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Problem formulation

Motivation System identification leads to infimization problem.

In general, local minima occur because function is not convex!

Problem Determine global optimum for approximation problem of

system identification.

Approach

– System reduction of Gaussian systems with divergence rate

criterion.

– Apply algebraic methods for rational functions to determine the

global minimum.
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Preliminaries

Def. Gaussian system, Kalman canonical form,

x(t+ 1) = Ax(t) +Bv(t), x(t0) = x0,

y(t) = Cx(t) +Dv(t), v(t) ∈ G(0, V ),

m = p, rank(D) = p, V = I,

spec(A), spec(A−BD−1C) ⊂ C−,

Q = AQAT +BV BT , G = AQCT +BVDT ,

(A,B) reachable pair, (A,C), (A,G) observable pairs,

SGSPmin(p, n, p) = {(A,B,C,D) as above},

q ∈ QD ⊂ RnQ 7→ (A(q), B(q), C(q), D(q)) ∈ SGSPmin,

rational map. Canonical form: p = 1 global, p > 1 generic.
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Def. Divergence or Kullback-Leibler pseudo-distance

D(P1‖P2) = EQ[r1 ln(
r1
r2
)I(r2>0)]

=

∫

Ω

r1(ω) ln(
r1(ω)

r2(ω)
)I(r2(ω)>0)Q(dω),

P1 ¿ Q, r1 = dP1/dQ, P2 ¿ Q, r2 = dP2/dQ.

Divergence rate for stochastic process y : Ω× T → Rp,

Dr(P1‖P2) = lim
t→∞

1

2t+ 1
D(P1|[−t,+t]‖P2|[−t,+t]).

Remark

Divergence equals expected value of natural logarithm of likelihood

function.
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System identification - System reduction

- Infimization divergence rate

Procedure for system identification

1. From signals to system: Determine from a finite time series a

high-order Gaussian system.

2. System reduction: Determine from a high-order Gaussian system a

low-order Gaussian system.

Approximation criterion is divergence rate Dr(P1‖P2) .

Problem Optimal system reduction

inf
q∈QD

Dr(P1‖P2(q)), q∗ = arg min
q∈QD

Dr(P1‖P2(q)). (1)

Determine global minimum q∗.
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Procedure for computation of divergence rate

Notation

System 1 n1 ∈ N, (A1, B1, C1, D1) ∈ SGSPmin(p, n1, p),

high-order system,

System 2 n2 ∈ N, (A2, B2, C2, D2) ∈ SGSPmin(p, n2, p),

low-order approximant.

System 3 defined as inverse of System 2, n3 = n2,

(A3, B3, C3, D3)

= (A2 −B2D
−1
2 C2, B2D

−1
2 ,−D−12 C2, D

−1
2 )

∈ SGSPmin(p, n3, p).

Dr(P1‖P2) is computed using the series interconnection

of System 3 and System 1.
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Procedure for computation of divergence rate (continued)

1. Construct (A4, B4, C4, D4) according to the formulas n4 = n1 + n3,

(A4, B4, C4, D4)

=









A1 0

B3C1 A3



 ,





B1

B3D1



 ,
(

D3C1 C3

)

, D3D1





2. Solve the discrete-time Lyapunov equation for the matrix

Q4 ∈ Rn4×n4 ,

Q4 = A4Q4A
T
4 +B4B

T
4 ; Q4 =





Q1 Q2

QT2 Q3



 , (2)

where Q1 ∈ Rn1×n1 , Q2 ∈ Rn1×n2 , Q3 ∈ Rn2×n2 .

3. Calculate

fc(q) = Dr(P1‖P2(q)) (3)

=
1

2
trace(C4Q4C

T
4 +D4D

T
4 − I)−

1

2
ln det(D4D

T
4 ).

8



Theorem Algebraic method

Consider inf
q∈QD

fc(q).

(a) The optimum C∗3 is

C∗3 = −D3C1Q2Q
−1
3 . (4)

(b) The optimum D∗3 satisfies D∗3
TD∗3 =M−1,

where M = C1
(

Q1 −Q2Q
−1
3 QT2

)

CT1 +D1D
T
1 .

(c) The criterion simplifies to

fc(q) = −
1

2
ln det(DT

1M
−1D1) =

1

2
ln detM − ln detD1.

det(M) is a rational function w.r.t. entries of the (A3, B3).

Thus one obtains an infimization of a rational function with

constraints encoded in QD.
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Global optimization of rational functions

Find inf
(x1,...,xk)∈S⊆Rk

p(x1, . . . , xk)

q(x1, . . . , xk)
,

where p, q are multivariate polynomials without common factor.

Note NP -hard problem.

Algebraic methods: see

(D. Jibetean (2003, Ph.D. thesis); Research advisor B. Hanzon).

(a) Eigenvalue method

=⇒ Global minimal value and a set of global minimizers

(at least one point in each connected component).

(b) Linear Matrix Inequalities method

=⇒ Global lower bound; combined with local search leads to global

minimum.
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LMI method. Main results.

Assumption: S ⊂ Rk is an open, semi-algebraic set (partial closure).

Theorem Let p(x), q(x) relatively prime.

∃x1, x2 ∈ S, q(x1) > 0, q(x2) < 0 =⇒ inf
x∈S⊆Rk

p(x)

q(x)
= −∞.

Remark Converse not true.

Assume w.l.g. q(x) ≥ 0, ∀x ∈ S.

Optimal system reduction is equivalent to:

Problem

sup α ∈ R

s.t. p(x)− αq(x) ≥ 0, ∀x ∈ S.
(5)

Approach for (??): LMI relaxation and constraints encoded in S.
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Transformation

p(x)− αq(x) = zTN(λ, α)z,

zT =
(

1 x1 . . . xk x21 x1x2 x22 . . . xdk

)

,

N(λ, α) = Q0 +

s
∑

i=1

Qiλi +Qs+1α.

