Control and Computation - Review Meeting 26-28 January 2004, Roma, Italy

Controller Synthesis for Hybrid Systems with a Lower Bound on Event Separation

A. Balluchi[§], L. Benvenuti[§], T. Villa^{§†}, and A. L. Sangiovanni-Vincentelli^{§‡}

[§]PARADES G.E.I.E., Rome, Italy [†]DIEGM, Universita' di Udine, Italy [‡]Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA

<u>Outline</u>

☆ description of the control problem
☆ hybrid automaton formalism
☆ example of hybrid thermic model of a room
☆ the maximal safe set and the maximal controller
☆ event separation by a timer
☆ maximal safe set with timer projection
☆ conclusions

<u>Description of the Control Problem</u>

Find a set of states for which there exists a control strategy, for the stove and the *heater*, which maintains the room temperature within a specified range, no matter what the *door* and the *appliances* do, assuming that there is a delay between two successive discrete actions of the door and the stove.

Hybrid Automaton Formalism

A *hybrid automaton* is a tuple

 $H = ((Q, X), (\Sigma_c, U), (M_c^{disc}, M_c^{cts}), (\Sigma_e, D), (M_e^{disc}, M_e^{cts}), (\delta, f))$

Configuration	Q finite set of <i>modes</i>	$X \subseteq \mathbb{R}^n$ set of <i>cont. states</i>
domain Control feasible funct.	$\begin{split} \Sigma_c & \text{finite set of discrete events} \\ \Sigma_c^{\epsilon} &= \Sigma_c \cup \{\epsilon\}, \ \epsilon \ silent \ move \\ M_c^{disc} &: Q \times X \to 2^{\Sigma_c^{\epsilon}} \setminus \{\} \end{split}$	$U \subseteq \mathbb{R}^m \text{set of cont. values}$ $\mathcal{U} = \{u(\cdot) \in PC^0 u(t) \in U, \forall t\}$ $M_c^{cts} : Q \times X \to 2^U \setminus \{\}$
domain Disturbance feasible funct.	$\begin{split} \Sigma_e & \text{finite set of discrete events} \\ \Sigma_e^{\epsilon} &= \Sigma_e \cup \{\epsilon\}, \ \epsilon \ silent \ move \\ M_e^{disc} &: Q \times X \to 2^{\Sigma_e^{\epsilon}} \setminus \{\} \end{split}$	$D \subseteq \mathbb{R}^p \text{set of cont. values}$ $\mathcal{D} = \{ d(\cdot) \in PC^0 d(t) \in D, \forall t \}$ $M_e^{cts} : Q \times X \to 2^D \setminus \{ \}$
Transition Funct.	$\delta: Q \times X \times \Sigma_c^{\epsilon} \times \Sigma_e^{\epsilon} \to 2^{Q \times X} \setminus \{\}$ $\delta(q, x, \sigma_c, \sigma_e) = W \subseteq Q \times X$ $\delta(q, x, \epsilon, \epsilon) = \{(q, x)\}$	$f: Q \times X \times U \times D \to \mathbb{R}^n$ $\dot{x}(t) = f_q(x(t), u(t), d(t))$ $x(t_0) = x_0$

PARADES G.E.I.E., Rome

M

CC2004, Roma 26-28 Jan. 2004 # 4

<u>Full-state Controller</u>

The set of full-state feedback static controllers for H is the pair $C = (T^{disc}, T^{cts}), T^{disc} : Q \times X \to 2^{\sum_{c}^{\epsilon}} \setminus \{\}, T^{cts} : Q \times X \to 2^{U} \setminus \{\}$ and $\forall (q, x) \in Q \times X, T^{disc}(q, x) \subseteq M_{c}^{disc}(q, x)$ and $T^{cts}(q, x) \subseteq M_{c}^{cts}(q, x)$.

The coupling of the hybrid automaton H with the class $C = (T^{cts}, T^{disc})$ of full-state feedback static controllers is the closed-loop hybrid automaton

 $H_{C} = ((Q, X), (U, \Sigma_{c}), (T^{cts}, T^{disc}), (D, \Sigma_{e}), (M_{e}^{cts}, M_{e}^{disc}), (f, \delta)).$

 H_C is obtained from H by replacing the discrete controller move function with T^{disc} and the continuous controller move function with T^{cts} .

