
Network-aware Evaluations of Reputation Systems

Alessandro Celestini1, Rocco De Nicola1, and Francesco Tiezzi1

IMT, Institute for Advanced Studies Lucca, Italy

{alessandro.celestini,rocco.denicola,francesco.tiezzi}@imtlucca.it

Abstract. Reputation systems are nowadays widely used to support decision
making in networked systems. Parties in such systems rate each other and use
shared ratings to compute reputation scores that drive their interactions. The ex-
istence of many reputation systems with remarkable differences calls for software
frameworks for describing, implementing and comparing their performances
while taking into account the architecture of the network where the systems
have to be deployed. We tackle this problem through a software framework for
network-aware evaluations of reputation systems based on the notion of proba-
bilistic trust. Specifically, we describe a tool for rapid prototyping and evaluation
of reputation system models, which takes explicitly into account the networked
execution environment. To implement specific models we just enrich Klava (a
network-aware extension of Java) with additional classes. To assess performances
of the resulting reputation systems, their implementations are analysed by a con-
trol manager that performs experiments according to user-specified parameters.
The developed framework relies on the formal foundations of Klaim, a network-
aware coordination language, and its Java implementation Klava. Feasibility and
effectiveness of our proposal is demonstrated by reporting on the analysis of two
simple models of reputation systems.

Keywords: Reputation systems, Network-awereness, Formal methods

1 Introduction

The growth witnessed in the e-commerce industry in the last years is impressive and is
likely to continue. The online provision of services through open computer networks
involves an increasing number of customers, that have to deal with new issues, not
encountered in traditional forms of commerce. Nowdays, there is no physical contact
with providers and it is relatively easy and cheap to build an online shop or put items
on sale in existing mediator sites. This has further reduced the information in posses-
sion of customers about providers, and the goods and services they offer. To mitigate
this inconvenience, reputation systems are more and more used to support decision
making in commercial online applications. The success of reputation systems in this
area has stimulated their application also in other contexts, e.g ad-hoc networks, sensor
networks, P2P networks, where the parties are likely to be disconnected from their pre-
ferred security infrastructures and have to rely on other means to build up confidence in
their partners.

In a reputation system the involved parties rate each other, e.g. after completing
an interaction, and use the aggregated ratings about a given party to derive a reputation

2

Network

Rating serverSearch server

Party 1

Party 2 Party 3

Party n

services

cpu
disk space

Resources Ratings

. . .

Fig. 1: General infrastructure of a reputation system

score, i.e. a collective measure of trustworthiness based on the ratings from the members
of a community. Such computed reputation is used to assist the other parties in deciding
whether to interact with a specific partner.

A networked trust infrastructure allows parties of a reputation system to interact and
to exchange ratings. In this paper, we consider a general infrastructure, graphically de-
picted in Figure 1, where a rating server collects all ratings from system’s parties and
makes them publicly available, while a search server allows parties to find resource
providers in the system. Every party can play the role of client, provider, or both, and
may offer different kinds of resources. Therefore, when a party needs a resource, it
queries the search server to get the list of parties providing it, and retrieves the corre-
sponding ratings of each of these parties. Then, it selects one of the providers with the
highest reputation score and, after the interaction, rates it according to the quality of the
provided resource.

Due to the widespread diffusion of reputation systems, research work on them is
intensifying and many different systems have been (and are still) proposed, often de-
veloped from scratch without considering existing approaches. In fact, on top of the
general networked infrastructure mentioned above, many different kinds of reputation
systems can be layered, which mainly differ for the model they use to aggregate rat-
ings when computing reputation scores. This calls for a methodological approach for
describing, implementing and comparing different reputation systems while taking into
account the network architecture where they have to be deployed. In this paper, we
tackle this issue by proposing a software framework for network-aware evaluations of
reputation systems. To model the behaviour of the parties involved in these systems, we
rely on the probabilistic approach to trust [10, 8], according to which the parties’ be-
haviour is rendered through a probability distribution. More specifically, we present a
tool for rapid prototyping of Java-based implementations of reputation system models,
devised to run in a networked execution environment. To assess performances of the
resulting reputation systems and comparing them among each other, the obtained im-

3

plementations are handled by a control manager that performs experiments according
to user-specified parameters.

