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Hybrid Verification ProblemHybrid Verification Problem
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ModelModel--based Optimization Approachbased Optimization Approach
Hybrid Control ProblemHybrid Control Problem Hybrid Verification ProblemHybrid Verification Problem

• Need for a hybrid model of the process reproducing the behavior

of the process (simulation)

• A model suitable for controller synthesis and verification

• A model for which computational tools can be applied



Hybrid Model: Discrete Hybrid AutomatonHybrid Model: Discrete Hybrid Automaton
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The affine dynamics depend on the current mode i(k):



The active mode i(k) is selected by a Boolean function of the 
current binary states, binary inputs, and event variables:

Mode SelectorMode Selector

Example: 
0

1

0 1

the system has 3 modes

Finite State MachineFinite State Machine

The binary state of the finite state machine evolves 
according to a Boolean state update function:

Example:



Event GeneratorEvent Generator

Event variables are generated by linear threshold conditions over 
continuous states, continuous inputs, and time:

Example: [δ=1] ↔ [xc(k)≥0]

Computational Hybrid ModelsComputational Hybrid Models

(Bemporad, Morari 1999)

Mixed Logical Dynamical (MLD) Systems

(Sontag 1981)

state+input space

Piecewise Affine (PWA) Systems

The translation from DHA to MLD/PWA is done automatically
(using symbolic/mathematical programming tools)

HYSDEL MLD2PWA
(Torrisi, Bemporad, 2004)

(Bemporad, 2004)

Discrete Hybrid Automaton



Example: Room TemperatureExample: Room Temperature

T1 T2

Tamb

Hybrid Dynamics

• #1 turns the heater (air condition-
ing) on whenever he is cold (hot)

• If #2 is cold he turns the heater on,
unless #1 is hot

• If #2 is hot he turns the air condi-
tioning on, unless #2 is cold

• Otherwise, heater and air condition-
ing are off

• Ṫ1 = −α1(T1 − Tamb) + k1(uhot − ucold) (body temperature dynamics of #1)

• Ṫ2 = −α2(T2 − Tamb) + k2(uhot − ucold) (body temperature dynamics of #2)

Heater

AC system

T1
T2

uhot
ucold

HYSDELHYSDEL ModelModel

http://www.dii.unisi.it/hybrid/toolbox

Hybrid Toolbox 
for Matlab
(Bemporad, 2003-2005)

>>S=mld('heatcoolmodel',Ts)

>>[XX,TT]=sim(S,x0,U);

get the MLD model in Matlab

simulate the MLD model



Hybrid PWA ModelHybrid PWA Model

• PWA model

• 2 continuous states:

• 1 continuous input:

(room temperature Tamb)

(temperatures T1,T2)

• 5 polyhedral regions
(partition does not depend on input)
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>>P=pwa(S);

Simulation in Simulation in SimulinkSimulink



Verification of Verification of DHA/MLD/PWADHA/MLD/PWA

Verification AlgorithmVerification Algorithm

• Alternative solutions:
• Exploit the special structure of the problem and use polyhedral 
computation.

• Use abstractions (LPs) + SAT solvers

• QUERY:  Is the target set Xf reachable after N steps from some 
initial state x0 ∈ X0 for some input profile u ∈ U ?

• Computation: Solve the mixed-integer linear program (MILP)

with respect to u(0),δ(0),z(0),…, u(N-1),δ(N-1),z(N-1),x(0)

(Torrisi, 2003)

(Giorgetti, Pappas, 2005)



Verification ExampleVerification Example

• MLD model: room temperature system

•

•

•

• N=10 (time horizon)

(set of unsafe states)

(set of initial states)

(set of possible inputs)

>>[flag,x0,U]=reach(S,N,Xf,X0,umin,umax);

Verification ExampleVerification Example



Controller SynthesisController Synthesis

• Apply only               (discard the remaining optimal inputs);

• At time t solve with respect to
the finite-horizon open-loop, optimal control problem:

Predicted
outputs

Manipulated

y(t+k|t)

Inputs

t t+1 t+T

futurepast

u(t+k)

• Repeat the whole optimization at time t+1

Model
Predictive (MPC)
Control

Control Strategy: Control Strategy: MPCMPC



Hybrid Hybrid MPCMPC -- ExampleExample

>>[XX,UU,DD,ZZ,TT]=sim(C,S,r,x0,Tstop);

>>C=hybcon(S,Q,N,limits,refs);

>>refs.x=2;   % just weight state #2
>>Q.x=1;
>>Q.rho=Inf;  % hard constraints
>>Q.norm=2;   % quadratic costs
>>N=2;        % optimization horizon
>>limits.xmin=[25;-Inf];

>> C

Hybrid controller based on MLD model S <heatcoolmodel.hys>

2 state measurement(s)
0 output reference(s)
0 input reference(s)
1 state reference(s)
0 reference(s) on auxiliary continuous z-variables

