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Electronic ThrottleElectronic Throttle

Advantages
• Improved fuel economy
• Reduction in vehicle emission
• Improved drivability

Components
• DC drive
• Gearbox
• Return spring
• Dual potentiometer



Control ChallengesControl Challenges

Main challenges
• Friction (gearbox)
• Limp-Home nonlinearity (return spring)
• Quantization (dual potentiometer + A/D)
• Constraints



Nonlinear Model of the ThrottleNonlinear Model of the Throttle



Nonlinear Model of the ThrottleNonlinear Model of the Throttle

5 affine parts



Nonlinear Model of the ThrottleNonlinear Model of the Throttle
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3 affine parts

Limp-Home nonlinearity



Piecewise Affine  SystemPiecewise Affine  System

x (t + 1) = A ix (t) + B iu (t) + f i
y (t) = C ix(t) + gi

i = 1 ; . . .; s
if x(t)

u(t)

ô õ
2 Xi

• polyhedral partition of state and input space 

•

•

• switches both internal and controllable

• state and input constraints are included in 

PWA systems include many hybrid system classes

fXig s1
x 2 R n c â f0 ; 1gn `; n,n c + n`
u 2 Rm c â f0 ; 1gm `; m,m c + m `:

X

X



PWA model of the ThrottlePWA model of the Throttle

• 5 affine parts from the friction

• 3 affine parts from the LH

• sampling with Zero Order Hold

15 (discrete time) 
PWA dynamics

*[ , ]T
mx ω θ=

x(t + 1) = A ix(t) + B iu (t) + f i
y (t) = Cix (t) + gi

i = 1 ; . . . ; 15
if H ix (t) + L iu (t) ô K i

With state vector

( ) ( ) ( )i i iH x t Lu t K t+ ≤where polyhedron description

we get PWA system

also includes state and input constraints



Finite Time Optimal ControlFinite Time Optimal Control

• Performance Index
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• Constraints

* * * *
0 1

1,
1

 

 2

For LP
    Optimizer:   

For 
( ) {

QP
, , , }NU x u u u∞

−

• ⇒  ⇒
• ⇒ 

=


K

Receding Horizon Policy:



Solution obtained via:

Receding Horizon Policy Receding Horizon Policy uu = = ff((xx))
• Solve LP/QP for each x

• Solve LP/QP for all x via multiparametric program

(Bemporad, Borrelli, Morari, CDC 2000)

(Bemporad, Morari, Dua, Pistikopoulos, Automatica 2001)

1 1 1 1if
( )

if
r r r rN N N N

F x G H x K
u x

F x G H x K

 + ≤
= 
 + ≤

M M

 1,

 2

mp-LP for 

mp-QP for 
∞

•

•

Piecewise affine state-feedback law



mpmp--QP PropertiesQP Properties

• Solution u*(x) is continuous, piecewise affine
- the set X* is partitioned into polyhedral critical regions
- in each critical region u*(x) is an affine function of x

• Value function J*(x) is  convex, piecewise quadratic,     
and continuously differentiable if the  mp-QP is not  
degenerate
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Optimal Control of the PWA systemOptimal Control of the PWA system

U = fu(0); . . .; u(N à 1)g• is the optimizer

• Extendable to penalize switches,…

minU x(N)0Px(N) +
P
k=0

Nà1
x(k)0Qx(k) +u(k)0Ru(k)

Feedback solution?
How do we compute it?

subj:to x(t + 1) = Aix(t) +Biu(t) + fi
if [x(t); u(t)] 2 Xi; i = 1; . . .; s

Ex(k) +Lu(k) ôM; k = 0; . . .;N à 1
x(N) 2 Xf



Translation into Mixed Integer ProgramTranslation into Mixed Integer Program

s:t: Gï ô w + Fx(0)

minï ï
THï+(fT+x(0)TF)ï

subj: to

x(N) 2 Xf
x(k+ 1) = Ax(k) +B1u(k) +B2î(k) +B3z(k)

y(k) = Cx(k) +D1u(k) +D2î(k) +D3z(k)
E2î(k) + E3z(k) ô E1u(k) +E4x(k) +E5

8
><
>:

minUNJ(U
N; x(0)), kPx(N)kp +

P
k=0

Nà1
kQx(k)kp + kRu(k)kp

Mixed Integer Program

(Bemporad, Morari 1999)
Equivalent MLD representation of the PWA system



Multiparametric Mixed Integer ProgramMultiparametric Mixed Integer Program

is solved for all x(0) by using

• p = 1/∞ ⇒ Multiparametric mixed integer
linear programming (H=0)

