Examples of Relaxed Dynamic Programming

Bo Lincoln, Anders Rantzer
Dept. of Automatic Control
Lund Institute of Technology, Sweden
lincoln @ control.lth.se

Relaxed Dynamic Programming

Dynamic Programming (DP) is a beautiful idea - but seldomly used.

Most important part of DP: The value function $V(x)$:

- Gives the cost to start from state x.
- Implicitly gives a control law .
- Optimal $V(x)$ may be very hard to represent (except in special cases such as shortest-path-problems or LQG).

Dynamics of a system:

$$
x(n+1)=f(x(n), u(n))
$$

Cost function:

$$
J=\sum_{n=0}^{\infty} l(x(n), u(n))
$$

Bellman's equation:

$$
V^{*}(x)=\min _{u}\left\{V^{*}(f(x, u)+l(x, u)\}\right.
$$

$V^{*}(x)$ is the optimal value function.

Relaxed Dynamic Programming

Value iteration:

$$
V_{k+1}(x)=\min _{u}\left\{V_{k}(f(x, u)+l(x, u)\}\right.
$$

Main idea - Relaxed value iteration :

$$
\begin{gathered}
\underline{V}_{k+1}(x)=\min _{u}\left\{V_{k}(f(x, u))+\underline{l}(x, u)\right\} \\
\leq V_{k+1}(x) \leq \\
\min _{u}\left\{V_{k}(f(x, u))+\bar{l}(x, u)\right\}=\bar{V}_{k+1}(x)
\end{gathered}
$$

where

$$
\begin{array}{ll}
\bar{l}(x, u)=\bar{\alpha} l(x, u), & \bar{\alpha} \geq 1 \\
\underline{l}(x, u)=\underline{\alpha} l(x, u), & \underline{\alpha} \leq 1 .
\end{array}
$$

Relaxed Dynamic Programming

$$
\begin{aligned}
& \underline{V}_{k+1}(x)=\min _{u}\left\{V_{k}(f(x, u))+\underline{l}(x, u)\right\} \\
& \min _{u}\left\{V_{k+1}(x) \leq\right. \\
& \underline{V}(f(x, u))+\bar{l}(x, u)\}=\bar{V}_{k+1}(x)
\end{aligned}
$$

Relaxed Dynamic Programming

Iterating the inequality

$$
\begin{gathered}
\underline{V}_{k+1}(x)=\min _{u}\left\{V_{k}(f(x, u))+\underline{l}(x, u)\right\} \\
\leq V_{k+1}(x) \leq \\
\min _{u}\left\{V_{k}(f(x, u))+\bar{l}(x, u)\right\}=\bar{V}_{k+1}(x)
\end{gathered}
$$

leads to

$$
\underline{\alpha} \min _{u} \sum_{n=0}^{k} l(x(n), u(n)) \leq V_{k}(x) \leq \bar{\alpha} \min _{u} \sum_{n=0}^{k} l(x(n), u(n))
$$

Applications

Switched linear systems:

- Finite set of system matrices (linear system), quadratic cost.
- Controller chooses both continuous control signal u and system dynamics. No autonomous switching.
- Value function on form

$$
V(x)=\min _{i} x^{T} \Pi_{i} x
$$

Applications

Piecewise linear cost:

- LTI system with constraints.
- Piecewise linear cost.
- Value function on form

$$
V(x)=\max _{i} \Pi_{i}^{T}\left[\begin{array}{l}
x \\
u \\
1
\end{array}\right]
$$

Applications

Partially Observable Markov Decision Networks (POMDPs):

- Markov control problem with unknown state.
- Boils down to the "Piecewise linear cost problem".

Which problems can use Relaxed DP?

The main issue in each iteration is finding $V_{k+1}(x)$:

$$
\begin{gathered}
\underline{V}(x)=\min _{u}\left\{V_{k}(f(x, u))+\underline{l}(x, u)\right\} \\
\leq V_{k+1}(x) \leq \\
\min _{u}\left\{V_{k}(f(x, u))+\bar{l}(x, u)\right\}=\bar{V}(x)
\end{gathered}
$$

In the previous applications:

- Add elements from $\underline{V}(x)$ or $\bar{V}(x)$ to $V_{k+1}(x)$ until both inequalities hold.
- Typical inequality test: LP or LMI.

New Applications

Internet routing tables:
Relaxed DP can be used to decrease size of routing tables. Idea: Hosts with similar addresses are often on approximately the same distance from some source node.

Piecewise Linear Quadratic Control:
Systems with state-dependent switching are harder than controlled switchings.

$$
\begin{gathered}
x(n+1)=\Phi_{i} x(n)+\Gamma_{i} u(n), \quad i= \begin{cases}1 & x^{T} G x \geq 0 \Leftrightarrow x \in \Omega_{1} \\
2 & x^{T} G x<0 \Leftrightarrow x \in \Omega_{2}\end{cases} \\
J=\sum\left[\begin{array}{l}
x \\
u
\end{array}\right]^{T} Q_{i}\left[\begin{array}{l}
x \\
u
\end{array}\right]
\end{gathered}
$$

Value function

Let, for example, $V_{0}=x^{T} \Pi x$.
Then Bellman's equation gives

$$
V_{1}(x)= \begin{cases}\min _{u}\left(V\left(\Phi_{1} x+\Gamma_{1} u\right)+\left[\begin{array}{l}
x \\
u
\end{array}\right]^{T} Q_{1}\left[\begin{array}{l}
x \\
u
\end{array}\right]\right)=x^{T} \Pi_{1} x & x \in \Omega_{1} \\
\min _{u}\left(V\left(\Phi_{2} x+\Gamma_{2} u\right)+\left[\begin{array}{l}
x \\
u
\end{array}\right]^{T} Q_{2}\left[\begin{array}{l}
x \\
u
\end{array}\right]\right)=x^{T} \Pi_{2} x & x \in \Omega_{2}\end{cases}
$$

This is not on the same form as $V_{0}(x)$, as it contains the condition $x \in \Omega_{i}$. Using exact value iteration, the number of regions grows exponentially.

