An Algebraic Method for System Reduction of Stationary Gaussian Systems

Jan H. van Schuppen (CWI)
with Dorina Jibetean (CWI)

26 January 2004, Rome CC Meeting

Outline

- Problem formulation. Gaussian systems.
- System identification - System reduction
- Infimization of divergence rate.
- Global optimization of rational functions.
- Procedure for infimization of divergence.
- Example
- Concluding remarks.

Problem formulation

Motivation System identification leads to infimization problem. In general, local minima occur because function is not convex!

Problem Determine global optimum for approximation problem of system identification.

Approach

- System reduction of Gaussian systems with divergence rate criterion.
- Apply algebraic methods for rational functions to determine the global minimum.

Preliminaries

Def. Gaussian system, Kalman canonical form,

$$
\begin{aligned}
x(t+1)= & A x(t)+B v(t), \quad x\left(t_{0}\right)=x_{0} \\
y(t)= & C x(t)+D v(t), \quad v(t) \in G(0, V) \\
& m=p, \quad \operatorname{rank}(D)=p, \quad V=I \\
& \operatorname{spec}(A), \operatorname{spec}\left(A-B D^{-1} C\right) \subset \mathbb{C}^{-} \\
& Q=A Q A^{T}+B V B^{T}, \quad G=A Q C^{T}+B V D^{T} \\
& (A, B) \text { reachable pair, }(A, C),(A, G) \text { observable pairs, } \\
& S G S P_{\min }(p, n, p)=\{(A, B, C, D) \text { as above }\} \\
& q \in Q D \subset \mathbb{R}^{n_{Q}} \mapsto(A(q), B(q), C(q), D(q)) \in S G S P_{\text {min }} \\
& \text { rational map. Canonical form: } p=1 \text { global, } p>1 \text { generic. }
\end{aligned}
$$

Def. Divergence or Kullback-Leibler pseudo-distance

$$
\begin{aligned}
D\left(P_{1} \| P_{2}\right)= & E_{Q}\left[r_{1} \ln \left(\frac{r_{1}}{r_{2}}\right) I_{\left(r_{2}>0\right)}\right] \\
= & \int_{\Omega} r_{1}(\omega) \ln \left(\frac{r_{1}(\omega)}{r_{2}(\omega)}\right) I_{\left(r_{2}(\omega)>0\right)} Q(d \omega) \\
& P_{1} \ll Q, r_{1}=d P_{1} / d Q, \quad P_{2} \ll Q, r_{2}=d P_{2} / d Q
\end{aligned}
$$

Divergence rate for stochastic process $y: \Omega \times T \rightarrow \mathbb{R}^{p}$,

$$
D_{r}\left(P_{1} \| P_{2}\right)=\lim _{t \rightarrow \infty} \frac{1}{2 t+1} D\left(\left.P_{1}\right|_{[-t,+t]} \|\left. P_{2}\right|_{[-t,+t]}\right)
$$

Remark

Divergence equals expected value of natural logarithm of likelihood function.

System identification - System reduction

- Infimization divergence rate

Procedure for system identification

1. From signals to system: Determine from a finite time series a high-order Gaussian system.
2. System reduction: Determine from a high-order Gaussian system a low-order Gaussian system.

Approximation criterion is divergence rate $D_{r}\left(P_{1} \| P_{2}\right)$.
Problem Optimal system reduction

$$
\begin{equation*}
\inf _{q \in Q D} D_{r}\left(P_{1} \| P_{2}(q)\right), \quad q^{*}=\arg \min _{q \in Q D} D_{r}\left(P_{1} \| P_{2}(q)\right) \tag{1}
\end{equation*}
$$

Determine global minimum q^{*}.

Procedure for computation of divergence rate

Notation

System $1 \quad n_{1} \in \mathbb{N},\left(A_{1}, B_{1}, C_{1}, D_{1}\right) \in S G S P_{\text {min }}\left(p, n_{1}, p\right)$,
high-order system,
System $2 \quad n_{2} \in \mathbb{N},\left(A_{2}, B_{2}, C_{2}, D_{2}\right) \in S G S P_{\text {min }}\left(p, n_{2}, p\right)$,
low-order approximant.
System 3 defined as inverse of System 2, $n_{3}=n_{2}$,

$$
\begin{aligned}
& \left(A_{3}, B_{3}, C_{3}, D_{3}\right) \\
& \quad=\left(A_{2}-B_{2} D_{2}^{-1} C_{2}, B_{2} D_{2}^{-1},-D_{2}^{-1} C_{2}, D_{2}^{-1}\right) \\
& \quad \in S G S P_{\min }\left(p, n_{3}, p\right)
\end{aligned}
$$

$D_{r}\left(P_{1} \| P_{2}\right)$ is computed using the series interconnection of System 3 and System 1.