• p = 2 ⇒ Multiparametric mixed integer 
quadratic programming (H≠0)

s:t: Gï ô w + Fx(0)

min ï ïTHï + (fT + x(0)TF)ï

to compute

u*(x(0))=fPWA(x(0))



Characterization of the Solution (p=2) Characterization of the Solution (p=2) 

The solution to the optimal control problem is a 
time varying PWA state feedback control law of the form

partition of the set        of feasible states x(k).fPk
i
gNk

i=1

(Sontag 1981, Mayne 2001)

if x(k) 2 Pk
i
,fx : x0Lk

i
(j)x +Mk

i
(j)x ô Kk

i
(j)g

uã(x(k)) = Fk
i
x(k) +Gk

i

Xã
k



Characterization of the Solution: ProofCharacterization of the Solution: Proof

• Fix a switching sequence of length N to obtain
constrained linear time variant system

• Solve finite time optimal control  to obtain

state-space polyhedral partition and corresponding

PWA  input and PWQ value function

v={1,3,4,4}

x (t + 1) = A ix (t) + B iu (t) + f i
y (t) = Cix(t) + gi for x(t)

u(t)

ô õ
2 Xi

Obtain optimal control law by comparing value functions on 
polyhedron of  "multiple feasibility"



v1={1,2,3,4}

v2={1,2,3,3}

Polyhedron of "multiple feasibility"Polyhedron of "multiple feasibility"



v1={1,2,3,4}

v2={1,2,3,3}

Polyhedron of multiple feasibility:
switch v1 and v2 both admissible

Polyhedron of "multiple feasibility"Polyhedron of "multiple feasibility"



v1={1,2,3,4}

v2={1,2,3,3}

Polyhedron of "multiple feasibility"Polyhedron of "multiple feasibility"



v1={1,2,3,4}

v2={1,2,3,3}

Polyhedron of "multiple feasibility"Polyhedron of "multiple feasibility"



Computing Optimal Control LawComputing Optimal Control Law

The proofs are constructive but based on the enumeration 
of all possible switching sequences of the hybrid system.

More efficient methods than enumeration are necessary



mpmp--MIQP AlgorithmMIQP Algorithm

Solver based on 

– Dynamic programming recursion

– Multiparametric quadratic program solver (mp-QP)

– Basic polyhedral manipulation 
(intersection and union)

– Comparison of value functions over polyhedra

– Post processing

(Borrelli, Baotic, Bemporad, Morari, 2002)



Optimal Control ProblemOptimal Control Problem
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Closed Loop Solution via Closed Loop Solution via 
Dynamic ProgrammingDynamic Programming
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for j=N-1,...,0, with boundary conditions

where Xj is the set of initial states for which problem is feasible

{ }1 | ,  ( , )j n j
PWAX x R u f x u X += ∈ ∃ ∈

Cost to go

Equivalent problem



ChallengeChallenge

• Challenge
– Sub-problems are defined over non-convex regions

• Method 
– Multiparametric quadratic program solver (mp-QP)
– Polyhedral manipulation (intersection and union)
– Comparison of value functions over polyhedra

• Result
– Exact, globally optimal PWA feedback control law 



ExampleExample
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Dynamic Programming Dynamic Programming -- IllustrationIllustration

Xf=X3

X2

N=3,   2 PWA dynamics

X1 X0

PWA 1



Post processingPost processing

After every step of the Dynamic Program

• Remove unnecessary regions 

(Intersect, Compare, Union) 

At the end of computation

• Join regions with the same control law

• Store regions in an ordered fashion
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• Intermediate stage simplification

1 3 1,3( ) ( ),   for J x J x x P≤ ∈

2 3 2,3( ) ( ),   for J x J x x P≤ ∈

1,3 2,3 3P P P∪ =

No need for P3

P1

P2,3P1,3

P2

x

J*(x)



* * * *
0 1 1( ) { , , , }NU x u u u −= K

Union of regionsUnion of regions

• Simplifying final solution
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Regions where the first component of the solution is the same
can be joined (when their union is convex). (Bemporad, Fukuda, Torrisi, 

Computational Geometry, 2001)
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Intersection of regionsIntersection of regions
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Solution (in the ordered region sense):
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Throttle ResultsThrottle Results

Partition of the state space describing PWA optimal control law



Closed loop

Open loop

Throttle ResultsThrottle Results



ConclusionsConclusions

• Electronic throttle modeled as a PWA system

• Finite-time constrained optimal control problems  based on 
quadratic performance index for discrete time PWA systems

• mp-MIQP Algorithm
– Dynamic Programming recursion

– Intersection of regions

– Comparison of value functions

– Ordering of regions

• Receding Horizon control can be implemented by using 
a simple look-up table

• Results on the throttle control



THE ENDTHE END


