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Overview

• Discretisation of systems.
• Reachability analysis and optimal control.
• Open and closed systems.
• Chain reachability and computability.
• Conley index techniques
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Discrete time systems

• Consider system properties of

xn+1 = f(xn, un, vn)

where xn ∈ X is the state, un ∈ U is the control input,
and vn ∈ V is noise.

• For noise-free systems, represent as a mulitvalued
map F : X � X given by F (x) = f(x, U).

• A control law can be represented by a system
G : X � X with G(x) ⊂ F (x).

• The graph of F : X � X is the set

Graph(F ) = {(x, y) ∈ X × X : y ∈ F (x)}.
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State-space discretisations

• Let P be a finite cover of X by compact sets (e.g. a
partition into boxes).

• The system is represented by a directed graph G with
vertices P.

• Reachability properties can be determined by finding
paths using Dijkstra’s shortest path algorithm.

• Typically, try to obtain properties in the limit

diam(P) := sup{diam(P ) : P ∈ P} → 0.
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Upper and lower discretisations

• Write P → Q if

(∃x ∈ P ) (∃y ∈ Q) (∃u ∈ U) (f(x, u) = y).

• If there is a trajectory (xi) with xi ∈ Pi, then
P0 → P1 → · · · → Pn.

• Write P ⇒ Q if

(∀x ∈ P )(∃y ∈ Q) (∃u ∈ U) (f(x, u) = y).

• If P0 ⇒ P1 ⇒ P2 ⇒ · · · ⇒ Pn, then there is a trajectory
(xi) with xi ∈ Pi.

• Could also consider

(∀y ∈ Q) (∃/∀x ∈ P ) (∃u ∈ U) (f(x, u) = y)
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Optimal control

• Take a continuous cost function q : X × U → R
+.

• Cost of trajectory x = (xn) starting at x given by control
u = (un) is

J(x,u) =
∑N−1

n=0
q(xn, un)

• Consider the optimal control problem:

Minimise J(x,u) such that x0 = x and xN ∈ S

for some target set S.
• The value function V : X → R+ is given by

V (x) = inf{J(x,u) : x0 = x and xN ∈ S}
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Discretisation of cost estimates

• For x, y ∈ X, define

w(x, y) = inf
u∈U

{q(x, u) : f(x, u) = y}.

• For P, Q ⊂ X, define

w(P, Q) = inf
x∈P

inf
y∈Q

w(x, y), and w(P, Q) = sup
x∈P

inf
y∈Q

w(x, y).

• It is clear that

w(P, Q) < ∞ iff P → Q, and w(P, Q) < ∞ iff P ⇒ Q.

• More generally, a weight function is a function

w : P × P → R
+ ∪ {∞}.

Approximation of Reachable Sets–CC Meeting, Parades, Roma, 26-28 January 2004 – p.8/18



Trajectory cost estimates

• If ~P = (Pi) is a discrete trajectory, then let

Jw(~P ) =
∑N−1

n=0
w(Pn, Pn+1)

• Let J(~P ) = Jw(~P ) and J( ~P ) = Jw(~P )

• Define V w
P

: X → R+ by

V w
P

(x) = inf{Jw(~P ) : x ∈ P0 and PN ∩ S 6= ∅}

• Let V P(x) = V w

P
and V P = V w

P
.

• Clearly V w
P

(x) < V (x) < V w
P

.

• If S is reachable from x, then V w

P
(x) < ∞, and if

V w
P

< ∞, then S is reachable from x.
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Compact systems

• A system is compact if the graph of F : X � X is a
compact set.

• A map f : X × U → X is a compact system if X and U
are compact sets.

• Theorem If f is a compact system V (x) < ∞ (i.e. S is
reachable from x), then

V P(x) → V (x) as diam(P) → 0.

[Oliver Junge and Hinke Osinga, “A Set Oriented Approach to Global Optimal

Control”, preprint.]
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Open systems

• A system is open if the graph of F : X � X is an open
set.