The proposed framework takes advantage of the coordination language Klaim [6],
specifically designed for network-aware programming of distributed applications and
for reasoning about them. For the implementation, we rely on the Java library Klava [4],
which provides a run-time support for Klaim actions within Java code. In particular, to
implement specific reputation models we enrich Klava with additional classes imple-
menting a given interface. In this way, our framework enables a dynamic analysis, based
on experiments carried out in a real network environment rather than through simula-
tion of mathematical models as for most of the proposals in the literature. The formal
foundations underlying the framework paves the way for the use of formal tools and
techniques already developed for Klaim (see, e.g., [15]) to support the verification of
reputation system models. Moreover, the prototypical implementations used here for
evaluation purposes could be exploited as the basis of a real world Java implementa-
tions of reputation systems.

To demonstrate the feasibility and effectiveness of our proposal we have analysed
two simple models of reputation systems, namely the Beta model [10] and a model
based on the maximum likelihood estimation [8], and we have shown that the reputation
scores in the latter model converge more rapidly to the right estimations of parties’
behaviour than in the former one.

The rest of the paper is organized as follows. Section 2 provides a brief overview of
Klaim and Klava. Section 3 presents the Klaim model of reputation system underlying
our framework. Section 4 describes the architecture and functional principles of the
framework, while Section 5 reports on the analysis of two models of reputation systems.
Finally, Section 6 concludes the paper by also reviewing some of the related work and
suggesting directions for future work.

2 The formal language Klaim and the Java library Klava

In this section we informally present Klaim1, a coordination language specifically de-
signed for modelling mobile and distributed applications and their interactions, which
run in a network environment. Then, we provide a brief overview of Klava, a Java
library implementing the run-time support for Klaim actions. We refer the interested
reader to [6] and [4] for a more complete account of Klaim and Klava, respectively, and
to [5] for a survey on research work based on Klaim.

Klaim specifications consist of nets, namely finite plain collections of nodes where
components, i.e. processes and data tuples, can be allocated. Nodes are composed by
means of the parallel composition operator ‖ . At net level, it is possible to restrict the
visibility scope of a name s by using the operator (νs) : in a net of the form N1 ‖ (νs)N2,
the effect of the operator is to make s invisible from within the subnet N1.

1 We consider in this paper a version of Klaim enriched with standard control flow constructs
(i.e., assignment, if-then-else, sequence, etc.), which simplify the modelling task. Although
such constructs were not included in the original presentation of the language [6], they can be
easily rendered in Klaim and are directly supported by related tools.

4

Nodes have the form s ::ρ C, where s is a unique locality name (i.e., a network ad-
dress), ρ is an allocation environment, and C is a set of hosted components. An alloca-
tion environment provides a name resolution mechanism by mapping locality variables
l (i.e., aliases for addresses), occurring in the processes hosted in the corresponding
node, into localities s. The distinguished locality variable self is used by processes to
refer to the address of their current hosting node. In the rest of this section, we will use
` to range over locality names and variables.

Processes are the Klaim active computational units and may be executed concur-
rently either at the same locality or at different localities. They are built up from the
process nil, which does nothing, and from basic actions by means of sequential com-
position ; , parallel composition | , conditional choice if (e) then { } else { },
the iterative constructs for i = n to m { } and while (e) { }, and process definition
A(f1, . . . , fn), , where A is a process identifier and the formal parameters fi are pair-
wise distinct. Notably, e ranges over expressions, which are formed from basic values
(booleans, integers, strings, floats, etc.) and variables by using standard operators on
values and the non-blocking retrieval actions inp and readp (explained below).

