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Optimal control: 60 discrete states, 30 continuoous

120 edges 120 � 30 eigenvalues
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Minimize
∑

k zT Qiu z

Continuous dynamics: z(k + 1) = Ai(k)u(k)z(k) z(0) = z0 ∈ R30

Discrete jumps: i(k + 1) = u(k) i(0) = i0
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Four steps of approximate value iteration

After four iterations we have one 30 � 30 matrix Pi for each
node such that the following switch law is within a factor 3.81
from optimality:

{

Jump to node n if zT [AT
inPn Ain + Qin]z < zT [AT

imPm Aim + Qim]z

Jump to node m else
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Main messages of today

• There is a rich set of optimal control problems which have
simple approximative solutions

• There are algorithms that find such solutions whenever
they exist
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Who decides the price of a Volvo?

Subcontractor

Subcontractor

Car manufacturer

Car dealer

Customer
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Valuation by the customer
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Valuation by the car dealer
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Customers: Andersson, Pettersson and Lundström
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The key: Simplified valuation

Exact value-iteration gives absurd complexity.

Every subcontractor of Volvo would have to modify his prices
when Andersson expands his garage.

Of course, pricing is not done like that.
Approximations are done in every step.
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Dynamic programming in discrete time

Minimize
∞∑

k=0

l(x(k), u(k))

subject to x(k + 1) = f (x(k), u(k)) k = 0, 1, 2, . . .
x(0) = x0

Given x0, let V ∗(x0) denote the minimal value. The value
function V ∗ satisfies the Bellman equation

V ∗(x) = min
u

[V ∗( f (x, u)) + l(x, u)]

In some cases V ∗ can be computed by recursive iteration:

Vj+1(x) = min
u

[Vj( f (x, u)) + l(x, u)]
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Relax the optimality within given bounds

Replace the Bellman equation by an inequality:

min
u

[V ( f (x, u)) + α l(x, u)] ≤ V (x) ≤ min
u

[V ( f (x, u)) + l(x, u)]

where α < 1.

From the inequalities, it follows that

α V ∗(x) ≤ V (x) ≤ V ∗(x)

The recursive conditions become

min
u

[Vj( f (x, u)) + α l(x, u)] ≤ Vj+1(x) ≤ min
u

[Vj( f (x, u)) + l(x, u)]

The interval for Vj+1(x) makes it possible to work with a
simplified parameterization of Vj .
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Approximative dynamic programming
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u

{

Vk

(
f (x, u)

)
+ α l(x, u)

}

︸ ︷︷ ︸

V k+1(x)

≤ Vk+1(x) ≤ min
u

{

Vk

(
f (x, u)

)
+ l(x, u)

}

︸ ︷︷ ︸

V k+1(x)
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Example: Switched voltage converter
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Example: Switched voltage converter
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Example: Switched voltage converter
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Example: Switched voltage converter
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Example: Switched voltage converter

Frequency weights in the cost function can be used to sup-
press undesired harmonics. This increases state dimension,
but has no significant effect on computational complexity.
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Theorem

Suppose V ∗( f (x, u)) ≤ γ l(x, u) uniformly and there is a
polynomial U of degree n with (1 − ε )V ∗(x) ≤ U(x) ≤ V ∗(x).
Then, with V0 � 0 and α = 1 − ε (1 + γ )2, the inequalities

min
u

[Vj( f (x, u)) + α l(x, u)] ≤ Vj+1(x) ≤ min
u

[Vj+1( f (x, u)) + l(x, u)]

have solutions of degree n polynomials V0, V1, V2 . . . and

α kV ∗(x) ≤ Vk(x) ≤ V ∗(x)

where α k =
[
1 + γ (1 + γ −1)1−k

]−1 α .

If µk(x) = arg minu [Vk( f (x, u)) + α kl(x, u)], then α kVµk
≤ V ∗.
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If simple approximation exists, we will find one!

Asume Vs is “simple” and satisfies

min
u

[V ∗( f (x, u)) + α l(x, u)] ≤ Vs(x) ≤ min
u

[

Vs( f (x, u)) + l(x, u)
]

Then α V ∗ < Vs < V ∗ and the following relaxed value iteration
is feasible in every step:

min
u

[Vj( f (x, u)) + α l(x, u)] ≤ Vj+1(x) ≤ min
u

[Vj+1( f (x, u)) + l(x, u)]

with V0 = 0.
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Optimal control: 60 discrete states, 30 continuoous

120 edges 120 � 30 eigenvalues
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Minimize
∑

k zT Qiu z

Continuous dynamics: z(k + 1) = Ai(k)u(k)z(k) z(0) = z0 ∈ R30

Discrete jumps: i(k + 1) = u(k) i(0) = i0
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Four steps of approximate value iteration

After four iterations we have one 30 � 30 matrix Pi for each
node such that the following switch law is within a factor 3.81
from optimality:

{

Jump to node n if zT [AT
inPn Ain + Qin]z < zT [AT

imPm Aim + Qim]z

Jump to node m else
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Main messages of today

• There is a rich set of optimal control problems which have
simple approximative solutions

• There are algorithms that find such solutions whenever
they exist

Ideas from the discrete setting are extended to continuous
and hybrid setting using semi-definite and sum-of-squares
programming
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What do we learn from discrete optimization?optimization?

• Value iteration, policy iteration

• Decentralized computations

• Two dual view-points

– Flow optimization gives an explicit control law
– Cost optimization bounds the reachability
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Example — Safety verification

ẋ1 = x2 ẋ2 = −x1 + x3
1/3 − x2

[Khalil,Prajna,Jadbabaie]
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Duality in safety verification

Let f ∈ C1(Rn, Rn) and let Γ ⊂ X ⊂ Rn be open and bounded.
Assume existence of V ∈ C1(Rn) such that ∇V(x) f (x) > 0 for
x ∈ X \ Γ. Then the following two conditions are equivalent:

There exist V ∈ C1(Rn) such that

V (x0) − V (x f ) > 0 and ∇V (x) f (x) > 0 ∀x ∈ X \ Γ

There exists no trajectory of the system ẋ = f (x) such that

x(0) = x0

x(T) = x f T > 0

x(t) ∈ X \ Γ t ∈ [0, T]
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Long term impact of the CC project?

We are starting to learn how to combine the following two:

• Concepts (e.g. iteration methods, duality) from the litera-
ture on discrete networks and automata.

• Performance measures and computational methods (LMIs,
sum-of-squares) from control in continuous state space.

The main impact is cross-fertilization of ideas.
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