Procedure for computation of divergence rate (continued)

1. Construct $\left(A_{4}, B_{4}, C_{4}, D_{4}\right)$ according to the formulas $n_{4}=n_{1}+n_{3}$,

$$
\left(A_{4}, B_{4}, C_{4}, D_{4}\right)
$$

$$
=\left(\left(\begin{array}{ll}
A_{1} & 0 \\
B_{3} C_{1} & A_{3}
\end{array}\right),\binom{B_{1}}{B_{3} D_{1}},\left(\begin{array}{ll}
D_{3} C_{1} & C_{3}
\end{array}\right), D_{3} D_{1}\right)
$$

2. Solve the discrete-time Lyapunov equation for the matrix $Q_{4} \in \mathbb{R}^{n_{4} \times n_{4}}$,

$$
Q_{4}=A_{4} Q_{4} A_{4}^{T}+B_{4} B_{4}^{T} ; \quad Q_{4}=\left(\begin{array}{cc}
Q_{1} & Q_{2} \tag{2}\\
Q_{2}^{T} & Q_{3}
\end{array}\right)
$$

where $Q_{1} \in \mathbb{R}^{n_{1} \times n_{1}}, Q_{2} \in \mathbb{R}^{n_{1} \times n_{2}}, Q_{3} \in \mathbb{R}^{n_{2} \times n_{2}}$.
3. Calculate

$$
\begin{align*}
f_{c}(q) & =D_{r}\left(P_{1} \| P_{2}(q)\right) \tag{3}\\
& =\frac{1}{2} \operatorname{trace}\left(C_{4} Q_{4} C_{4}^{T}+D_{4} D_{4}^{T}-I\right)-\frac{1}{2} \ln \operatorname{det}\left(D_{4} D_{4}^{T}\right)
\end{align*}
$$

Theorem Algebraic method

Consider $\inf _{q \in Q D} f_{c}(q)$.
(a) The optimum C_{3}^{*} is

$$
\begin{equation*}
C_{3}^{*}=-D_{3} C_{1} Q_{2} Q_{3}^{-1} \tag{4}
\end{equation*}
$$

(b) The optimum D_{3}^{*} satisfies $D_{3}^{* T} D_{3}^{*}=M^{-1}$, where $\quad M=C_{1}\left(Q_{1}-Q_{2} Q_{3}^{-1} Q_{2}^{T}\right) C_{1}^{T}+D_{1} D_{1}^{T}$.
(c) The criterion simplifies to

$$
f_{c}(q)=-\frac{1}{2} \ln \operatorname{det}\left(D_{1}^{T} M^{-1} D_{1}\right)=\frac{1}{2} \ln \operatorname{det} M-\ln \operatorname{det} D_{1}
$$

$\operatorname{det}(M)$ is a rational function w.r.t. entries of the $\left(A_{3}, B_{3}\right)$.
Thus one obtains an infimization of a rational function with constraints encoded in $Q D$.

Global optimization of rational functions

$$
\text { Find } \inf _{\left(x_{1}, \ldots, x_{k}\right) \in S \subseteq \mathbb{R}^{k}} \frac{p\left(x_{1}, \ldots, x_{k}\right)}{q\left(x_{1}, \ldots, x_{k}\right)},
$$

where p, q are multivariate polynomials without common factor.
Note NP-hard problem.
Algebraic methods: see
(D. Jibetean (2003, Ph.D. thesis); Research advisor B. Hanzon).
(a) Eigenvalue method
\Longrightarrow Global minimal value and a set of global minimizers (at least one point in each connected component).
(b) Linear Matrix Inequalities method
\Longrightarrow Global lower bound; combined with local search leads to global minimum.

LMI method. Main results.
Assumption: $S \subset \mathbb{R}^{k}$ is an open, semi-algebraic set (partial closure). Theorem Let $p(x), q(x)$ relatively prime.

$$
\exists x_{1}, x_{2} \in S, q\left(x_{1}\right)>0, q\left(x_{2}\right)<0 \Longrightarrow \inf _{x \in S \subseteq \mathbb{R}^{k}} \frac{p(x)}{q(x)}=-\infty
$$

Remark Converse not true.
Assume w.l.g. $q(x) \geq 0, \forall x \in S$.
Optimal system reduction is equivalent to:
Problem

$$
\begin{array}{ll}
\text { sup } & \alpha \in \mathbb{R} \tag{5}\\
\text { s.t. } & p(x)-\alpha q(x) \geq 0, \quad \forall x \in S .
\end{array}
$$

Approach for (??): LMI relaxation and constraints encoded in S.

