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Motivation

• EU.IST.CC Project. Automotive applications. Hybrid system.

• Research with Parades, Rome, Italy.

• Magneti-Marelli, company of auto parts. Part of FIAT.

• Technology allows for high-performance control of engine.

• Close control of car engine, for effective steering, environmental

conditions, and for economic reasons.

• Model of car engine is hybrid system.

• Control problem.

• Work in progress.
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Engineering model

Remarks

• Hybrid system character due to periodic behavior of crankshaft

rotation. Time of revolution not constant.

• Model more detailed than models in literature.

Submodels

• Gas pressure model: From throttle to gas pressure.

• Cylinder model: From gas pressure to torque.

• Power train model: From torque to crankshaft speed and angle.
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Engineering model of car engine
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Figure. Engineering model of car engine.
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Def. Piecewise-affine hybrid system (PAHS, CT, Time-invariant)

Q finite state set, U ⊆ Rm, Y ⊆ Rp, polyhedral sets,

X(q) ⊆ Rn(q), ∀q ∈ Q, closed polyhedral sets,

ẋq(t) = A(q)xq(t) + B(q)u(t) + a(q), xq(to) = x+
q ,

y(t) = C(q)xq(t) + D(q)u(t) + c(q),

e ∈ Ecd, if x(t1) ∈ Gq(e) ⊂ ∂X(q),

event generated by continuous dynamics; then transition,

q+ = f(q−, e, x−
q−), q0,

x+
q+ = Ar(q−, e, q+)x−

q− + br(q−, e, q+).

Remark PAHS defined above is switched system rather than general

hybrid system.
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Model of car engine - States

Q = {1, 2, 3}, 1 = S−, 2 = S, 3 = S+,

X =
6∏

i=1

Xi ⊂ R6
+,

x1 = gas pressure,

x2 = crankshaft speed,

x3 = crankshaft angle,

x4 = mass of gas mixture in cylinder during compression stroke,

x5 = mass of gas mixture in cylinder during expansion stroke,

x6 = torque,

u1 = throttle angle, U(1) = [u1,min, u1,max] ⊂ (0,∞),

u2 = spark angle advance or delay, U(2) = [u2,min, u2,max] ⊂ (0,∞).
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Continuous dynamics

Identical in all three discrete states,

ẋ(t) = Ax(t) + Bu1(t), x(t0) = x0,

=




Apx1(t) + Bpu1(t)

Anx2(t) + Bnx6(t)

Kcx2(t)

0

0

0




,

z(t) = eT
2 x(t), controlled output, crankshaft speed,

Ap, An ∈ (−∞, 0), Bp, Bn ∈ (0,∞);

η(u2) = −0.73 + (0.083 + 0.005u2)1/2, spark efficiency function.

Dynamics consists of one first order positive system,

three hold systems, followed by two first order positive systems.
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Discrete dynamics

At discrete input u2 = 0. Discrete state q = 2 only.

q = 2,

X(2, u2) = {x ∈ X|x3 ∈ [0, π]},
2 = f(2, e(2, 2), x−),

X0(2, u2) = {x ∈ X(2, u2)|x3 = 0},
G(2, e(2, 2)) = {x ∈ X(2, u2)|x3 = π},

x+ =




x−
1

x−
2

0

Gmpx
−
1 + M0

x−
5

Gη(0)x−
4 + T0η(0)




.
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Discrete dynamics

At discrete input u2 < 0. Discrete state q = 1, 2.

q = 1,

X(1, u2) = {x ∈ X|x3 ∈ [0,−u2]},
2 = f(1, e(2, 1), x−),

X0(2, u2) = {x ∈ X(1, u2)|x3 = 0},
G(2, e(2, 2)) = {x ∈ X(1, u2)|x3 = −u2 > 0},

x+ =




x−
1

x−
2

x−
3

x−
4

x−
5

Gη(u2)x−
5 + T0η(u2)




.
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Discrete dynamics

At discrete input u2 < 0.

q = 2,

X(2, u2) = {x ∈ X|x3 ∈ [−u2, π]},
1 = f(2, e(1, 2), x−),

X0(2, u2) = {x ∈ X(2, u2)|x3 = −u2},
G(2, e(1, 2)) = {x ∈ X(2, u2)|x3 = π},

x+ =




x−
1

x−
2

0

Gmpx
−
1 + M0

x−
4

0




.
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Discrete dynamics

At discrete input u2 > 0. Discrete state q = 2, 3.

q = 2,

X(2, u2) = {x ∈ X|x3 ∈ [0, π − u2]},
3 = f(2, e(3, 2), x−),

X0(2, u2) = {x ∈ X(2, u2)|x3 = 0},
G(2, e(3, 2)) = {x ∈ X(2, u2)|x3 = π − u2},

x+ = x−.
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Discrete dynamics

At discrete input u2 > 0.

