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Limitations of MIP Approaches

Current approach for solving optimal control of hybrid
systems: Mixed-Integer (linear/quadratic) Programming.

1) The discrete/logic part of the hybrid system must be
converted into linear Ml inequalities (e.g.: by HYSDEL)

LOSS of the original discrete structure
Introduction of auxiliary binary variables

2) The efficiency of the MIP solver relies upon the
tightness of the continuous LP/QP relaxations.

I:> Poor performance (=many LP/QPs) if
relaxations are not tight

We need better solution techniques
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“Hybrid™ Solvers

Combine MIP and Constraint Logic Programming (CLP)
to overcome the previous difficulties

Why CLP ?

» More flexible modeling than MIP
» Structure is kept and exploited to direct the search.

Why MIP ?
» Specialized techniques for highly structured problems
(e.g. LP problems);
» A wide range of tight relaxations are available

Why a combined approach ?

Performance increase already shown in other application
domains (Harjunkoski, Jain, Grossmann, 2000)

Constraint Logic Programming

CLP is a set of techniques for solving a

finite domain problem

(=set of constraints over a set of
integer finite domain variables)

Example: X£7 Z#2 X=2+43Y
X € [1#8] Y € [1#10] Z € [1#10]

GOAL: Find all feasible assignments for X,Y, and Z
CLP alternates two techniques for solving the problem:

» Constraint Propagation: efficient inference mechanism used
to reduce the domains of the variables.

» Constraint Distribution: splits a problem into complementary
cases once constraint propagation cannot advance further.
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Constraint Logic Programming

X#T7 Z#2 X=7Z+3Y

Example (continued): Ne A8 ve [L10] Ze [1#10]

A pre-phase of constraint propagation produces
XE€[4#6 8] Ye[1#2] Z¢€ [l 3#5]

By iterating between propagation and distribution the solutions of
the problem are determined:

[Xe[4#6 8] Yc([1#2] zZe[1 3#5]] ]

/K X !=4

=4 .-
T

-

o]

[Xe[5#6 8] Yc(1#2] Ze(1 3#51] ]

yz X 1=5
failure ‘ { [Xel6 8] Ye[1#2] Ze[1 3#5]1] l
X=6 Xt=86

Logic-Based Branch&Bound

The basic modeling framework has the following form:
(Bockmayr, Kasper,1998)

miny £(v) (1a)
st.Gv<d, Gv=d (1b) Continuous constraints
Gv+4 Dw < FE', Gv+ Dw' = F (1c¢) Mixed constraints
g(w, w") (1d) Logic constraints

veR™, we{0,1}™, v € {0,1}"%

Logic-based B&B “ingredients™ g

/\

A relaxed MILP problem A CLP feasibility problem
obtained by (1a),(1b) and (1c) obtained by (1d)
LP solver CLP solver
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o UB=c0, P={p%}
Initialization

° relaxed MILP problem. Apply
a CP phase to reduce var bounds

l

CP =
CD =

Logic-Based B&B algorithm

constraint propagation
constraint distribution

Termination

Yes

IF UB=oco THEN prob infeasible

ELSE found an opt solution

or unbounded.

No, solve the
CLP problem

Select
a node
No, Remove p from P;
Solve the LP problem p
Linear LP infeasible or
Reasoning opt value>UB ?
Yes, select a variable
Branchin With CD generate 2 LP
_g sub-probs, apply CP to fix some
on a variable vars and add the LPs to set P
o<

Yes, update UB

No

@<

rz(k + 1) = filz(k), wi(k), e(k))
yi(k) = gi(x(k), wi(k), e(k))

75

@ (k)

ui(k)

e(k)

Discrete-Time Hybrid Systems

(Torrisi, Bemporad, 2003)

(k) = Feo(@e(h), uc(k)) i;

|

(k) € & € {0, 1}
ui(k) €V € {0,117

(k) € 1 C {0,1}™
i(k) € T C {0,1}*

MQDE
SELSCTQRR

i(k—1) - \
r\

(k) o

/\)

ue(k)

z.(k)

ze(k) € X CR™
ye(k) € Yo C R

uc(k) € Ue CR™
e(k) € £ C {0,1}"

i(k) = fms (2 (k) w (k) i(k — 1))

ye(k) = Cypywe(k) + Diyuc(k) + gi1)
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Hybrid Models for the Hybrid Solver

Continuous constraints| Gy < d, Gv =4
Mixed constraints| G'v+ D'vw' < E/, G'v+ D'’ = F'

Logic constraints | 9(w, ")

Automaton
w (k) zi(k + 1) = fi(z(k), wi(k), e(k))
(k) = gi(z(k), v (k), e(k))

AUTOMATON e(k)
No transformation

i(k) . -
Logic constraints

1 (k)

clock

Mode Selector
i(k) = fms(z(k), w(k),i(k — 1))

i(k—1)
z
(k) No transformation

MODE =
SELECTOR | “* . .
Logic constraints

(k)