During their execution, processes perform some basic actions. Actions in(T)@`
and read(T)@` are retrieval actions and permit to withdraw/read data tuples (i.e. se-
quences of values) from the tuple space hosted at the (possibly remote) locality `: if
a matching tuple is found, one is non-deterministically chosen, otherwise the process
is blocked. These actions exploit templates as patterns to select tuples in shared tuple
spaces. Templates are sequences of actual and formal fields, where the latter are written
! x or ! l and are used to bind variables to values or locality names, respectively. Actions
inp(T)@` and readp(T)@` are non-blocking versions of the retrieval actions: namely,
during their execution processes are never blocked. Indeed, if a matching tuple is found,
inp and readp act similarly to in and read, and additionally return the value true; oth-
erwise, they return the value false and the executing process does not block. Actions
inp(T)@` and readp(T)@` can be used where either a boolean expression or an action
is expected (in the latter case, the returned value is simply ignored). Action out(t)@`
adds the tuple resulting from the evaluation of tuple t (which may contain expressions)
to the tuple space of the target node identified by `, while action eval(P)@` sends the
process P for execution to the (possibly remote) node identified by `. Actions out and
eval are both non-blocking. Finally, action newloc creates new network nodes, while
action x := e assigns the value of e to x. These latter two actions, differently from all
the others, are not indexed with an address because they always acts locally.

The tuple-based communication model underlying the Klaim language is particu-
larly suitable for implementing distributed applications that run over a heterogeneous
network. Therefore, a Java package, called Klava, has been developed to programme
such applications according to the Klaim coordination paradigm. This package relies on
the IMC framework [3], which provides recurrent mechanisms for network applications
and, hence, can be used as a middleware for the implementation of different formal lan-
guages. Specifically, Klava provides classes to be instantiated to create a net, and nodes
that can be connected to the net in order to build the desired network environment. An
abstract class is then provided to create processes to be added to the nodes, by means
of instantiation of subclasses specialized through inheritance and method overriding.

5

3 Klaim model of reputation system

In this section, we present the Klaim model of reputation system underlying our eval-
uation framework. For the sake of readability, we report the Klaim specification rather
than the corresponding Klava code; we refer to [2] for the complete Java source and
binary code of the framework.

We consider here the general infrastructure of a reputation system described in Sec-
tion 1 and graphically depicted in Figure 1. It can be rendered in Klaim as follows:

ssearch server ::ρsearch server 〈“type 1”, sparty j〉 | . . . | 〈“type m”, sparty h〉 | Asearch

‖ srating server ::ρrating server 〈“query lock”, sparty 1〉 | . . . | 〈“query lock”, sparty n〉

‖ sparty 1 ::ρparty 1 Aparty 1 ‖ . . . ‖ sparty n ::ρparty n Aparty n

where ρsearch server = {self 7→ ssearch server}, ρrating server = {self 7→ srating server}, and
ρparty i = {self 7→ sparty i, lrating 7→ srating server, lsearch 7→ ssearch server}, with i = 1..n.

The tuple space of the search server contains tuples of the form 〈“type i”, sparty k〉

stating that the party sparty k provides resources of type i. In the considered setting,
a party can provide infinitely many times a given resource (i.e. we consider resources
such as files, services, etc.). The model, as well as the framework, can be easily extended
to settings dealing with non-persistent resources (e.g., by representing them as tuples).

The tuple space of the rating server contains, instead, a tuple of the form
〈“query lock”, sparty i〉 for each party sparty i belonging to the net. This tuple acts as
a lock that must be acquired before querying the rating server for retrieving the ratings
about the party sparty i. Notably, such tuples are used just in the Klaim specification.

It is worth noticing that tuples 〈“type j”, sparty i〉 and 〈“query lock”, sparty i〉 are in-
serted into the tuple spaces of the two servers when the party node sparty i connects to
the net (this step is not described in the Klaim model). Moreover, for the sake of sim-
plicity, in the Klaim specification, once party nodes and servers are connected to the net
they will not disconnect. The Klava implementation, instead, deals with (unexpected or
programmed) node disconnections, by setting timeouts through the timed versions of
the blocking Klaim actions (see [4]).

The rating server does not execute any process (i.e. it simply acts as a store of
tuples), while the following recursive process runs on the search server:2

Asearch server ,
nproviders := 0;
// get a search request to be processed
in(“search request”, !lrequester, !res type)@self;
// read (and consume) all the ‘resource type-provider’ tuples for the given resource type
while (inp(res type, !l)@self) {

// increase the counter of providers
nproviders := nproviders + 1;
// add the current provider to the list sent to the requester
out(“list”, nproviders, l)@lrequester;
// store the current tuple in a temporary local tuple

2 The specification code reported in this section is made self-explanatory through the use of
comments (the string // indicates that the rest of the line is a comment).