Gram matrix N(λ, α) is affine, symmetric, α ∈ R, λ ∈ Rs;

∃λ∗ ∈ Rs, N(λ∗, α) º 0 =⇒ p(x)− αq(x) ≥ 0, ∀x ∈ R
k.

Generalized Gram matrix NS(α, λ)

∃λ∗ ∈ Rs, NS(λ
∗, α) º 0 =⇒ p(x)− αq(x) ≥ 0, ∀x ∈ S ⊆ R

k.
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Theorem The convex problem

sup α ∈ R

s.t. NS(λ, α) º 0,
(6)

is an LMI relaxation of (??), specifically,

sup α ≤ inf(x1,...,xk)∈S⊆Rk
p(x1,...,xk)
q(x1,...,xk)

s.t. NS(λ, α) º 0.

Is the lower bound tight?

NS(λ
∗, α∗) =⇒ Y ∗ = Y (λ∗, α∗).

If rank(Y ∗) = 1, Y ∗ = z∗z∗T , z∗ 7→ (x∗1, . . . , x
∗
k) global optimum

then the bound is tight.
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Procedure for infimization of divergence rate

(1) Select a canonical form (A3, B3, C3, D3), with C3, D3 fully

parametrized, independent from A3, B3. For example, the control

canonical form.

(2) Solve symbolically for Q1, Q2, Q3 (Q1 → Q2 → Q3)




Q1 Q2

Q2
T Q3





=





A1 0

B3C1 A3









Q1 Q2

Q2
T Q3









A1 0

B3C1 A3





T

+

+





B1

B3D1









B1

B3D1





T

.
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(3) Calculate detM , a rational function, where

M(q) = C1
(

Q1 −Q2Q3
−1Q2

T
)

CT1 +D1D
T
1 .

(4) Compute (see page 12)

inf
q∈QD

detM(q).

If, moreover, the infimum is attained, i.e. the global minimum exists,

then determine its location q∗ ∈ QD as well.

(5) Evaluate System 3 at the optimal value and compute

q∗ 7→ (A∗3, B
∗
3 , C

∗
3 , D

∗
3).

(6) Compute the approximant System 2

(A∗2, B
∗
2 , C

∗
2 , D

∗
2).
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Example 1

Consider a Gaussian system of order 2 in the control canonical form

A1 =





−0.4 −0.32

1 0



 , B1 =





1

0



 ,

C1 =
(

0 −0.28
)

, D1 =
(

1
)

.

System 3 is parametrized by

(a3, 1, c3, d3) ∈ SGSPmin(1, 1, 1),

that is, d3 > 0, |a3| < 1, |a3 − c3d
−1
3 | < 1, c3 6= 0.
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Example 1 (Continued)

The criterion becomes

fc = −
1

2
ln

(

−34
(

25 + 10 a3 + 8 a3
2
) (

56907 a3
2 − 230375− 79900 a3

)

(731 a32 + 1801 a3 + 19500) (391 a32 + 7039 a3 + 11000)

)

In the stability region we find two local minima

fc((0.6353, 1, 0.1059, 0.9631)) = 0.0376,

fc((−0.7835, 1,−0.1269, 0.9693)) = 0.0312.

The second point is global minimum.

Compute the approximants (System 2)

(a∗2, b
∗
2, c

∗
2, d

∗
2) = (0.5253, 1.0383,−0.1142, 1.0383),

respectively (−0.6525, 1.0317, 0.1351, 1.0317).
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Example 1 (Continued)

The impulse response of the original system,

global approximant, and local approximant are plotted.
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Example 1 (Continued)

The covariance function of the original system,

global approximant, and local approximant are plotted.
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Example 2

System reduction from n1 = 3 to n2 = 2.

Consider Gaussian system with

A1 =









−1/4 1/2 1/3

1 0 0

0 1 0









, B1 =









1

0

0









,

C1 =
(

1 2 1
)

, D1 = 2,

spec(A1) = {0.8322, − 0.5411 + /− i0.3281}.

Approximant System 3 in control canonical form with parameters,

α1, α2, γ1, γ2, δ.

20



Example 2

Optimize analytically with respect to γ1, γ2, and δ.

Criterion becomes,

sup
α1,α2∈AD

5640α31 + 85896α
2
1 + ....

376α22 − 618α
2
2 + . . .

,

Ad =







(α1, α2) ∈ AD|1 + α2 ≥ 0,

α1 − α2 + 1 ≥ 0, − α1 − α2 + 1 ≥ 0



 .

Optimization of rational function.

Gröbner basis, produces at most 100 local minima. Not all computed.

Bounding technique using SOSTOOLS (Pablo Parrilo) yields a global

approximant.
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Example 2

Global approximant,

A2 =





0.4252 0.3162

1 0



 , B2 =





2.0071

0



 ,

C2 =
(

0.5033 0.6739
)

, D2 = 2.0071,

spec(A2) = {0.8138, − 0.3886},

fc(q
∗) = 0.0036.

Case n2 ≥ 3 requires investigation of parameter constraints.
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Example 2 (Continued)

The covariance function of the original system (continuous line),

best approximant (dashed line) are plotted.
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Concluding remarks

• System reduction by algebraic method.

• Procedure algebraic infimization of divergence rate.

• Examples

• Implications for practice of system identification.

Further research

• Class of Gaussian systems of order n2 ≥ 3.

• Algebraic theory and algorithms, in particular, how to better handle

parametrizations and constraints.

The End!
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