vjer(x) = min [V (£ (x,)) +1(x,u)]
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Relax the optimality within given bounds

;
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Replace the Bellman equation by an inequality:

min [V (f(x,u)) + al(x,u)] < V(x) < muin V(f(x,u)) +1(x,u)]

u

where a < 1.
From the inequalities, it follows that

aVx) <V(x) < VHx)

The recursive conditions become

min [V; (£ (x,0)) + al(x,u)] < Vi () < min [V;(£ (x,0)) +1(x,u)

u

The interval for V;,;(x) makes it possible to work with a
simplified parameterization of V.
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Switch

=) Example: Switched voltage converter
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Value function complexity
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Example: Switched voltage converter

... Switched control law
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Example: Switched voltage converter

Simulation of switched power controller
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Example: Switched voltage converter

Frequency weights in the cost function can be used to sup-
press undesired harmonics. This increases state dimension,
but has no significant effect on computational complexity.

Simulation of switched power controller
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Suppose VH(f(x,u)) < yl(x,u) uniformly and there is a
polynomial U of degree n with (1 — &)V x) < U(x) < VY x).
Then, with Vo =0 and a = 1 — £(1 + y)?, the inequalities

min [V; (£ (x,u)) + @l(x,u)] < Vi () < min [Vir (f (x,)) +2(x,u)]

u

have solutions of degree n polynomials V,, V1, Vs ... and

a, VHx) < Vi(x) < VH{x)

where g, = [1+y(1+ y—l)l—k}_lg.
If tn(x) = argmin, [Vi(f(x,u)) + a,l(x,u)], thena,V, < V&
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W=z If simple approximation exists, we will find one!

Asume V> is “simple” and satisfies

min [V(f (x,u)) + al(x,u)] < VS(x) < min [Vs(f(x, w)) +1(x,u)

u

Then a VP < VS < VU and the following relaxed value iteration
IS feasible in every step:

min [V (£ (x,1)) + @l(x,u)] < Vi (x) < min[Vie (f (2,)) +1(x,u)

u

with V() = 0.
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Continuous dynamics:
Discrete jumps:

1

Minimize

Zk ZT Qiuz
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Four steps of approximate value iteration
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After four iterations we have one 30 x 30 matrix P* for each
node such that the following switch law is within a factor 3.81
from optimality:

{Jump to node n if 2l [AT P"A;, + Qi,]z < 2" [AL P™A;, + Qin]2

Jump to node m else
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 There is a rich set of optimal control problems which have
simple approximative solutions

 There are algorithms that find such solutions whenever
they exist

ldeas from the discrete setting are extended to continuous
and hybrid setting using semi-definite and sum-of-squares
programming
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What do we learn from discrete optimization?

. T
7 i <
RS %y,

66 74
BITES

« Value iteration, policy iteration
* Decentralized computations
e Two dual view-points

— Flow optimization gives an explicit control law
— Cost optimization bounds the reachability
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Example — Safety verification
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Duality in safety verification

;
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Let f € C*(R",R") and let ' C X C R" be open and bounded.
Assume existence of V € C'(R") such that VV (x)f(x) > 0 for
x € X \ . Then the following two conditions are equivalent:
There exist V € C'(R") such that

V(xog) —Vi(xr) >0 and VV(x)f(x) >0 Ox e X \T

There exists no trajectory of the system x = f(x) such that

x(0) = x9
x(T) = xy T>0
x(t) e X \T t e [0,T]
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(i~ Long term impact of the CC project?

We are starting to learn how to combine the following two:

* Concepts (e.g. iteration methods, duality) from the litera-
ture on discrete networks and automata.

* Performance measures and computational methods (LMIs,
sum-of-squares) from control in continuous state space.

The main impact is cross-fertilization of ideas.
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