6

out(“tmp”, res type, l)@self
};
// send the length of the list to the requester
out(“list length”, nproviders)@lrequester;
// recreate the consumed ‘resource type-provider’ tuples
while (inp(“tmp”, !res type, !l)@self) {

out(res type, l)@self
}; Asearch server

The search server processes one request at a time; for each requested type of resource
it determines a list of providers by exploring the information in its tuple space. This
list is rendered in Klaim as a set of tuple of the form 〈“list”, i, sparty j〉 indicating that
the i-th element of the list is the provider sparty j. Notably, in the Klaim specification
above, to read all matching tuples only once in a request processing, the ‘resource type-
provider’ tuples are first consumed and then reinserted into the tuple space. Instead,
the corresponding Klava implementation of this process performs the same task in an
equivalent, but more efficient, way by exploiting a built-in mechanism that prevents
matching twice the same tuple in this kind of loops.

Depending on the processes running in the party nodes, each party sparty i can play
two roles: it can provide resources, require resources, or both. We consider here the
latter case, the more complete, where Aparty i is defined as follows:

Aparty i , Aprovider i | Aclient i

The process for the provider role is defined as follows:

Aprovider i ,
// wait for a new resource request
in(“request”, !lrequester, !resource type)@self;
// get the quality of the resource to be provided according to its behaviour
quality := getResourceQuality(party i behaviour, resource type);
// provide the resource to the requester
out(“resource”, resource type, quality)@lrequester;
Aprovider i

The provider specified above serves one client at a time, but the specification could be
easily modified to serve multiple requests. The processing of a request is based on the
function getResourceQuality, that takes into account the party behaviour and the type of
the resource. The definition of such function and that of resource quality may vary from
a reputation system to another. Therefore, these are some of the parameters defining a
specific reputation system that must be specified in order to implement it and evaluate
its performances.

The process for the client role, instead, is defined as follows:

Aclient i ,
// randomly select a resource type
res type := getResourceType();
// query the search server for obtaining a list of parties providing a resource of type res type
out(“search request”, self, res type)@lsearch;
// read (and consume) the number of providers

7

in(“list length”, !m)@self;
// initialize the tuple containing the locality of the most trusted party and its reputation value:
// the reputation value NO ONE indicates that there is no provider for the requested resource
out(“most trusted party”, self,NO ONE)@self;
// read (and consume) the list sent by the search server
for j = 1 to m {

// get an element of the list
in(“list”, j, !lprovider)@self;
// compute the reputation value of j-th party
Aevaluate reputation(lprovider)

};
// request the resource to the most trusted party
Arequest(res type);
Aclient i

A client cyclically chooses a type of resource to request, retrieves a list of parties pro-
viding this type of resource from the search server, determines the most trustworthy
parties (see process Aevaluate reputation below) and requests the resource to one of them
(see process Arequest below). Notably, to select a resource type, the above process ex-
ploits the function getResourceType, which returns a random type from “type 1” and
“type m” according to a uniform distribution. The constant NO ONE is defined within
our framework to indicate that there exists no provider for a requested resource.

The process Aevaluate reputation is defined as

Aevaluate reputation(l) ,
// acquire the lock for querying the rating server about party l
in(“query lock”, l)@lserver;
// read (and consume) the rating values of party l
while (inp(!lrater, l, !rate)@lserver) {

// store a local copy of the rating value
out(lrater, rate)@self
// store a temporary copy of the rating tuple to repopulate the rating server’s tuple space
out(lrater, l, rate)@self;

};
// recreate the rating values of party l in the rating server
while (inp(!lrater, l, !rate)@self) {

out(lrater, l, rate)@lserver

};
// release the lock
out(“query lock”, l)@lserver;
// check if at least one rate exists for party l
if (readp(!lrater, !rate)@self) then{

// compute the reputation of party l by exploiting (and consuming) the local rating tuples
reputation := evaluateReputation(self, l)