<u>Closed-Loop Hybrid Automaton H_C</u>

Hybrid Thermic Model of the Room

PARADES G.E.I.E., Rome

Maximal Safe Set and Maximal Controller

Given a set $Good \subset Q \times X$ of configurations that do not violate a *safety property*, the *Maximal Safe Set*, *Safe*, is the maximal robust controlled invariant set contained in Good,

the *Maximal Controller* is the family of all feedback controllers such that, given any configuration (q, x) in *Safe*, keep it in *Safe*.

Fixed–Point Procedure [Tomlin, Lygeros, Sastry - HSCC98]

```
procedure Safe = \mathcal{P}(H, Good)

W^0 := Good

i := -1

repeat {

i := i + 1

W^{i+1} := W^i \setminus [Pre_e^H(W^i) \cup Unavoid\_Pre^H(Pre_e^H(W^i) \cup \overline{W^i}, Pre_c^H(W^i))]

} until (W^{i+1} = W^i)

Safe := W^i
```

PARADES G.E.I.E., Rome

 $\frac{1}{2}$

Discrete and Continuous Operators

$$\begin{aligned} \operatorname{Pre}_{e}(W^{i}) &= \{(q, x) \in Q \times X : \forall \sigma_{c} \in M_{c}^{disc}(q, x) . \exists \sigma_{e} \in M_{e}^{disc}(q, x) . \\ (\sigma_{c}, \sigma_{e}) &\neq (\epsilon, \epsilon) \land \ \delta(q, x, \sigma_{c}, \sigma_{e}) \not\subseteq W^{i} \} \end{aligned}$$
$$\begin{aligned} \operatorname{Pre}_{c}(W^{i}) &= \{(q, x) \in Q \times X : \exists \sigma_{c} \in M_{c}^{disc}(q, x) . \forall \sigma_{e} \in M_{e}^{disc}(q, x) . \\ (\sigma_{c}, \sigma_{e}) &\neq (\epsilon, \epsilon) \land \delta(q, x, \sigma_{c}, \sigma_{e}) \subseteq W^{i} \}. \end{aligned}$$
$$\begin{aligned} \operatorname{Unavoid} \operatorname{Pre}(B, E) &= \{(q, \hat{x}) \in Q \times X \mid \forall u \in M^{cts} \ \exists \bar{t} > 0 \ \exists d \in M^{cts} \end{aligned}$$

 $\begin{aligned} \exists t > 0 \ \exists d \in M_e^{cus} \\ such that for the trajectory \ x(t) &= \psi_q(u, d, \hat{x}, t) \ we have \\ \forall \tau \in [0, \bar{t}) \ (q, x(\tau)) \in Wait \ \cap \overline{E} \land (q, x(\bar{t})) \in B \end{aligned}$

PARADES G.E.I.E., Rome

M

Lower Bound on Event Separation

When designing a hybrid system, we may have to guarantee that there is always a delay of at least Δ time units between pairs of consecutive discrete events (e.g., to ensure nonZenoness).

This lower bound can be enforced by introducing a timer t_c ($\dot{t}_c = 1$): events are enabled when $t_c \ge 0$ and jumps reset the timer to $t_c = -\Delta$, so that no discrete event is allowed in the interval $-\Delta \le t_c < 0$.

<u>Safe Set on Extended State Space</u>

How to avoid computing the maximal safe set in the extended space $\tilde{X} = (X, t_c)$?

Since there is only one timer t_c , information about its value can be discretized into the two parts— $t_c = -\Delta$ and $t_c \ge 0$:

- 1. if $t_c \ge 0$, then it suffices to know that a discrete jump is enabled, whereas the specific value of t_c irrelevant;
- 2. if $-\Delta \leq t_c < 0$, since t_c after a jump is always reset to $-\Delta$, the value of t_c can be determined by knowing the integration time.

Thus we can move between the two separated parts for $t_c = -\Delta$ and $t_c \ge 0$ by integrating between them for a fixed time Δ .