• A map f : X × U → X gives rise to an open system if
U is open and ∂f

∂u
has full row rank.

• Typical systems are not open, but the n-step system
may be for some n > 1.

• If F is an open system and y ∈ F (x), then if x ∈ P ,
y ∈ Q, and the diameter of Q is sufficiently small, then
F (P ) ⊃ Q.

• Theorem If f is an open system and V (x) < ∞, then

V P(x) → V (x) as diam(P) → 0.
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Approximate systems

• For ε > 0 define F̂ε to be

F̂ε(x) = {y ∈ X : ∃ x′, y′ ∈ X such that y′ ∈ F (x′)

and d(x, x′) < ε/2 and d(y, y′) < ε/2}

• The graph of F̂ε is an open set, so F̂ε is an open
system.

• An orbit of F̂ε is an ε-chain for F .
• S is chain reachable from x if there is an ε-chain from x

to y for all ε > 0.
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Discretisations of approximate
systems

• Fix ε > 0, and consider a cover by sets of diameter less
than ε.

• Suppose x ∈ P and d(x, y) < ε/2 for all y ∈ P .

• Then if F (x) ∩ Q 6= ∅, we must have F̂ε(y) ∩ Q 6= ∅ for
all y ∈ P .

• Hence a lower discretisation of F̂ε can be rigorously
computed.

• Therefore, there is a graph such that

(P → Q) ⇒ (∀x ∈ P ) (∃y ∈ Q) (∃u ∈ U) (f(x, u) = y).
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Chain reachability vs reachability

• We have an algorithm to prove Reach(x) ∩ S = ∅ and
ChainReach(x) ∩ S 6= ∅.

• Unfortunately, for general systems,
Reach(x) 6= ChainReach(x).

• Thus the theory for chain-reachable sets is very
different from the theory of reachable sets.

• Conjecture Let A be a stable chain-transitive set for the
noise-free system F . Then there exists δ > 0, and a control law
x ∈ G(u) such that for all ε > 0, if x and y are points of A, then

the orbit (xn) with x0 = x reaches the ε-neighbourhood of y with
probability 1.
[Michel Benaïm & Morris W. Hirsch, “Asymptotic pseudotrajectories and chain

recurrent flows, with applications”, J. Dynam. Differential Equations 8 (1996),

141–176.]
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Chain transitivity

• A subset A of X is chain transitive for a compact
system F if for all x, y ∈ A, there is an ε-chain from x to
y for any ε > 0.

• A maximal chain transitive set is a chain component.
• If G is a contol law then the chain components of G are

subsets of those of F .
• Chain components and chain reachability relations

between them can be computed using the Conley
index.
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Computability

• For even simple classes of systems (e.g. piecewise-
constant derivative) systems, reachability /
controllability is uncomputable.
[Eugene Asarin, Oded Maler & Amir Pnueli, “Reachability analysis of dynamical

systems having piecewise-constant derivatives”, Theor. Comp. Sci. 138 (1995)

35–65.]

• For open systems, the reachability/controllability
properties should be recursively computable by taking
finer partitions.

• For compact systems, should be able to recursively
compute non-controllable and chain-controllable sets.
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Conley index and invariant sets

• A set is if isolated invariant if it is the maximal invariant
set in a neighbourhood of itself.

• Many system properties, including chain recurrent sets
and attractors, can be expressed in terms of isolated
invariant sets.

• Isolated invariant sets and their structure, and hence
global system properties, can be computed using the
Conley index.

• The Conley index may be able to (partially) bridge the
gap between reachability and chain-reachability. Charles

Conley. “Isolated Invariant Sets and the Morse Index,” AMS, 1978.
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Conclusions

• State space discretisations give a computational
approach to determining (optimal) controls.

• System-theoretic properties can be analysed in terms
of discretisations, and computability properties studied.

• Conley index theory provide a further tool for analysis
of system properties.
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