An Algebraic Method for System Reduction
of Stationary Gaussian Systems

Jan H. van Schuppen (CWI)
with Dorina Jibetean (CWI)

26 January 2004, Rome
CC Meeting



Outline
e Problem formulation. Gaussian systems.

e System identification - System reduction
- Infimization of divergence rate.

e Global optimization of rational functions.
e Procedure for infimization of divergence.
e Example

e Concluding remarks.



Problem formulation

Motivation System identification leads to infimization problem.
In general, local minima occur because function is not convex!

Problem Determine global optimum for approximation problem of

system identification.

Approach
— System reduction of Gaussian systems with divergence rate
criterion.

— Apply algebraic methods for rational functions to determine the

global minimum.



Preliminaries

Def. Gaussian system, Kalman canonical form,

r(t+1) = Ax(t)+ Bvu(t), z(to) = zo,

y(t) = Cux(t)+ Du(t), o(t) € G(0,V),
m =p, rank(D)=p, V =1,
spec(A),spec(A — BD~'C) c C™,
Q= AQAT + BVBT, G = AQCT + BVD?',
(A, B) reachable pair, (A,C), (A, G) observable pairs,
SGSPin(p,n,p) ={(A, B,C, D) as above},
q € QD CR" — (A(q), B(q),C(q),D(q)) € SGSPpin,

rational map. Canonical form: p = 1 global, p > 1 generic.



Def. Divergence or Kullback-Leibler pseudo-distance

-
D(P1||Pz) = EQ[rlln(é)I(rz>O)]

N /Q r1(w) In( 2 w) M (ry(w)>0)Q(dw),

ra(w)
P<@Q, rn= dPl/dQ, P, < Q, ro = dPQ/dQ

Divergence rate for stochastic process y : {2 x T' — RP,

, 1
Dy (P1|[P) = lim mD(Pl\[—t,th] [ Pal[—t,44)-

Divergence equals expected value of natural logarithm of likelihood
function.



System identification - System reduction
- Infimization divergence rate
Procedure for system identification

1. From signals to system: Determine from a finite time series a
high-order Gaussian system.

2. System reduction: Determine from a high-order Gaussian system a
low-order Gaussian system.

Approximation criterion is divergence rate D,.(P;||P2) .

Problem Optimal system reduction

qé%fDDr(P1||P2(Q))7 q Zargqrélc}grll)Dr(PlHP2(Q))-

Determine global minimum ¢~*.



Procedure for computation of divergence rate

Notation
System 1 ny € N, (A1, B1,C1,D1) € SGSPpin(p,n1,p),
high-order system,
System 2 ne € N, (As, By, Cy, Dy) € SGSPpyin(p,na, p),
low-order approximant.
System 3 defined as inverse of System 2, ng3 = no,

(A37B37037D3)
= (Ay — ByD;'Cy,ByD; ', —D;'Cy, D7)
S SGSszn(p7 n37p)'

D,.(Py||P>) is computed using the series interconnection
of System 3 and System 1.



Procedure for computation of divergence rate (continued)
1. Construct (A4, B4, Cy4, Dy4) according to the formulas ny = nqy + ng,
(A47 B47 047 D4)
p— ’ ,( Dgcl 03 )7 D3D1
BsCy  As B3 D1
2. Solve the discrete-time Lyapunov equation for the matrix
Q4 c R’n4 ><n4’

Q1 Q2
Q; Qs

where Q1 € R™ %" Qo € R™MX™2 Q3 € R"2%"2,

Qs = AyQuA; + B4Bi; Q4=

3. Calculate

felg) = Dr(P1]|Pa(q)) (3)

1 1
— 5t.ra<;e<cj4Q4cj4T + DyDF — 1) - 5 Indet(D4Dy ).
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Theorem Algebraic method

Consid inf f.(q).
onsider qé%Df (q)

(a) The optimum C7 is
Cy = —D3010Q:Q5". (4)

(b) The optimum D% satisfies D' D% = M1,
where M = C; (Q1 — Q2Q; Q%) CT + D, DT.

(c) The criterion simplifies to
1 1
fo(q) = -3 Indet(DI M~'D;) = 5 Indet M — Indet D;.

det(M) is a rational function w.r.t. entries of the (As, Bs).
Thus one obtains an infimization of a rational function with
constraints encoded in QQD.



Global optimization of rational functions

Find inf @1, )
(€1,..,21)ESCRF q(T1, ..., T)

Y

where p, ¢ are multivariate polynomials without common factor.
N P-hard problem.

Algebraic methods: see

(D. Jibetean (2003, Ph.D. thesis); Research advisor B. Hanzon).

(a) Eigenvalue method
— Global minimal value and a set of global minimizers
(at least one point in each connected component).

(b) Linear Matrix Inequalities method
— Global lower bound; combined with local search leads to global

minimum.
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LMI method. Main results.
Assumption: S C R¥ is an open, semi-algebraic set (partial closure).
Theorem Let p(z), q(x) relatively prime.

Azy, 25 € S, >0, <0 — inf 22— _
T1,To q(x1) q(x2) ot e 00

Converse not true.
Assume w.l.g.
Optimal system reduction is equivalent to:
Problem

sup a€R
st. p(x) —aq(x) >0, Vexes.