Maximal Safe Set with Timer Projection

$$\begin{array}{l} \operatorname{procedure} \ [Safe_0, Safe_{-\Delta}] = \mathcal{P}^{t_c}(H, Good) \\ W_0^0 := Good \\ W_{-\Delta}^0 := Good \\ i := -1 \\ \operatorname{repeat} \ \{ \\ i := i+1 \\ W_0^{i+1} := W_0^i \setminus [\operatorname{Pre}_e^H(W_{-\Delta}^i) \cup \\ Unavoid_\operatorname{Pre}^H(\operatorname{Pre}_e^H(W_{-\Delta}^i) \cup \overline{W_0^i}, \operatorname{Pre}_c^H(W_{-\Delta}^i))] \\ W_{-\Delta}^{i+1} := W_{-\Delta}^i \setminus Unavoid_\operatorname{Pre}_{(-\Delta,0]}^H(\overline{Good}, \overline{W_0^{i+1}}) \\ \} \operatorname{until} (W_0^{i+1} = W_0^i \text{ and } W_{-\Delta}^{i+1} = W_{-\Delta}^i) \\ Safe_0 := W_0^i \\ Safe_{-\Delta} := W_{-\Delta}^i \end{array}$$

PARADES G.E.I.E., Rome

Projection Operators

Given a set of configurations
$$K \subseteq Q \times \tilde{X}$$
:
1. $\pi_{(-\Delta)} : Q \times \tilde{X} \to Q \times X$ is such that $\pi_{(-\Delta)}(K) = \{(q, x) \in Q \times X | (q, x, -\Delta) \in K\}$, and
2. $\pi_{(0)} : Q \times \tilde{X} \to Q \times X$ is such that $\pi_{(0)}(K) = \{(q, x) \in Q \times X | (q, x, 0) \in K\}$.

The computation of the safe set can be carried out using only the projections of the sets K for $t_c = -\Delta$ and $t_c \ge 0$.

Projection Theorem

The sets W_0^i , $W_{-\Delta}^i$ computed by procedure $\mathcal{P}^{t_c}(H, Good)$ are the projections, respectively, for $t_c \geq 0$ and $t_c = -\Delta$, of the sets W^i computed by the procedure $\mathcal{P}(\tilde{H}, \tilde{G}ood)$, where $\tilde{G}ood = Good \times \mathbb{R}$, i.e.,

> $W_0^i = \pi_{(0)}(W^i),$ $W_{-\Delta}^i = \pi_{(-\Delta)}(W^i).$

In particular, the repeat cycle of procedure $\mathcal{P}^{t_c}(H, Good)$ converges if and only if the cycle of procedure $\mathcal{P}(\tilde{H}, \tilde{G}ood)$ does, and if so

 $Safe_0 = \pi_{(0)}(Safe),$

$$Safe_{-\Delta} = \pi_{(-\Delta)}(Safe).$$

Caveat to the Projection Theorem

To reconstruct the set Safe, the knowledge of the segments $Safe_0$ and $Safe_{-\Delta}$ is not sufficient; instead one has to obtain also the boundary curves that join them, by means of backward integration from the extremes of the segments.

<u>Results</u>

Since no transition is enabled for $t_c < 0$,

$$Pre_e(W^i)|_q \cap ([-\Delta, 0) \times \mathbb{R}) = \emptyset$$

 $Pre_c(W^i)|_q \cap ([-\Delta, 0) \times \mathbb{R}) = \emptyset$

From modes (off, closed) and (on, closed) to modes (off, open) and (on, open) the temperature is reset to $T_{ae} := rT_{ae}$. $Unavoid_Pre()$ is the playable set in a 2-player dynamic game between d and u:

$$\min_{d \in \mathcal{D}} \max_{u \in \mathcal{U}} H(t_c^*, T_{ae}^*, \lambda_1, \lambda_2, d, u) =$$
$$H(t_c^*, T_{ae}^*, \lambda_1, \lambda_2, d^*, u^*) = 0$$
$$d^*, u^*) = \begin{cases} (0, U_b) & upper \ boundary\\ (D_e, 0) & lower \ boundary \end{cases}$$

Conclusions

- $\checkmark Pre_e(\cdot), Pre_c(\cdot)$ can be written easily in closed form
- \checkmark no general solution available for $Unavoid_Pre(\cdot)$:
 - exploit system structure, e.g. reduce game to lower dimensions
- approximate conservative solutions
- \checkmark timer for discrete event separation
- \checkmark handle event separation in the discrete domain
- \checkmark selection of a controller inside the maximal safe set
- ☆ application to "idle regime" in engine control