} else {
// the reputation is set to a constant value
reputation := NO RATINGS

8

};
// update the most trusted party
in(“most trusted party”, !ltrusted, !reputationMostTrusted)@self;
if (reputationMostTrusted < reputation) then{

out(“most trusted party”, l, reputation)@self
} else {

out(“most trusted party”, ltrusted, reputationMostTrusted)@self
}

To properly retrieve all rating values about the party l, the process must acquire a lock
from the rating server, which will be released only after all consumed rating tuples
will be reinserted into the server’s tuple space. Like for process Asearch server, the cor-
responding Klava code implements this task more efficiently. The most relevant part
of the above process is the computation of the party reputation through the function
evaluateReputation, which differs from a reputation system to another and, hence, is
one of the parameters that must be specified to implement a reputation system in our
framework. Similarly, the constant NO RATINGS is a parameter of the system and
specifies the reputation assigned by default to providers without rating values (e.g. 0
means that providers without rating values are not trusted, while 0.5 means that they
have an ‘average’ reputation).

Finally, the process Arequest is defined as

Arequest(type) ,
// get the most trustworthy provider
in(“most trusted party”, !ltrusted, !reputationMostTrusted)@self;
// check if the most trustworthy provider has enough reputation
if (MIN REPUTATION 6 reputationMostTrusted) then{

// send the resource request to the most trustworthy provider
out(“request”, self, type)@ltrusted;
// receive the resource
in(“resource”, type, !quality)@self;
// check the quality of the resource and rate the provider
rate := rateProvider(quality);
// send the rate to the rating server
out(self, ltrusted, rate)@lserver

}

Again, the constant MIN REPUTATION and the function rateProvider are parameters
of the system. The constant MIN REPUTATION specifies the minimum reputation re-
quired by the client for an interaction with a provider, while the function rateProvider
returns a rating value for the invoked provider by possibly taking into account runtime
measures (e.g. response time).

4 The evaluation framework

In this section, we present the architecture of our framework, describe how an evaluation
is carried out and explain how to use our tool for prototyping reputation system models.

9

y

x

y

x

ReputationModelRating

Binary
Rating

Beta
Model

ML
Model

.

.

.

.

.

.

Reputation Model Package

Experiment Manager

Klava net

ACTIVATE GET
EXPERIMENT
DATA

Experiment
configuration
parameters

.properties INPUT

Evaluator

y

x

OUTPUT

Evaluation
results

Klava
library

Fig. 2: Framework workflow

The framework3 is composed by three main parts: (1) the reputation model package,
(2) the experiment manager, and (3) the Klava net. The reputation model package con-
tains the Java classes implementing the reputation system models. The experiment man-
ager is a Java class that manages the execution of each experiment. Finally, the Klava
net exploits the Klava library to implement the network where reputation systems are
deployed. The architecture of the framework, as well as its workflow, are graphically
depicted in Figure 2.

In the following we report what goes on from the user setting of configuration pa-
rameters to the output of evaluation results. First, the user sets the configuration param-
eters for each evaluation, writing them on a configuration file. The configuration file is
a Java properties file that is read by the tool after the launching. Some of the most signi-
ficative configuration parameters are the number of parties in the system, the number of
different resource types that parties can provide, the set of parties’ behaviours, the trust
model to use, and the possibility of randomly selecting providers, instead of choosing
one of those with the best reputation score. The latter parameter allows a client party
to choose a provider independently from the providers’ reputation scores. In this way,
each provider in the system will have the same number of rating values on the average.
This may turn out to be useful to compare the trends of reputation scores associated
to parties having a ‘bad’ behaviour. In fact, without random choice, after a while such
parties would not be chosen and rated by clients (see Section 5, Figure 5).

The tool then uses the input parameters to create the network: a network node is
created for each of the two servers and for each party in the system. Once the network

3 This is a free software; it can be redistributed and/or modified under the terms of the GNU
General Public License as published by the Free Software Foundation.

10

is completely set up, the reputation system (configured according to user’s parameters)
is deployed on it and the experiment starts, i.e. network components are enabled so
that system parties can interact and rate each other. During the activity of the network,
data about interactions are stored for a later analysis. The user sets the duration of each
experiment and the number of experiments to execute through configuration parameters.
Experiments are repeated in order to reach the desired precision; thus the procedure of
starting and stopping experiments is executed till the last experiment is accomplished.
Afterwards, data are analysed and provided as output, also in form of charts4, by the
tool. We refer to Section 5 for a deeper description of data analysis.