(5)

Approach for (??): LMI relaxation and constraints encoded in S.
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Transformation
p(z) —agq(z) = 2"N(\a)z

T
z = (1 r1 ... Tk ﬁ L1279 :1:% xﬁ

N\ a) = Qo+ Z QiNi + Qst10n.
i=1

Gram matrix N(\, «) is affine, symmetric, a € R, A € R?;
N e R, N\, a) = 0= p(z) — ag(z) >0, Vz € R*.

Generalized Gram matrix Ng(a, \)

IN* € R*, Ng(\*,a) = 0= p(z) — ag(z) >0, Vx € S C RF.
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Theorem The convex problem

sup a € R

st. Ng(A ) =0, (©)

is an LMI relaxation of (?7?), specifically,

k p(:cla“')a:k:)
TR )ESCR q(x1,...,x1)

sup « < inf,,

S.t. Ns()\,()é) ~ 0.
Is the lower bound tight?
Ns(\*, ™) = Y* =Y (\*, o).

If rank(Y*) = 1, Y* = 2*2*", 2* — (a%,...,2%) global optimum
then the bound is tight.
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Procedure for infimization of divergence rate

(1) Select a canonical form (As, B3, Cs, D3), with C3, Ds fully
parametrized, independent from A3, Bs. For example, the control

canonical form.

(2) Solve symbolically for Q1, Q2, Q3 (Q1 — Q2 — Q3)

Q1 Q2
Q21 Qs
T

. Al 0 Ql QQ Al 0

BsCy  As Q27 Qs BsC; As

T
By By
_I_
B3 D1 Bs D,
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(3) Calculate det M, a rational function, where
M(q) = Cy (Q1 — Q2Qs7'Q2") Cf +D1Dy .
(4) Compute (see page 12)

inf det M(q).
o det M(q)

If, moreover, the infimum is attained, i.e. the global minimum exists,
then determine its location ¢* € QD as well.

(5) Evaluate System 3 at the optimal value and compute
q¢ — (A3, B3,C5,D3).
(6) Compute the approximant System 2

(A3, By, Cy, D).
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Example 1
Consider a Gaussian system of order 2 in the control canonical form

—04 —-0.32 1
Al — ’ Bl — ;
1 0 0

o= (0 —028), Di=(1),
System 3 is parametrized by
(&3, 17637d3) S SGSszn(L 17 1)7

that is, ds > 0, |CL3‘ < 1, |CL3 — nggl‘ <1, c3 75 0.
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Example 1 (Continued)
The criterion becomes

1 (34 (25 + 10a3 + 8 a3?) (56907 az® — 230375 — 79900 as) )

fc = ——In
2 (731 a3? + 1801 ag + 19500) (391 a3? 4 7039 a3 + 11000)
In the stability region we find two local minima

£0((0.6353,1,0.1059,0.9631)) = 0.0376,
fo((—0.7835,1,—0.1269,0.9693)) =

The second point is global minimum.
Compute the approximants (System 2)

(af,b%, ¢, d5) = (0.5253,1.0383, —0.1142, 1.0383),

respectively
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Example 1 (Continued)
The impulse response of the original system,

global approximant, and local approximant are plotted.
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Example 1 (Continued)

The covariance function of the original system,

, and local approximant are plotted.
0.6 \\ 0.6
0.2 \\ 0.2 \\
-0.2 -0.2
% 5 10 s % 10
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Example 2
System reduction from n; = 3 to ny = 2.
Consider Gaussian system with

“1/4 1/2 1/3 1
A = 1 0 0 , Bir=1 0 |,
0 1 0 0
Cl = ( 1 2 1 > , Dl = 2,
spec(4;) = {0.8322, —0.5411 4 / — i0.3281}.

Approximant System 3 in control canonical form with parameters,

a1, 2, Y1, Y2, 0.
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Example 2
Optimize analytically with respect to 1, 72, and J.

Criterion becomes,

. 564003 + 8589602 + ...
u Y
o T376a2 — 61802 + ...

(a1,a2) € Ap|l + ag > 0,
A; =

ap—az+120, —a1—ax+12>0

Optimization of rational function.

Grobner basis, produces at most 100 local minima. Not all computed.

Bounding technique using SOSTOOLS (Pablo Parrilo) yields a global
approximant.
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Example 2
Global approximant,

0.4252 0.3162 2.0071
A2 = , By =
1 0 0
Co = ( 0.5033 0.6739 ), Dy = 2.0071,
spec(4s) = {0.8138, —0.3886},
f.(q*) = 0.0036.

Case ng > 3 requires investigation of parameter constraints.

22



Example 2 (Continued)
The covariance function of the original system (continuous line),
best approximant (dashed line) are plotted.
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Concluding remarks
e System reduction by algebraic method.
e Procedure algebraic infimization of divergence rate.
e Examples
e Implications for practice of system identification.
Further research
e Class of Gaussian systems of order ny > 3.

e Algebraic theory and algorithms, in particular, how to better handle
parametrizations and constraints.

The End!

24