20 optimization variable(s) (8 continuous, 12 binary)
46 mixed-integer linear inequalities
sampling time = 0.5, MILP solver = 'glpk'

Type "struct(C)" for more details.
>>

Hybrid Hybrid MPCMPC -- ExampleExample



OnOn--Line Line vsvs OffOff--Line OptimizationLine Optimization

• On-line optimization: given x(t) solve the problem at each time 
step t.

multi-parametric programming

Mixed-Integer Linear/Quadratic Program (MILP/MIQP)

• Off-line optimization: solve the MILP/MIQP for all x(t)

Good for large sampling times (e.g., 1 h) / expensive hardware …

… but not for fast sampling (e.g. 10 ms) / cheap hardware !

• Solution u(x,r) found via a combination of

- Dynamic programming or enumeration of feasible mode
sequences, multiparametric linear or quadratic programming, 
and polyhedral computation.

Explicit Hybrid Explicit Hybrid MPCMPC

• The MPC controller is piecewise affine in x,r

Note: in the quadratic case the partition may not be fully polyhedral

(x,r)-space
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(Borrelli, Baotic, Bemporad, Morari, 2003)
(Mayne, ECC 2001)

(Alessio, Bemporad, 2005)



Explicit Hybrid Explicit Hybrid MPCMPC -- ExampleExample

>>E=expcon(C,range,options);

>> E

Explicit controller (based on hybrid controller C)
3 parameter(s)
1 input(s)
11 partition(s)
sampling time = 0.5

The controller is for hybrid systems (tracking)
This is a state-feedback controller.

Type "struct(E)" for more details.
>> 

Section in the (T1,T2)-space for Tref = 30

Explicit Hybrid Explicit Hybrid MPCMPC -- ExampleExample

Generated 
C-code



Hybrid Control Design FlowHybrid Control Design Flow
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Application of Explicit Hybrid MPC Application of Explicit Hybrid MPC 
to DISC Engine Controlto DISC Engine Control

(joint work with N. Giorgetti, I. Kolmanovsky, D. Hrovat)

(Photo: Courtesy Mitsubishi)
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DISC EngineDISC Engine
States/Controlled outputs:

Intake manifold pressure (pm);
Air-to-fuel ratio (λ);
Engine brake torque (τ);

Constraints on: 

Air-to-Fuel ratio (due to engine roughness, misfiring, smoke emiss.)

Spark timing (to avoid excessive engine roughness)

Mass flow rate on intake manifold (constraints on throttle)

Inputs (continuous):

Air Mass flow rate through throttle (Wth);
Mass flow rate of fuel (Wf);
Spark timing (δ);

Inputs (binary): 

ρ = regime of combustion (homogeneous/stratified);

Dynamic equations are nonlinear
Dynamics and constraints depend on regime ρ !

Implementable !

Explicit MPC Controller (quadratic costs)Explicit MPC Controller (quadratic costs)
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m
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Engine Brake Torque
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On-line simulations:

• Control horizon N=1;

• Simulation time T=2.5 s;

• Sampling time Ts=10 ms;

• CPU time ' 8 s;
(on an Intel Centrino 1.2 GHz, 
640 Mb RAM with Cplex 9.01)

' 32 ms per time 
step

Not directly 
implementable !

Explicit simulations:

• Control horizon N=1;

• 9 Parameters;

• CPU time ' 0.52 s ' 2 ms per time step

ρ=1 ρ=1ρ=0

Cross-section in the τref-λref plane

75 Partitions



ConclusionsConclusions

• Piecewise affine MPC controllers can be synthesized, off-line, 
and implemented as look-up tables of linear gains

• Optimization-based control handles performance specs and 
constraints in a natural and direct way. Quite complex hybrid 
systems can be controlled using on-line mixed-integer
programming

• Hybrid Toolbox for Matlab available to assist controller design: 
modeling, simulation, verification, MPC, code generation
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1

2

3

M
4

5 6

• Discrete hybrid automata are simple yet versatile models of hybrid
systems, and lead immediately computationally-useful models

Ongoing ResearchOngoing Research

• Logic-based methods: use combined SAT+LP to largely
improve computation performance of optimal control/verification

• Event-based optimal control of hybrid systems: index k denotes

events occurring in piecewise-affine continuous-time systems, 
rather than discrete time

• Stochastic hybrid models: (robust) optimal control can be solved 
using mixed-integer programming

(N. Giorgetti)

(Di Cairano, HSCC05)

(Di Cairano, Julvez)

#nodes=11 #nodes=6227

SAT-based B&B Pure B&B

optimal 
control
train-gate
system



The End

MPC controller - SIMO
DC-Servomotor
Hybrid Toolbox

http://www.dii.unisi.it/hybrid/toolbox