Try relaxed DP.

Relaxed value function

Idea: Use a value function that cannot describe $V^{*}(x)$ exactly.

Use for example

$$
V_{k}(x)=\min _{\Pi \in P_{k}} x^{T} \Pi x
$$

Assume $V_{k}(x)=\min _{\Pi \in P_{k}} x^{T} \Pi x$.
Using Bellman's equation we calculate

$$
\bar{V}_{k+1}(x)= \begin{cases}\min _{\Pi \in \bar{P}_{p+1}^{1}} x^{T} \Pi x & x \in \Omega_{1} \\ \min _{\Pi \in \bar{P}_{k+1}^{2}} x^{T} \Pi x & x \in \Omega_{2}\end{cases}
$$

and

$$
\underline{V}_{k+1}(x)= \begin{cases}\min _{\Pi \in P_{k+1}^{1}} x^{T} \Pi x & x \in \Omega_{1} \\ \min _{\Pi \in \underline{P}_{k+1}^{2}} x^{T} \Pi x & x \in \Omega_{2}\end{cases}
$$

Algorithm to find $V_{k+1}(x)$

1. Define $V_{k+1}(x)=\min _{\Pi \in P_{k+1}} x^{T} \Pi x$ and let $P_{k+1}=\varnothing$.
2. If there exists $\bar{\Pi} \in\left\{\bar{P}_{k+1}^{1} \cup \bar{P}_{k+1}^{2}\right\}$ and x such that $x^{T} \bar{\Pi} x<V_{k+1}(x)$ (i.e. the upper bound does not hold) then find a Π such that

$$
\begin{aligned}
x^{T} \Pi x \leq x^{T} \bar{\Pi} x & \forall x \in \Omega_{i} \\
x^{T} \Pi x \geq x^{T} \underline{\Pi} x & \forall x \in \Omega_{1}, \underline{\Pi} \in \underline{P}_{k+1}^{1} \\
x^{T} \Pi x \geq x^{T} \underline{\Pi} x & \forall x \in \Omega_{2}, \underline{\Pi} \in \underline{P}_{k+1}^{2}
\end{aligned}
$$

Add this Π to P_{k+1}.
3. Repeat from 2.

Step 2 can be relaxed to a Linear Matrix Inequality, LMI .

Algorithm to find $V_{k+1}(x)$

Note: The LMI may fail for several reasons \Rightarrow Increase slack.

$$
\begin{gathered}
x(n+1)=\Phi_{i} x(n)+\Gamma_{i} u(n), \quad i= \begin{cases}1 & x^{T} G x \geq 0 \Leftrightarrow x \in \Omega_{1} \\
2 & x^{T} G x<0 \Leftrightarrow x \in \Omega_{2}\end{cases} \\
\Phi_{1}=\left[\begin{array}{cc}
1.0000 & -0.0010 \\
0.0050 & 0.9999
\end{array}\right] \quad \Gamma_{1}=\left[\begin{array}{l}
0.0100 \\
0.0000
\end{array}\right] \quad G=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \\
\Phi_{2}=\left[\begin{array}{cc}
1.0000 & -0.0050 \\
0.0010 & 0.9999
\end{array}\right] \quad \Gamma_{2}=\left[\begin{array}{l}
0.0100 \\
0.0000
\end{array}\right] \quad Q_{1}=Q_{2}=I
\end{gathered}
$$

Example 1: 2D Flower

Example 1: 2D Flower

Using the relaxation $\bar{\alpha}=2$ and $\underline{\alpha}=\frac{1}{2}$, a steady state solution $V(x)$ is found within 100 iterations.
$V(x)$ consists of seven quadratic functions.

Example 1: 2D Flower

Example 2: Affine System

Affine system created by letting $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ 1\end{array}\right]$, and viewing it as a 3D system.

To obtain the $x_{1}=0.2$ dynamics switch, we define

$$
x^{T} G x=(x+5)^{2}-(5+0.2)^{2}
$$

State space is limited by $x_{1}^{2}+x_{2}^{2} \leq 9$.

Using the relaxation $\bar{\alpha}=2$ and $\underline{\alpha}=\frac{1}{2}, V_{100}(x)$ contains 15 quadratic functions.

Pros and Cons

Cons:

- LMI and S-procedure sometimes conservative.
- Discontinuous dynamics can give impossible boundaries.
- The value function

$$
V(x)=\min _{\Pi \in P} x^{T} \Pi x
$$

is not always a good way of approximating of $V^{*}(x)$

Pros and Cons

Pros:

- Very simple representation of non-convex cost functions.
- Can get close-to-optimal feedback controllers for piecewise linear systems.
- Easily implementable controller (regions of linear/affine controllers).

Conclusions

A new application of the relaxed DP method has been presented: Piecewise linear quadratic control. The application is in the early research stage.

- Relaxed DP enables use approximating value function parameterization.
- The value function repr. used in the application cannot represent $V^{*}(x)$, but works well as approximation.
- Key issue in using relaxed DP: Is there an algorithm to find a (simple) cost function in between two bounds?