For what concerns extending our tool to other reputation system models, it is pos-
sible to implement them through the specification of few Java classes: for each new
model, the user has to create a class implementing the ReputationModel interface
and, possibly, a class extending the abstract class Rating. The class implementing the
interface defines how reputation scores are computed, which rating values are used by
the system and how parties in the system evaluate the interactions. The class extending
Rating defines the set of rating values used in the system and how to store them.

The framework includes the implementation of two reputation system models: the
first based on the Beta model [10], and the second based on maximum likelihood es-
timation [8]. Both reputation systems use binary ratings, i.e. system parties in both
models rate each other in a binary way: an interaction can be either ‘satisfactory’ or
‘unsatisfactory’. Therefore, a class has been created for each model and a single class
has been created for binary ratings. The latter class is used by both models, but each of
them specifies how to specifically use the rating values inside.

In the following we describe the two models in more details. Let P be a set of
party identities, the behaviour of each party p ∈ P is assumed to be probabilistic, in
the sense that there is a fixed probability θp ∈ [0, 1] that an interaction with the party
p will be satisfactory. In a reputation system, the goal is to predict parties’ behaviour
in future interactions, given the rating values about past interactions, i.e. determining
an estimation θ̃p of the unknown parameters θp. The sequence of rating values xn

p =

x1p, . . . , xnp, with xip ∈ {0, 1}, about past interactions with party p is considered as
realization of a sequence of independent, identically distributed (i.i.d.) random variables
Xn

p = X1p, . . . , Xnp.
The implemented models assume that random variables Xip are distributed accord-

ing to a Bernoulli distribution with success probability θp. This means that, when inter-
acting with a party p, the probability that the i-th interaction is satisfactory, given θp the
behaviour of party p, is

Pr(satisfactory | θp) = θp

The reputation system based on the Beta model seeks to estimate the a posterior
distribution for the value θp, given the results of past interactions with party p. The
model uses a conjugate prior distribution, specifically a beta prior. Hence, the a poste-
rior distribution results in a beta distribution. Party’s reputation score θ̃p is given by the
expected value of the beta distribution Beta(α + 1, β + 1) with α ≥ 0 and β ≥ 0, where

4 The tool automatically generates charts by exploiting the Java library JFreeChart (freely avail-
able at http://www.jfree.org/jfreechart/).

11

parameter α represents the number of satisfactory past interactions with party p and β
represents the unsatisfactory interactions with p.

The reputation system based on maximum likelihood estimation5 seeks to find a
value θ̃p which maximises the following likelihood expression L(θ):

L(θ) = Pr(Xn
p | θ) =

n∏
i=1

Pr(Xip = xip | θ)

The resulting θ is the party’s reputation score θ̃p.

5 The framework at work

In this section we illustrate how reputation systems are evaluated by using our frame-
work through two exemplifying experiments, whose results are reported in Figures 3
and 4. The charts have been obtained by specifying the following configuration pa-
rameters. The considered reputation systems have two parties, both acting as client and
provider; one party behaves according to a Bernoulli distribution with success proba-
bility θ1 = 0.85, while the other with success probability θ2 = 0.20. The Beta model
and ML model are used for calculating reputation scores. Only one resource is supplied
by the providers and required by clients. Providers of a given resource are chosen ran-
domly. Figure 5 shows what happens when providers selection is not random, i.e. the
party with a better behaviour is chosen more often than the other one. Random choice
gives the possibility of analysing the trend of party’s reputation scores also in the case
of a bad behaving party that would have a very low number of rating values. Moreover,
the random choice shows what happens when reputation systems are not used, i.e. when
reputation scores are not considered for selecting a provider.

The charts in Figure 3a and Figure 3b present the trend of each single party’s repu-
tation in the system. On the x-axis we find the numbers of rating values used to compute
reputation scores, on the y-axis the reputation scores. The behaviours of the two parties,
denoted respectively by θ1 = 0.85 and θ2 = 0.20, are thus represented in the charts as
black horizontal lines. Instead, the trends of their reputation scores are indicated by the
blue and red lines, respectively. The charts show that the ML model converges more
rapidly to the right estimation of party’s behaviour than the Beta model. In the case of
the Beta model, the convergence is slower but smoother. The Beta model is less reactive
in the presence of few rating values than the ML model, while it is more robust than the
ML model, i.e. party’s reputation scores change more brusquely in the ML model.