q = 3,

X(3, u2) = {x ∈ X|x3 ∈ [π − u2, π]},
2 = f(3, e(2, 3), x−),

X0(2, u2) = {x ∈ X(3, u2)|x3 = π − u2},
G(3, e(2, 3)) = {x ∈ X(3, u2)|x3 = π},

x+ =




x−
1

x−
2

0

Gmpx
−
1 + M0

x−
5

Gη(u2)x−
4 + T0η(u2)




.
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Dynamics over cycles

Time axis replaced by axis for crankshaft angle, x3.
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Figure. Diagram of dynamics of continuous-space system.
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Dynamic system properties - Stationary state

Problem

Consider a crankshaft speed zs ∈ (0,∞).
For all u2 ∈ U(2), spark angle advance,

determine the throttle input u1,s ∈ U(1) = R+

and a stationary state xs ∈ X

such that when the throttle input equals u1,s

then the state is stationary and equals xs, in particular x2,s = zs,

with the crankshaft running at constant speed x2,s = zs.
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Existence stationary state

Theorem Consider crankshaft speed zs ∈ (0,∞) sufficiently large.

(a) Case u2 < 0. Existence of periodic solution for the state trajectory.

Details to be worked out.

(b) Case u2,s = 0. Stationary state and throttle input are:

x2,s = zs, x6,s = −(An/Bn)x2,s,

x4,s = −[x6,s − T0η(0)]/Gη(0), x5,s not relevant for this case,

x1,s = [x4,s − M0]/Gmp, u1,s = −(Ap/Bp)x1,s.

(c) Case u2,s > 0. Stationary state and throttle input are:

x2,s = zs, x6,s = −(An/Bn)x2,s,

x4,s = −[x6,s − T0η(u2,s)]Gη(u2,s),

x1,s = [x4,s − M0]/Gmp, u1,s = −(Ap/Bp)x1,s.
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Theorem Forward invariant sets.

Consider the PAHS for the car engine. Consider the case u2 = 0.
There exists

a subset of the state set Xinv ⊂ X and

a subset of the input set U inv(1) ⊂ U(1)
such that with any input u1 ∈ U inv(1),
the subset Xinv is forward invariant:

if x0 ∈ Xinv then for all t ∈ T , x(t) ∈ Xinv.

Formulas for Xinv are stated in paper.
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Problem Control to maintain crankshaft speed at set point

Motivation. Unforeseen disturbances affect the crankshaft speed: road

surface irregularities, windgusts, etc.

Control objective: Maintain crankshaft speed at set point.

Approaches

• Control law which steers crankshaft speed back to set point in a few

steps. Done. Theorem with formulas in paper.

• Fast yet simple control law. Asymptotically stability. Not yet worked

out.
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Problem Control to transfer to a new set point

Situation: Lower crankshaft speed to new set point,

lower than current one, 0 < zs < zs,old.

Control objectives

1. Set point zs reached.

2. No undershoot, under a specified value zs,low ∈ (0,∞).

3. Minimal or relatively small transfer time.
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Control to transfer to a new set point - Approaches

Case 1. u2 = 0.
Def. Control law 1.

g(x) = u1,s ∈ U(1), zs 7→ u1,s.

Proposition Control law 1 meets control objectives 1 and 2, but control

objective 3 not so well due to slowness.

Proof Monotone decline of crankshaft speed to new set point.
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Control to transfer to a new set point - Approaches

Case 1. u2 = 0.
Def. Control law 2.

g(x) = u1,minI(x1,a<x1(t)) + u1,maxI(x1,b<x1(t)≤x1,a) +

+u1,sI(x1(t)≤x1,b).

Parameters of control law to be determined.

Performance of closed-loop system for control objectives to be determined.

Optimality with respect to minimal transfer time?
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Control to transfer to a new set point - Approaches

Case 1. u2 = 0.
Def. Control law 3. Control to be based on control-to-facet.

Partition state set into multivariable rectangles.

For each rectangle determine a control law transferring the state to a

specified facet.

Control objectives 1 and 2 are then met.

To be carried out in detail.
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Control to transfer to a new set point - Approaches

Approach Optimization over spark advance input u2 ∈ U(2).
To be done.
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Concluding remarks

Results

• Model as hybrid system. Dynamic system properties.

• Control law for maintaining set point.

• Control law for transfer to a new set point, special case.

Plan for research

• Control law for transfer to a new set point. Optimal control. Optimize

over spark angle.

• Control law for maintaining set point. Asymptotic stability. Optimal

control.
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