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{*2) Relaxed Dynamic Programming

Dynamic Programming (DP) is a beautiful idea — but seldomly
used.

Most important part of DP: The value function V(x) :

* Gives the cost to start from state x.
 Implicitly gives a control law .

« Optimal V(x) may be very hard to represent (except in
special cases such as shortest-path-problems or LQG).



\*%) Relaxed Dynamic Programming

Dynamics of a system:

x(n+1) = f(x(n),u(n))
Cost function: .
J = E%l(x(n),u(n))
Bellman’s equation: n
V(x) = min{ VH(F (x,u) + L(x,u) }

VY (x) is the optimal value function.



{*2) Relaxed Dynamic Programming
Value iteration:

Viii(x) = muin{Vk(f(x, u) + l(xu)}

Main idea — Relaxed value iteration :
V,i(x) = muin{Vk (f(x u)) + I (x, u)}

< Vis(x) <

mm{Vk(f(x u)) + I(x, u)} Vii1(%)
where _
[(x,u) =0al(x,u), a>1
l(x,u) =al(x,u), a<1l.



\*%) Relaxed Dynamic Programming

V,i(x) = muin{Vk (F(x,u)) + é(xu)}

< Viga(x) <
muin{Vk (f (x,u)) + I(x, u)} = Vii1(%)
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Relaxed Dynamic Programming
lterating the inequality
V,i(x) = muin{Vk (F(x,u)) + L(x, u)}

< Vigi(x) <

muin{Vk (f (x,u)) + I(x, u)} = Vii1(%)
leads to

gmuinZl(x(n),u(n)) < Vi(x) < ﬁmuinZl(x(n),u(n))



27 Applications

Switched linear systems:

* Finite set of system matrices (linear system), quadratic
cost.

e Controller chooses both continuous control signal » and
system dynamics. No autonomous switching.

e Value function on form

V(x) = minx’ M;x




o) Applications

Piecewise linear cost:

e LTI system with constraints.
e Plecewise linear cost.
e Value function on form

V(x) = max M}




(%2 Applications
Partially Observable Markov Decision Networks (POMDPSs):

e Markov control problem with unknown state.
e Boils down to the “Piecewise linear cost problem”.
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==z Which problems can use Relaxed DP?

The main issue in each iteration is finding Vj (x) :

V(x) = min{ Vi (£ (x,u)) +L(x, ) }
< Visa(x) <
muin{Vk(f(x,u)) +Z(x,u)} — V(x)
In the previous applications:

 Add elements from V(x) or V(x) to V,,1(x) until both
iInequalities hold.

« Typical inequality test: LP or LMI.
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Internet routing tables:

Relaxed DP can be used to decrease size of routing tables.

Idea: Hosts with similar addresses are often on approximately
the same distance from some source node.

Piecewise Linear Quadratic Control:

Systems with state-dependent switching are harder than
controlled switchings.
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Let, for example, V, = 7 Mx.

Then Bellman’s equation gives

y

u

min <V(¢1x + Mu) + | Q1 > = x1Mqx x € Qq
_u_ _u_
Vl(.’XJ) = <

-
min <V(Cbzx + Mou) + A > = 21 Mox x € Qq
u u u
\ e — e —

This is not on the same form as V,(x), as it contains the

condition x € Q;. Using exact value iteration, the number of
regions grows exponentially.

Try relaxed DP.
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Vi(x) = minx’ Mx
MePp;,
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Relaxed value iteration

Assume V,(x) = minx” Mx.
MePp;,

Using Bellman’s equation we calculate

¢
min My
X7 ne?kﬂ
Vk (IXI) = <

+1 .
min xIMx
\neﬁlﬁ—l

and
)

mi}a xIMx
I_IEBkjtl
V x) = 4
_k+1( ) min x! Mx
\HEB%H

x € Qq

x € Qo

x € Qq

x € Qo
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Algorithm to find V;(x)

5
Vir

1. Define V, 1(x) = min x'Mx and let P, , = 0.
k+1

2. If there exists I € {F,lm U ?zﬂ} and x such that

xTMx < Vi,1(x) (i.e. the upper bound does not hold) then
find a I such that

xI Mx < x'Mx Ox € Q;
x'MNxe>x"Nx Ox€Qq, N€P;.,
x"Mx>x"Nx Ox€Qy, N € Py,

Add this 1 to P..;.
3. Repeat from 2.

Step 2 can be relaxed to a Linear Matrix Inequality, LMI .
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&) Algorithm to find V. (x)
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Note: The LMI may fail for several reasons = Increase slack.

17



45 Example 1: 2D Flower

1 x'Gx >0 x€Q;
x(n+1)=P.x(n)+Tuln), 1= =
( ) (1) u(n) {2 xT'Gx <0 xeQ,

1.0000 —0.0010 0.0100 -1 0
o | = Lowm) 910

0.0050 0.9999 0.0000 0 1
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2D Flower
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a steady state solution

1
21

da

n
V(x) is found within 100 iterations.

2 a

a =

Using the relaxation

V' (x) consists of seven quadratic functions.
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Affine System
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X

Affine system created by letting x = | x5 |, and viewing it as a
L1

3D system.

To obtain the x; = 0.2 dynamics switch, we define

x"Gx = (x +5)* — (54 0.2)°

State space is limited by x% + x2 < 9.
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V1i0o(x) contains 15

1
21

Using the relaxation @ = 2 and a =

guadratic functions.
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Pros and Cons

cons:

 LMI and S-procedure sometimes conservative.
e Discontinuous dynamics can give impossible boundaries.
« The value function

V(x) = minx’ Mx
nep

IS not always a good way of approximating of V(x)
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Pros and Cons

Pros:

e Very simple representation of non-convex cost functions.

e Can get close-to-optimal feedback controllers for piecewise
linear systems.

o Easily implementable controller (regions of linear/affine
controllers).
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A new application of the relaxed DP method has been pre-
sented: Piecewise linear quadratic control . The application
IS In the early research stage.

 Relaxed DP enables use approximating value function
parameterization.

 The value function repr. used in the application cannot
represent VY(x), but works well as approximation.

 Key issue In using relaxed DP: Is there an algorithm to
find a (simple) cost function in between two bounds?
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