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Motivation for investigating observability of PAHS

• Paper by Andrea Balluchi et al. on observers.

• Papers on observability of hybrid systems presented at HSCC.2003 in

April 2003.

• Observability is sufficient condition for existence of observers.

• Observability used in realization theory.

• Comparison observability and reachability.
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Framework for observability of PAHS

Def. Piecewise-affine hybrid system (PAHS, CT, Time-invariant)

Q finite state set, U ⊆ R
m, Y ⊆ R

p, polyhedral sets,

X(q) ⊆ R
n(q), ∀q ∈ Q, closed polyhedral sets,

ẋq(t) = A(q)xq(t) + B(q)u(t) + a(q), xq(to) = x+
q ,

y(t) = C(q)xq(t) + D(q)u(t) + c(q),

e ∈ Ein, input event, or

e ∈ Ecd, if x(t1) ∈ Gq(e) ⊂ ∂X(q),

event generated by continuous dynamics; then transition,

q+ = f(q−, e), q0,

x+
q+ = Ar(q−, e, q+)x−

q− + br(q−, e, q+) : Gq− ⊆ X(q−) → X0(q+).

Assumptions: (1) Finite number of events at any time.

(2) Finite number of events on any finite interval (non-Zenoness).
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Framework for observability of PAHS

Remark For a dynamic systems consider the map,

(initial state,input trajectory) 7→ output trajectory.

Observability holds if the initial state is uniquely determinable from the

input-output trajectories.

Note dependence on input trajectory as in nonlinear systems.

Restriction first to Case ‘No input’.

Distinguish

• Observability: Injectiveness of the map

x(t0) 7→ y : T → Y, T = [t0, t1], t1 ∈ R ∪ {∞}.

• Co-Observability or reconstructibility: Injectiveness of the map

x(t1) 7→ y : T → Y, T = [t0, t1], t1 ∈ R ∪ {∞}.
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Framework for observability

Concepts of observability proposed by E.D. Sontag [Sontag, 1978].

1. Observability 1. Injectiveness of the map,

x(t0) 7→ y : T → Y, T = [t0, t1],

2. Observability 2. Existence of an observer with a finite-dimensional

state space.

Remarks

• Relations between observability concepts. [Sontag, 1978].

• For polynomial systems Observability 2 implies Observability 1.

• Condition for Observability 2 of polynomial systems related to fin.-dim.

of observation algebra.

• Observability 2 also used for systems on manifolds and for stochastic

systems described by stochastic differential equations.
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Framework for observability

What are the observations of PAHS? Recall restriction to no input case.

• Partly observed discrete-event system:

Event set E, subset of observable events Eo ⊆ E,

natural projection P : E∗ → E∗
o ,

P (e) = e, if e ∈ Eo, = ε, if e ∈ E\Eo. eo(k) = P (e(i))

• Observed timed-event sequence, either of finite or of infinite length,

{(tk, eo(k)) ∈ T × Eo, k ∈ Zn or k ∈ Z+},
t0 ≤ t1 ≤ . . . ≤ tk ≤ ...

• Sequence of output trajectories:

{y : Tk → Y, k ∈ Zn or k ∈ Z+}, Tk = [tk−1, tk].
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Framework for observability

Case summary.

X(q) = R
nq , not polytope,

ẋq(t) = Aqxq(t), xq(t0) = xq,0,

y(t) = Cqxq(t),

q+ = f(q−, e(i)), q0,

x+
q+ = H(q+, q−)x−

q− ,

H(q+, q−) : Gq− ⊆ X(q−) → X0(q+) ⊆ X(q+),

eo(k) = P (e(i)),

{(tk, eo(k), yk), k ∈ Z+}, observations,

yk : Tk = [tk−1, tk) → Y = R
p.
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Notation

Observability matrix of (A,C) ∈ R
n×n × R

p×n,

Obsm(A,C) =




C

CA
...

CAn−1




∈ R
pn×n.

(A,C) called observable pair if rank(Obsm(A,C)) = n.

Transition map of continuous and discrete transition

S : X(q1) → X(q2),

S(q2, q1) = H(q2, q1) exp(A(q1)(t2 − t1)).
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Def. Consider the PAHS system formulated above.

The system is said to be observable

if the following map is injective:

(q0, xq0,0) 7→ {(tk, eo(k), yk), k ∈ Z+}.

Problem Characterize observability of a PAHS system.

Remarks

(E.D. Sontag, 1995) discusses the computational complexity of a

reachability problem for a discrete-time PL system.

