ABB Case Study: Optimal Control and Analysis

T. Geyer, M. Morari,

Automatic Control Laboratory ETH Zurich

M. Larsson

Outline

- 1. Overview
- 2. Modeling
- 3. Optimal Control Problem
- 4. Sensitivity Analysis
- 5. Conclusions and Outlook

1. Overview

- 2. Modeling
- 3. Optimal Control Problem
- 4. Sensitivity Analysis
- 5. Conclusions and Outlook

ABB Case Study: Overview

Generator 1:

➤ infinite bus

Transformer:

➢ internal controller (FSM)

Load:

➤ aggregate dynamic load

kigendesloche winische Hochschuis irist

Collapse Scenario

Why do we need Control?

- Power system designed for N-1 stability
- > Power system collapse extremely expensive
- Time-constants rather small
- Power system operated closer to stability limit because of
 - deregulation of energy market
 - environmental concerns
 - increase of electric power demand

- 1. Overview
- 2. Modeling
- 3. Optimal Control Problem
- 4. Sensitivity Analysis
- 5. Conclusions and Outlook

Generator 2: Overview

<mark>Kigonõosloo</mark>ho siinischo Hookschuis irish

Generator 2: Model

Ekigeniedet Teshnisshe Hee Ziirtah

Transformer: Overview

Transformer: Controller

kigendesische schnische Hochschuis isisch

Transformer: Equations

Load: Overview

Load: Self Restoration

Following a disturbance in the supply voltage, the active and reactive powers drawn by the load are restored by internal controllers (like thermostats).

Load: Model

active power:	$\dot{x}_p = -\frac{x_p}{T_p} + P_{L0}(1 - V_{4m}^2)$
	$P_L = (1 - 0.05 \cdot s_L)(\frac{x_p}{T_p} + P_{L0} \cdot V_{4m}^2)$
reactive power:	$\dot{x}_q = -\frac{x_q}{T_q} + Q_{L0}(1 - V_{4m}^2)$
	$Q_L = (1 - 0.05 \cdot s_L)(\frac{x_q}{T_q} + Q_{L0} \cdot V_{4m}^2)$
where $V^2 - V^2 + V^2$	

where $V_{4m}^2 = V_{4d}^2 + V_{4q}^2$ and s_L = load shedding (discrete manipulated var.)

Linear Submodels

generator 1:

- ➤ infinite bus
- > supplies constant voltage $V_1 = 1.03$

capacitor bank:

- ➤ stabilizes power system
- ➢ discrete manipulated variable

network:

algebraic equations at the buses according to Kirchhoff's laws

Hybrid Model

Hybrid system:

- \succ saturation
- \succ finite state machine with logic
- \succ nonlinearities \rightarrow pwa functions
- discrete manipulated variables

Dimensions:

- \geq 2 ordinary diff. equations
- ➢ 29 algebraic equations:
 - ≻11 linear, 18 nonlinear
- > 3 states:
 - ▶2 continuous, 1 discrete
- ➤ 3 manipulated variables:
 - ▶1 continuous, 2 discrete

Hybrid Model (ctd.)

Eldgeniesische Technische Hookschu Zärtek

MLD Formulation

 $\begin{aligned} x(t+1) &= Ax(t) + B_1 u(t) + B_2 \delta(t) + B_3 z(t) \\ y(t) &= Cx(t) + D_1 u(t) + D_2 \delta(t) + D_3 z(t) \\ E_2 \delta(t) + E_3 z(t) &\leq E_4 x(t) + E_1 u(t) + E_5 \end{aligned}$

where: $\delta(t) \in \{0,1\}^{n_d}$ auxiliary binary variables $z(t) \in R^{n_z}$ auxiliary continuous variables

if problem is *well-posed*:

for a given x(t) and u(t) the inequality

 $E_2\delta(t) + E_3z(t) \leq E_4x(t) + E_1u(t) + E_5$

defines uniquely $\delta(t)$ and z(t).

... leads to 49δ , 86z variables and 409 constraints

- 1. Overview
- 2. Modeling
- 3. Optimal Control Problem
- 4. Sensitivity Analysis
- 5. Conclusions and Outlook

Control Problem

Model Predictive Control

$$J = \sum_{k=0}^{N-1} \left(\|V_{4m}(t+k|t) - 1\| + \|\Delta u(t+k|t)\|_{R,\infty} \right) + \sum_{k=1}^{N-1} S(t+k|t)$$

subject to

> MLD model:

 $\begin{aligned} x(t+1) &= Ax(t) + B_1 u(t) + B_2 \delta(t) + B_3 z(t) \\ y(t) &= Cx(t) + D_1 u(t) + D_2 \delta(t) + D_3 z(t) \\ E_2 \delta(t) + E_3 z(t) &\leq E_4 x(t) + E_1 u(t) + E_5 \end{aligned}$

> Soft constraints on bus voltages:

```
V_{2m} \in [0.95..1.05]
V_{3m}, V_{4m} \in [0.9..1.1]
```


Controller Structure

Controller of tap changer highly sensitive to $V_{4m,ref}$

 \rightarrow Decompose MPC in cascaded controller

- MPC sets tapping strategy $\Delta n(t)$
- Static controller chooses $V_{4m,ref}$ accordingly
- Mechanical wear results from tap changes

Tuning of Cost Function

Penalty on u:

Tuning of Cost Function (ctd.)

Penalty on violation of soft constraints:

Preliminary Results

Compensation for Output Error

- 1. Overview
- 2. Modeling
- 3. Optimal Control Problem
- 4. Sensitivity Analysis
- 5. Conclusions and Outlook

Nonlinear Hybrid MPC

Questions:

- Is the MPC cost function tuned properly?
- How large is the max. tolerable approximation error?

→ Simulate nonlinear hybrid MPC with exact model

Implementation:

- branch on discrete inputs over prediction horizon
- use bound techniques
- Simulink (Modelica): used to simulate the model response and to evaluate the cost function

ETH Ekdgendestoche Technische Hechschuk Zärieh

Nominal Case

Parameter Uncertainty: P0 +0.5%

- 1. Overview
- 2. Modeling
- 3. Optimal Control Problem
- 4. Sensitivity Analysis
- 5. Conclusions and Outlook

Conclusions

MPC cost function:

- use cascaded control scheme,
- penalize tap changes,
- allow for short constraint violations and
- prediction horizon N=2 sufficient.
- > Max. tolerable approximation error:
 - small parameter uncertainties lead to output offset,
 - if P0 > +1%: nominal control moves can't stabilize system,
 - system parameters and structure are known very accurately (PMU) except P0 (variations of up to 0.3% per minute)
 - \rightarrow high accuracy for PWA approximation mandatory

Outlook

- Reformulate MLD model using subdivided model
- Compensate for output error
- Reduce computational time
 - search heuristics
 - exploit model structure

Large-scale power system

- Reachability analysis
- Controllability and observability

Reformulation of MLD Model

ETH Eldgendesleehe Tesknisske Hoekeskuis Ziirtek

The end

Penalty on V4m,ref and P0 +0.5%

Penalize all Constraint Viol. and P0 +0.5%

constraint viol. for k=0 penalized, too

t=120s: cap. switching

t=840s: constraint viol. NOT predicted

t=870s: load shedding

Static State-Estimation

Instability: line outage

Countermeasures: load shedding

