Synthesis for Idle Speed Control of an Automotive Engine

A. Balluchi⁽¹⁾, F. Di Natale⁽¹⁾, A. Sangiovanni-Vincentelli^(1,2) and J.H. van Schuppen⁽³⁾

(1) PARADES GEIE, Rome, I (2) Dept. of EECS., Univ. of California at Berkeley, CA

(3) CWI, Amsterdam, NL

"Idle Speed Control" Case Study

|--|

Given a value of n_0 , Δ and T_L^M , determine whether there exist \Box an ignition control *spark* and \Box a throttle control $\alpha(t)$ that maintain the crankshaft speed n(t) in the given range $n_0 \pm \Delta$ under \Box any driver's action on *clutch* pedal, \Box any load torque $T_L(t)$ in $[0, T_L^M]$.

Controls	Time / Value	Disturbances	Time / Value
ignition spark	disc / disc	clutch <i>clutch</i>	disc / disc
throttle α	cont / cont	load torque <i>T_L</i>	cont / cont

Throttle valve and spark ignition actuators

Throttle valve actuator and intake manifold model

$$\dot{\tau} = 1000$$

$$\dot{p}(t) = a_p(p(t) - p_0) + b_p(\alpha(t) - \alpha_0)$$

Crankshaft model

Project IST-2001-33520: CC - Computation and Control

PARADES

Single cylinder FSM: engine cycle

positive spark advance negative spark advance

Piecewise-affine hybrid system model

Project IST-2001-33520: CC - Computation and Control

Idle Speed Controller Design

Step 1: Crankshaft speed controller

• Consider the crankshaft model with states (n, \mathcal{G}, T)

 Problem: Find a control strategy for the resets of the engine torque T such that the crankshaft speed n(t) is maintained bounded to [750,850].

Project IST-2001-33520: CC - Computation and Control

Crankshaft speed constraint satisfaction

• Consider the state space (n, \mathcal{G}, T)

- ▲ If the exit facet from B^c is $\mathcal{G} = 180$, then n(t) belongs to [750,850] for $\mathcal{G}: \mathcal{O} \rightarrow 180$
- ▲ If (n_0, T_0) belongs to S^c , then $\mathcal{G} = 180$ is the unique exit facet from B^c

Hence,

▲ If at each dead-center (n, T) belongs to S^c , then n(t) always belongs to [750, 850].

Step 2: Engine torque controller

 Problem: find a robust controlled invariant set contained in S^c, for a model of the crankshaft evolution between dead-centers

$$n(k+1) = a_d(k)n(k) + b_d(k)(T(k) - T_p - T_l(k))$$

T(k+1) = u(k)

Time-varying parameters represent dependence from dead-center times

$$a_d(k) = e^{a_n(t_{k+1} - t_k)} \qquad b_d(k) = -[1 - e^{a_n(t_{k+1} - t_k)}]b_n/a_n$$

Project IST-2001-33520: CC - Computation and Control

PARADES

Robust invariance via triangularization

Approach:

- \blacktriangle S^c is partitioned in simplex: S₁, S₂, S₃ and S₄.
- ▲ a feedback *u* is designed s.t. S_1 , S_2 , $S_3 \rightarrow S_2 \cup S_3$, i.e. $S_2 \cup S_3$ is a robust invariant set

$$u(k) = g_p(n(k), T(k)) = F_p \begin{bmatrix} n(k) \\ T(k) \end{bmatrix} + h_p \quad \text{for } (n, T) \text{ in } S_p$$

Robustness with respect to

▼ Load toque disturbance, clutch disturbance, dead-center time and parameters uncertainties.

Project IST-2001-33520: CC - Computation and Control

PARADES

Implementation of the affine controller

• Feedback u(k) is implemented in terms of engine torque $T = \eta(\varphi)(Gm + T_0)$

Since spark advance efficiency is bounded to the interval [0.6,1] then

$$0.6(Gm + T_0) \le g_p(n, T) \le (Gm + T_0) \quad \forall (n, T) \in S_1 \cup S_2 \cup S_3$$

• Air-fuel mixture mass is regulated to the interval $[m_{min}, m_{max}]$ with

$$m_{min} = \frac{1}{G} \left[\left(\max_{v_i \in S_1, S_2, S_3} F_p v_i + h_p \right) - T_0 \right], \qquad m_{max} = \frac{1}{0.6} m_{min}$$

• Engine torque is controlled by the spark advance feedback $\tilde{\varphi} = \begin{cases} \phi_1 & \text{if } \phi_1 \ge 0 \\ \phi_2 & \text{if } \phi_1 < 0 \end{cases}$

$$\phi_1 = \eta^{-1} \left(\frac{F_p [n(t_k) \quad T(t_k)]^T + h_p}{Gm_C(t_k) + T_0} \right) \qquad \text{positive spark advance}$$

$$\eta(\phi_2) (Gm_C(t_k) + T_0) = \frac{1 - e^{a_n \frac{30}{n(t_k)}}}{1 - e^{a_n} \left[\frac{30}{n(t_k)} \left(1 - \frac{\phi_2}{180}\right)\right]} \left[F_p \left(\begin{array}{c} n(t_k) \\ T(t_k) \end{array} \right) + h_p \right] \qquad \text{negative spark advance}$$

Project IST-2001-33520: CC - Computation and Control

PARADES

Step 3: Intake manifold controller

• A feedback $\alpha(k) = f_1 p(k) + h_1$ is designed to control p to the target interval

$$p_{min} = \frac{m_{min} - M_0}{H}$$
 and $p_{max} = \frac{m_{max} - M_0}{H}$

The throttle valve feedback is implemented in the *5msec*-sampling as follows

$$\alpha(t_h) = \frac{\bar{p}(k+1) - e^{a_p \tau} p(t_h) + (1 - e^{a_p \tau}) p_0 + [1 - e^{a_p \tau}] b_p / a_p \alpha_0}{-[1 - e^{a_p \tau}] b_p / a_p}$$

where $\tau = \frac{30}{n(t_h)} \left(1 - \frac{\theta}{180} \right)$ is the estimated time to the next dead-center and $\bar{p}(k+1) = e^{a_p \frac{30}{n(t_k)}} p(t_k) - \left[1 - e^{a_p \frac{30}{n(t_k)}} \right] \frac{b_p}{a_p} \left(f_1 p(t_k) + h_1 \right)$

Project IST-2001-33520: CC - Computation and Control

Robust invariance for the closed loop system

Robust invariance of the computed subset of the state space, under

- ▲ Clutch and torque load disturbances
- ▲ Dead-center time interval length uncertainties
- Parameter uncertainties

for the closed-loop system obtained with the proposed controller has been verified.

Simulation results

Project IST-2001-33520: CC - Computation and Control

PARADES

Conclusion

- Idle speed control has been formulated as an affine hybrid system control problem on polytopes.
- The approach to controller synthesis is a combination of
 - Back-stepping procedure and interactive design
 - Control for affine systems on polytopes
 - ▲ Theory of invariant sets

Input and state constraints are handled by

- ▲ Partitioning the space in polytopes
- ▲ Designing feedback controls for each polytope such that the state of the closed loop system is driven only on those polytopes for which constraints are verified

Future work: introducing performance specifications

Project IST-2001-33520: CC - Computation and Control