Relevance for observability indicated.

Problem posed in this lecture: for continuous-time PAHS and for a strict

subclass.

Thus, decidability of Characterization of observability is currently an open

problem.
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Sufficient conditions for observability of PAHS

Theorem (Sufficient condition 1, not necessary condition)

A PAHS as considered above is observable if

1. Condition 1: Observability of discrete state from continuous

output: for all q1, q2 ∈ Q,

xq1,0 ∈ X0(q1), xq2,0 ∈ X0(q2),

C(q1)A(q1)kxq1,0 = C(q2)A(q2)kxq2,0, ∀k ∈ N,

⇒ q1 = q2.

Checkable equivalent condition stated below.

2. for all q ∈ Q, (A(q), C(q)) is an observable pair.
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Proof

(1)Estimation of the discrete state - First step.

A discrete-event observer using the observed timed-event sequence

(t, s) = (tk, eo(k)), k ∈ Zr)

produces after each event a subset of the discrete state set

compatible with the observed timed-event sequence,

Qobs(t, s) =




q ∈ Q|∃{(ti, vi), i ∈ Zr},
∃q0 ∈ Q, q = f(q0, v), P (v) = s


 .

Note that the subset Qobs(t, s) may contain two or more discrete states.
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Proof (Continued)

(2) Estimation of the discrete state - Second step.

Let q1, q2 ∈ Qobs((t, s)). If observed continuous output yields,

C(q1) exp(A(q1)(t − t0))xq1,0 = C(q2) exp(A(q2)(t − t0))xq2,0

∀t ∈ [t0, t1),

⇒ C(q1)A(q1)kxq1,0 = C(q2)A(q2)kxq2,0, ∀k ∈ N,

⇒ (Condition 1) q1 = q2.

Else can distinguish q1 and q2.

(1) and (2) imply that the current discrete state can be determined

uniquely.
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Proof (Continued)

(3) From Step (2) follows that q ∈ Q known.

Realization theory of FDLS and (A(q), C(q)) an observable pair,

imply that xq,0 can be determined uniquely from, for all t ∈ T1 = [t0, t1),

y(t) = C(q) exp(A(q)(t − t0))xq,0,


y(s)

ẏ(s)
...

y(n(q)−1)(s)




|s=t0 = Obsm(A(q), C(q))xq,0.
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Proposition Consider a PAHS.

Condition 1 is equivalent to

(1) spec(A(q1)) ∩ spec(A(q2)) = ∅, or

(2) when realizations,

C(q1)A(q1)kxq1,0 = C(q2)A(q2)kxq2,0, ∀k ∈ N,

reduced to common spectrum, including multiplicities, then

6 ∃xq1,0 ∈ X0(q1), 6 ∃xq2,0 ∈ X0(q2), not both zero,

Obsm(Ar, Cr)(xq1,0 − xq2,0) = 0,

⇔ ker(Obsm(Ar, Cr)) ∩ (X0(q1) − X0(q2)) = {0}.
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Remarks

(a) If,

∀q1, q2 ∈ Q, ∀xq1 ∈ X(q1), ∀xq2 ∈ X(q2),

C(q1)xq1 6= C(q2)xq2 ,

then the continuous output signals every discrete transition. Otherwise

it signals this only for particular discrete states and continuous states.

(b) If

∀q1, q2 ∈ Q, ∀xq1 ∈ X(q1), ∃k ∈ N,

C(q1)A(q1)kxq1 6= C(q2)A(q2)kH(q2, q1)xq1 ,

then the existence of a transition q1 7→ q2 can be determined from the

continuous output.
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Example 1

Q = {q1, q2},
X(q1) = R

2, X0(q1) = span{e1 + e2},

ẋq1(t) =


 −1 0

0 −2


xq1(t), xq1(t0) = xq1,0 ∈ X0(q1),

y(t) =
(

1 3
)

xq1(t),

X(q2) = R, X0(q2) = {1},
ẋq2(t) = 3xq2(t), xq2(t0) = 1 ∈ X0(q2),

y(t) = xq2(t);
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E = {e(2, 1), e(1, 2)}, Eo = {e(1, 2)},
Gq1(e(2, 1)) = (−∞, 1] × (−∞, 0], Gq2(e(1, 2)) = [5,∞),

q2 = f(q1, e(2, 1)), q1 = f(q2, e(1, 2)),

x+
q2

=
(

1 0
)

x−
q1

, x+
q1

= 1.