Transformation

$$
\begin{aligned}
p(x)-\alpha q(x) & =z^{T} N(\lambda, \alpha) z \\
z^{T} & =\left(\begin{array}{ccccccccc}
1 & x_{1} & \ldots & x_{k} & x_{1}^{2} & x_{1} x_{2} & x_{2}^{2} & \ldots & x_{k}^{d}
\end{array}\right) \\
N(\lambda, \alpha) & =Q_{0}+\sum_{i=1}^{s} Q_{i} \lambda_{i}+Q_{s+1} \alpha
\end{aligned}
$$

Gram matrix $N(\lambda, \alpha)$ is affine, symmetric, $\alpha \in \mathbb{R}, \lambda \in \mathbb{R}^{s}$;

$$
\exists \lambda^{*} \in \mathbb{R}^{s}, \quad N\left(\lambda^{*}, \alpha\right) \succeq 0 \Longrightarrow p(x)-\alpha q(x) \geq 0, \forall x \in \mathbf{R}^{k}
$$

Generalized Gram matrix $N_{S}(\alpha, \lambda)$

$$
\exists \lambda^{*} \in \mathbb{R}^{s}, \quad N_{S}\left(\lambda^{*}, \alpha\right) \succeq 0 \Longrightarrow p(x)-\alpha q(x) \geq 0, \forall x \in S \subseteq \mathbf{R}^{k}
$$

Theorem The convex problem

$$
\begin{array}{ll}
\sup & \alpha \in \mathbb{R} \tag{6}\\
\text { s.t. } & N_{S}(\lambda, \alpha) \succeq 0
\end{array}
$$

is an LMI relaxation of (??), specifically,

$$
\begin{array}{ll}
\sup \quad \alpha & \leq \inf _{\left(x_{1}, \ldots, x_{k}\right) \in S \subseteq \mathbb{R}^{k}} \frac{p\left(x_{1}, \ldots, x_{k}\right)}{q\left(x_{1}, \ldots, x_{k}\right)} \\
\text { s.t. } & N_{S}(\lambda, \alpha) \succeq 0
\end{array}
$$

Is the lower bound tight?

$$
N_{S}\left(\lambda^{*}, \alpha^{*}\right) \Longrightarrow Y^{*}=Y\left(\lambda^{*}, \alpha^{*}\right)
$$

If $\operatorname{rank}\left(Y^{*}\right)=1, Y^{*}=z^{*} z^{* T}, z^{*} \mapsto\left(x_{1}^{*}, \ldots, x_{k}^{*}\right)$ global optimum then the bound is tight.

Procedure for infimization of divergence rate

(1) Select a canonical form $\left(A_{3}, B_{3}, C_{3}, D_{3}\right)$, with C_{3}, D_{3} fully parametrized, independent from A_{3}, B_{3}. For example, the control canonical form.
(2) Solve symbolically for $Q_{1}, Q_{2}, Q_{3}\left(Q_{1} \rightarrow Q_{2} \rightarrow Q_{3}\right)$

$$
\begin{aligned}
& \left(\begin{array}{ll}
Q_{1} & Q_{2} \\
Q_{2}^{T} & Q_{3}
\end{array}\right) \\
& =\left(\begin{array}{ll}
A_{1} & 0 \\
B_{3} C_{1} & A_{3}
\end{array}\right)\left(\begin{array}{ll}
Q_{1} & Q_{2} \\
Q_{2}^{T} & Q_{3}
\end{array}\right)\left(\begin{array}{ll}
A_{1} & 0 \\
B_{3} C_{1} & A_{3}
\end{array}\right)^{T}+ \\
& \quad+\binom{B_{1}}{B_{3} D_{1}}\binom{B_{1}}{B_{3} D_{1}}^{T} .
\end{aligned}
$$

(3) Calculate $\operatorname{det} M$, a rational function, where

$$
M(q)=C_{1}\left(Q_{1}-Q_{2} Q_{3}^{-1} Q_{2}^{T}\right) C_{1}^{T}+D_{1} D_{1}^{T} .
$$

(4) Compute (see page 12)

$$
\inf _{q \in Q D} \operatorname{det} M(q) .
$$

If, moreover, the infimum is attained, i.e. the global minimum exists, then determine its location $q^{*} \in Q D$ as well.
(5) Evaluate System 3 at the optimal value and compute

$$
q^{*} \mapsto\left(A_{3}^{*}, B_{3}^{*}, C_{3}^{*}, D_{3}^{*}\right) .
$$

(6) Compute the approximant System 2

$$
\left(A_{2}^{*}, B_{2}^{*}, C_{2}^{*}, D_{2}^{*}\right) .
$$

Example 1

Consider a Gaussian system of order 2 in the control canonical form

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{cc}
-0.4 & -0.32 \\
1 & 0
\end{array}\right), \quad B_{1}=\binom{1}{0}, \\
& C_{1}=\left(\begin{array}{ll}
0 & -0.28
\end{array}\right), \quad D_{1}=(1) .
\end{aligned}
$$