Hybrid Models for the Hybrid Solver

Continuous constraints| Gy < d, Gv =4
Mixed constraints| G'v+ D'vw' < E/, G'v+ D'v' = F'

Logic constraints | 9(w, ")

Event Generator
e(k) = feg(ze(k), uc(k))

ey |EVENT T k) i )
~——— GENERATOR Big-M technique

Mixed constraints

wuo(k)

Switched Affine System ze(k +1) = Aje(k) + Biue(k) + f;
clock ye(k) = Cize(k) + Dyuc(k) + ¢;
Big-M technique
i(k) SAS _,.(k)
[ ‘ Mixed constraints

u. (k)
-+

Continuous constraints
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Optimal Control of Hybrid Systems

We define the following optimal control problem:

M ()T Z 1Qu(@(k) — ze(k))|loc + [1Quulk) — uelk))lloo + 1Qy(y(E) — ye(k))loc
sto {anh 1 1) S GG a9, £ '
D (k) = (k). wk). e(k)) @) !
Dae(k 1) = Ayggze(k) + Bigoyuelk) + figk) 3 !
L ye(k) = Cy(yme(k) + Dyggyue(k) + 9104 @ |
E e(k) = feg(ze(k), uc(k)) (%) E
k) = PsCeik), u(k), ik — 1)) . . )
Chp(B (e, u ety 1) <0 ™
TR0 w e LD &

where:

(1-6) are dynamical constraints
(7) are design constraints (e.g.: input/state/logic constraints)

(8) are ancillary constraints (don’t change the solution, only help
the solver. E.g.: reachability constraints)

This problem can be solved by the hybrid solver

Motorbike Example

MODEL: a simplified hybrid model of a

motorbike with three ““semi-automatic™
gears.
GOAL.: solve an optimal control problem in
order to track a desired speed profile
SAS - Discrete-time continuous dynamics 2 continuous inputs:

u, engine torque (Nm)
Speed (Km/h)  w(k+ 1) = (1 — a)v(k) + Biw(k) — cuy u, brake force (N)
Engine speed (rpm) w(k 4+ 1) = w(k) + dus — fuy, 5 continuous states:
v and @

Event Generator — Thresholds events for automatic gear shift

di(k) = 1] — [w(k) <]
do(k) = 1] +— [w(k) <o)

where ¢, and t,, t,< t,, are constant thresholds.
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Motorbike Example

Automaton - Gear automaton ) )
3 binary inputs:

dl(fd' A auto) @, (7d2 A auto) auto: automatic gear shifts
" N med bled
mnoveup ' moveup moveup enable
moveup, movedown: manual
@ @ @ @ —ds gear shift commands
movedown movedown movedown 4 binary states:
v \ .
(d1 A auto) (—dy A dz A auto) idle, gearl, gear2, gear3

Mode selector — Current gear of the mTotorbike (= logic state)

Optimal Control Problem: minimize Y. [v(k) — vl subject to the
k=0

hybrid dynamics and the following additional constraints:

Continuous Logic condition on An exclusive-or condition on |

Constraints torque and brakes the gear commands '

0 < (k) < 50 [di = O] «— [us(k) < Ol | oveup (k) & movedown (k)|

0 < uy(k) < 50. [dy, = O] «— [uy(k) < 0] “
=(de A dp)

Motorbike Example "
w (rpm) o o (Km/hy Cloar auto
Initial conditions: jzz . ‘
v(0)=0 kmsh w00 :
©(0)=0 radss ,
gear=idle 100 e
° 'l'iuu“D(,xj ° 'l'un::c(\) ° 'l'iluj-,ﬂ(s) ° l'iuu‘-n(s') Same results
2y (N wy (N) moveu movedown N
©v,=200 Kmsh 0 25 ! . ! = both with MILP
T=20 < w0 20 and with Ib-B&B
t1=100 rpm 0 ” o
t2=400 rpm TZ ‘?
° Tinn‘vo(.~) ° Tim(‘vo(s) ° Ti.,\<‘~°(-) ° T‘inn‘:o(<)
CPU time Horizon Integer vars  MILF  Ib-B&B  Reduction{%)
10 113 0,221 .12 45,70
. =] R 5.l 1,502 T, 2E
(Pentium IV 1.8GHz _ . e i o
o] 4400 He.a1e r.orsaks i e
llog CPLEX 8.1 o i o ael 1 ) o
+Solver 5.3) 0 6056 e I B 4 23
LPs solved Harizan  MILF  [b-B&:B
10 309 L]
20 F06a% 41
30 Tiove 126
40 14510 it
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Conclusions

Current state:

v" A unifying framework for MIP and CLP
techniques for solving optimal control problems
for hybrid systems.

v A more expressive modeling language for hybrid
systems (due to CLP).

v' A superior computation time in comparison to more
standard mixed-integer programming techniques.

Ongoing and Future Research

* MIQP logic-based solvers for quadratic performance
indices

* Embed MILP solvers in CLP as logic constraints, and
solve satisfiability problems

* Alternative relaxations tighter than big-M (particularly
for SAS and EG parts)

* Applications
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