The PAHS is observable because,

(1) spec(A(q1) ∩ spec(A(q2) = ∅,
(2) ∀q ∈ Q, (A(q), C(q)) is observable pair.

18



Example 2 As Example 1 but with the changes,

ẋq1(t) =


 −1 0

0 3


 xq1(t).

The PAHS is observable because,

(1)

spec(A(q1)) ∩ spec(A(q2)) 6= ∅,
(

1 3
) 

 −1 0

0 3




k 
 1

1


 xq1,0 6= 3k1.

(2) For all q ∈ Q, (A(q), C(q)) is an observable pair.
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Sufficient condition for observability of PAHS

Theorem (Sufficient condition 2)

A PAHS is observable if

(1) Observability of discrete state from continuous trajectory holds for all

discrete states in observer states with two or more discrete states:

|Qobs(t0, s)| ≥ 2,

⇒ ∀q1, q2 ∈ Qobs(t, ε, q), Condition 1 holds.

Continued on next slide.
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(2) For all q ∈ Q

if there exists xq,0 ∈ X0(q) such that no guard is reachable

then (A(q), C(q)) must be an observable pair;

else (if for all xq,0 ∈ X0(q) a guard is reachable)

xq,0 must be observable from the resulting sequence of continuous

output trajectories for known sequence of discrete states visited.

Details in next proposition.
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Proposition Observability of continuous state from sequence of

continuous outputs for known sequence of discrete states.

(a) Case of two discrete states and transition q1 7→ q2.

Observability of continuous state in case of sequence of two discrete

states holds

if and only if 
 Obsm(A(q1), C(q1))

Obsm(A(q2), C(q2))S(q2, q1)


 = n(q1);

S(q2, q1) = H(q2, q1) exp(A(q1)(t1 − t0)).
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Proposition (Continued)

(b) Case of a sequence with three discrete states q1 7→ q2 7→ q3,

observability of continuous state holds if and only if,

rank




Obsm(A(q1), C(q1))

Obsm(A(q2), C(q2))S(q2, q1)

Obsm(A(q3), C(q3))S(q3, q2)S(q2, q1)


 = n(q1).

Remark Observability of PAHS dual to reachability of PAHS as developed

in (JHvS, 1998).
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Example 3

Q = {q1, q2},
X(q1) = R

2, X0(q1) = {10} × R,

ẋq1(t) =


 −1 0

0 −2


xq1(t), xq1(t0) = xq1,0 ∈ X0(q1),

y(t) =
(

1 0
)

xq1(t),

X(q2) = R
2, X0(q2) = {30} × R,

ẋq2(t) =


 3 0

0 4


 xq2(t), xq2(t0) = xq2,0 ∈ X0(q2),

y(t) =
(

5 6
)

xq2(t),
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Example 3 (Continued)

E = {e(2, 1), e(1, 2)}, Eo = E,

G(q1) = (−∞, 1] × R, G(q2) = [50,∞) × R,

q2 = f(q1, e(2, 1)), q1 = f(q2, e(1, 2)),

x+
q2

= x−
q1

, x+
q1

= x−
q2

.

The PAHS is observable because

(1) discrete states are distinguishable,
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Example 3 (Continued)

(2) (A(q1), C(q1)) is not an observable pair,

from all xq1,0 ∈ X0(q1)
the guard Gq1 = (−∞, 1] × R is reachable, and

n(q1) = 2 = rank


 Obsm(A(q1), C(q1))

Obsm(A(q2), C(q2))S(q2, q1)


 ,

Obsm(A(q1), C(q1)) =


 1 0

−1 0


 ,

Obsm(A(q2), C(q2))S(q2, q1)

=


 5 6

15 24


 exp(


 −1 0

0 −2


 (t1 − t0))
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Necessary condition for observability

Conjecture (Necessary condition)

If the considered PAHS is observable then:

(1) Observability of discrete states from continuous trajectory holds for all

discrete states in observer states with two or more discrete states;

(2) For all q ∈ Q

if there exists xq,0 ∈ X0(q) such that no guard is reachable

then (A(q), C(q)) must be an observable pair;

else (if for all xq,0 ∈ X0(q) a guard is reachable)

xq,0 must be observable from the resulting sequence of continuous

output trajectories for known sequence of discrete states.
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Concluding remarks

Results

• Framework for observability of PAHS.

• Sufficient condition for observability of PAHS.

• Necessary condition for observability of PAHS.

Further research

• Necessary and sufficient condition.

• Case with input and with polytopes.

• Existence of observer in terms of observation algebra.
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