System 3 is parametrized by

$$
\begin{aligned}
& \left(a_{3}, 1, c_{3}, d_{3}\right) \in \operatorname{SGSP}_{\min }(1,1,1), \\
& \text { that is, } d_{3}>0,\left|a_{3}\right|<1,\left|a_{3}-c_{3} d_{3}^{-1}\right|<1, c_{3} \neq 0 .
\end{aligned}
$$

Example 1 (Continued)
The criterion becomes

$$
f_{c}=-\frac{1}{2} \ln \left(\frac{-34\left(25+10 a_{3}+8 a_{3}^{2}\right)\left(56907 a_{3}{ }^{2}-230375-79900 a_{3}\right)}{\left(731 a_{3}{ }^{2}+1801 a_{3}+19500\right)\left(391 a_{3}^{2}+7039 a_{3}+11000\right)}\right)
$$

In the stability region we find two local minima

$$
\begin{aligned}
f_{c}((0.6353,1,0.1059,0.9631)) & =0.0376, \\
f_{c}((-0.7835,1,-0.1269,0.9693)) & =0.0312 .
\end{aligned}
$$

The second point is global minimum.
Compute the approximants (System 2)

$$
\begin{array}{r}
\left(a_{2}^{*}, b_{2}^{*}, c_{2}^{*}, d_{2}^{*}\right)=(0.5253,1.0383,-0.1142,1.0383) \\
\quad \text { respectively }(-0.6525,1.0317,0.1351,1.0317) .
\end{array}
$$

Example 1 (Continued)

The impulse response of the original system, global approximant, and local approximant are plotted.

Example 1 (Continued)

The covariance function of the original system, global approximant, and local approximant are plotted.

Example 2

System reduction from $n_{1}=3$ to $n_{2}=2$.
Consider Gaussian system with

$$
\begin{aligned}
A_{1} & =\left(\begin{array}{lll}
-1 / 4 & 1 / 2 & 1 / 3 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad B_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \\
C_{1} & =\left(\begin{array}{lll}
1 & 2 & 1
\end{array}\right), \quad D_{1}=2, \\
\operatorname{spec}\left(A_{1}\right) & = \begin{cases}0.8322, & -0.5411+/-i 0.3281\} .\end{cases}
\end{aligned}
$$

Approximant System 3 in control canonical form with parameters, $\alpha_{1}, \alpha_{2}, \gamma_{1}, \gamma_{2}, \delta$.

Example 2

Optimize analytically with respect to γ_{1}, γ_{2}, and δ.
Criterion becomes,

$$
\begin{gathered}
\sup _{\alpha_{1}, \alpha_{2} \in A_{D}} \frac{5640 \alpha_{1}^{3}+85896 \alpha_{1}^{2}+\ldots}{376 \alpha_{2}^{2}-618 \alpha_{2}^{2}+\ldots}, \\
A_{d}=\left\{\begin{array}{l}
\left(\alpha_{1}, \alpha_{2}\right) \in A_{D} \mid 1+\alpha_{2} \geq 0 \\
\alpha_{1}-\alpha_{2}+1 \geq 0,-\alpha_{1}-\alpha_{2}+1 \geq 0
\end{array}\right)
\end{gathered}
$$

Optimization of rational function.
Gröbner basis, produces at most 100 local minima. Not all computed. Bounding technique using SOSTOOLS (Pablo Parrilo) yields a global approximant.

Example 2

Global approximant,

$$
\begin{aligned}
A_{2} & =\left(\begin{array}{ll}
0.4252 & 0.3162 \\
1 & 0
\end{array}\right), \quad B_{2}=\binom{2.0071}{0}, \\
C_{2} & =\left(\begin{array}{ll}
0.5033 & 0.6739
\end{array}\right), \quad D_{2}=2.0071, \\
\operatorname{spec}\left(A_{2}\right) & =\{0.8138,-0.3886\}, \\
f_{c}\left(q^{*}\right) & =0.0036
\end{aligned}
$$

Case $n_{2} \geq 3$ requires investigation of parameter constraints.

Example 2 (Continued)

The covariance function of the original system (continuous line), best approximant (dashed line) are plotted.

Concluding remarks

- System reduction by algebraic method.
- Procedure algebraic infimization of divergence rate.
- Examples
- Implications for practice of system identification.

Further research

- Class of Gaussian systems of order $n_{2} \geq 3$.
- Algebraic theory and algorithms, in particular, how to better handle parametrizations and constraints.

The End!

