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ABB Case Study: ABB Case Study: OverviewOverview

Generator 1:
Ø infinite bus

Generator 2:
Ø internal controller (AVR)

Transformer:
Ø internal controller (FSM)

Load:
Ø aggregate dynamic load



Collapse ScenarioCollapse Scenario

2. tap changer control

3. generator overexcitation
limiter activated

4. voltage collapse

1. load recovery

Line tripping (L3) at t=100s ...

... leads to voltage collapse.           



Why do we need Control?Why do we need Control?

Ø Power system designed for N-1 stability

Ø Power system collapse extremely expensive

Ø Time-constants rather small

Ø Power system operated closer to stability limit 

because of
• deregulation of energy market
• environmental concerns
• increase of electric power demand
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Generator 2: Generator 2: OverviewOverview

purpose:
Ø generates limited power

assume:

Ø quasi-steady state behaviour

2 (static) components:

Ø automatic voltage regulator (AVR)

Ø synchronous machine 



Generator 2: Generator 2: ModelModel

Synchronous 
machine

static I/O-
behaviour

generates elect.
power

AVR saturating 
P-controller 
with input 
nonlinearity

controls terminal
voltage V2m



Transformer: Transformer: OverviewOverview

purpose: 
Ø steps down voltage
Ø controls load-voltage V4m

by adjusting tap ratio 1:n

2 components:
Ø transformer
Ø controller of tap ratio

manipulated variable:
Ø voltage reference V4m,ref



Transformer: Transformer: ControllerController

input nonlinearity:

logic:

finite state machine:



Transformer: Transformer: EquationsEquations

transformer equations:

Ø nonlinear equations
Ø relate V3, V4, I3, I4

depending on n

block diagram:



purpose:
Ø power consumption

assume: aggregate dynamic load 
Ø aggregate: distribution network with

various loads (motors, heating, lighting)
Ø dynamic: self-restoring following a

disturbance 

manipulated variable:
Ø load shedding sL

Load: Load: OverviewOverview



Load: Load: Self RestorationSelf Restoration
Following a disturbance in the supply voltage, the active and reactive powers
drawn by the load are restored by internal controllers (like thermostats).



Load: Load: ModelModel
active power:

reactive power:

where
and       = load shedding (discrete manipulated var.)

output equations:

block diagram:



Linear Linear SubmodelsSubmodels

generator 1:
Ø infinite bus
Ø supplies constant voltage V1 = 1.03

capacitor bank:
Ø stabilizes power system
Ø discrete manipulated variable

network: 
Ø algebraic equations at the buses 

according to Kirchhoff’s laws



Hybrid ModelHybrid Model
Hybrid system:
Ø saturation
Ø finite state machine with logic
Ø nonlinearitiesà pwa functions
Ø discrete manipulated variables

Dimensions: 
Ø 2 ordinary diff. equations
Ø 29 algebraic equations:

Ø11 linear,  18 nonlinear

Ø 3 states:
Ø2 continuous, 1 discrete

Ø 3 manipulated variables:
Ø1 continuous, 2 discrete



Hybrid Model Hybrid Model ((ctdctd.).)

approximate by PWA functions

2 ODEs, 29 algebraic constraints saturation, FSM, logic

nonlinear DAE: discrete events:



MLD FormulationMLD Formulation

where: auxiliary binary variables
auxiliary continuous variables

if problem is well-posed: 
for a given and         the inequality  

defines uniquely and .     

… leads to 49   , 86    variables and 409 constraints
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Ø Control objectives: 
Ø stabilize V4m

Ø min. load shedding sL

Ø keep bus voltages within
certain limits V2m, V3m, V4m

ØManipulated variables:
Ø ultc voltage reference: V4m,ref

Ø capacitor switching: sC

Ø load shedding: sL 

Ø Fault:
Ø line outage 

Control ProblemControl Problem



Model Predictive ControlModel Predictive Control

subject to

Ø MLD model:

Ø Soft constraints on bus voltages:



Controller StructureController Structure

Controller of tap changer highly sensitive to  

à Decompose MPC in cascaded controller

staticMPC

prediction model with     as man. variable 

• MPC sets tapping strategy

• Static controller chooses                 accordingly

• Mechanical wear results from tap changes



Tuning of Cost FunctionTuning of Cost Function

choose      such that:

Ø nominal control (no constraint violated):

allow ultc voltage reference and capacitor bank

Ø emergency control (constraints violated): 

allow all controls including load-shedding

Penalty on u:



Tuning of Cost Function (Tuning of Cost Function (ctdctd.).)
Penalty on violation of soft constraints:

violation of 
i-th constraint

slack



Preliminary ResultsPreliminary Results

fault

capacitor bank
switching

stop tapping

constraint violation 



Compensation for Output ErrorCompensation for Output Error

nonlinear DAE: discrete events:

filtered

… leads to reduced output error
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Nonlinear Hybrid MPCNonlinear Hybrid MPC
Questions:
• Is the MPC cost function tuned properly?
• How large is the max. tolerable approximation error?

à Simulate nonlinear hybrid MPC with exact model

Implementation:
• branch on discrete inputs over prediction horizon
• use bound techniques
• Simulink (Modelica): used to simulate the model response

and to evaluate the cost function



Nominal CaseNominal Case
t=120s: 
cap. switching

t=180, 570s:
constraint viol.
predicted

no load shed.



Parameter Uncertainty: P0 +0.5%Parameter Uncertainty: P0 +0.5%
t=120s: 
cap. switching

no load shed.

small offset in 
bus voltages
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ConclusionsConclusions

Ø MPC cost function:
• use cascaded control scheme,

• penalize tap changes, 

• allow for short constraint violations and

• prediction horizon N=2 sufficient.

Ø Max. tolerable approximation error:
• small parameter uncertainties lead to output offset,

• if P0 > +1%: nominal control moves can’t stabilize system,

• system parameters and structure are known very accurately (PMU)

except P0 (variations of up to 0.3% per minute)

à high accuracy for PWA approximation mandatory



OutlookOutlook
Ø Reformulate MLD model using subdivided model

Ø Compensate for output error

Ø Reduce computational time

• search heuristics

• exploit model structure

Ø Large-scale power system

Ø Reachability analysis

Ø Controllability and observability



Reformulation of MLD ModelReformulation of MLD Model

formulate as MLD modelapproximate by PWA functions 
with 4 real inputs 

for all 16 combinations of 
discrete inputs

nonlinear DAE: discrete events:



The endThe end



Penalty on V4m,ref and P0 +0.5%Penalty on V4m,ref and P0 +0.5%
t=120s: 
cap. switching

t=180s:
constraint viol.
predicted, but 
change in 
V4m,ref not 
effective

t=210s: 
load shed.



Penalize all Constraint Viol. and P0 +0.5%Penalize all Constraint Viol. and P0 +0.5%
constraint viol.
for k=0 
penalized, too

t=120s: 
cap. switching

t=840s:
constraint viol.
NOT predicted

t=870s:
load shedding



Static StateStatic State--EstimationEstimation

nonlinear DAE: discrete events:

… leads to reduced output error



G

Instability: line outageInstability: line outage

old operating pointinstability



G

Countermeasures: load sheddingCountermeasures: load shedding

old operating point

new operating point