The same comments apply looking at the charts in Figure 4a and Figure 4b that
show the error trend between parties’ reputation scores and parties’ behaviour. On the
x-axis we find the numbers of rating values, on the y-axis the estimation errors. Such
errors are assessed by computing the Kullback-Leibler divergence [14] between each
party’s reputation and the corresponding party’s behaviour, as proposed in [17].

For each experiment, the tool creates some log files containing data used for evalu-
ation purposes and additional information about the experiment setting. Such data are

5 In the rest of the paper, we refer to this model of reputation system as ML model.

12

(a) ML model

(b) Beta model

Fig. 3: Evaluation results: parties’ reputation

then exploited to automatically generate party’s reputation scores charts and Kullback-
Leibler divergence charts for each single experiment run and for the aggregate data
when all runs are completed.

6 Concluding remarks

In this paper, we provide a formal-based framework for evaluation of reputation system
models, which permits to rapidly implement them and analyse their executions in a
networked running environment. To illustrate our approach, we have shown the results
of the analysis of two well-known models of reputation systems.
Related work. The terminology used in the literature to describe the kind of systems
considered in this paper is sometimes quite confusing, due to the usage of the term trust
in different contexts with a variety of meanings. In fact, trust and reputation are often
used as synonyms. The difference between the two concepts is clarified in [11]. Accord-

13

(a) ML model

(b) Beta model

Fig. 4: Evaluation results: estimation errors

ing to this survey, trust is based on a subjective measure of reliability of a given party,
derived from some private knowledge (e.g. past direct interactions). Instead, reputa-
tion relies on an objective measure derived from referrals or ratings provided by other
parties. Therefore, by adopting such distinction, our work focusses on reputation.

There are many works in the literature whose goal is the evaluation and comparison
of reputation systems. However, to the best of our knowledge, ours is the first effective
framework allowing the evaluation of reputation systems in a real networked execution
environment. In fact, most of the existing works base their evaluation solely on a ‘pen-
and-paper’ mathematical study of the models, without taking into account how they
will be implemented and executed in distributed systems. For example, [17] propose
a measure, based on the Kullback-Leibler divergence, for a mathematical comparisons
of probabilistic computational trust systems. Such measure is then applied in [13] to
compare trust systems in ubiquitous computing. We have exploited the same measure
for calculating the estimation errors shown in Figure 4.

14

Fig. 5: Providers selection

Other works exploit computational software programs [20] or software for multi-
agent modelling [19], for running simulation of their reputation models. As an example,
in [18] the RePast simulator [1] is used to conduct various studies on reputation systems
in a multi-agent context. In particular, simulations with increasing amount of hostile
agents in the system have been performed in order to find the critical point, where the
system fails to compute dependable reputations. The aim of such studies is to simulate
systems under extreme conditions, while we are more interested on the real world be-
haviour, which also takes into account the networking aspects. However, similar exper-
iments could be also carried out in our framework. In the same way, we could perform
analyses similar to those described in [9] aiming at evaluating the robustness of reputa-
tion systems. We leave this for future investigation. Another simulation-based approach
is described in [12], where a simulator implemented in Java is proposed as testbed
enabling a competition forum for evaluating trust systems. As in the cases above, no
networking or other real world aspects are taken into account.
Future work. In this paper, we have shown our framework at work on two simple repu-
tation system models, i.e. the Beta model and a model based on the maximum likelihood
estimation. We intend to extend this programme to evaluate reputation models already
defined in the literature, through experiments in a networked environments. Some mod-
els that we plan to take into account in the near future are those surveyed in [16, 11].

Apart from considering other models, we also intend to extend our investigation
to reputation systems deployed on network architectures relying on distributed rating
servers, rather than a centralised one. As an example of such decentralised architectures,
we can consider a case (like, e.g., in P2P networks) where each party stores the rates
about interactions and provides them to other parties. Thus, before interacting with a
given party, one has to retrieve ratings about him from as many parties as possible. In
particular, we intend to study how different underlying network architectures affects the
performances of a given reputation model.

As a further work on our evaluation tool, we want to make it more usable by devel-
oping a graphical interface, exploiting Java libraries such as Swing or GWT, in order to
guide users in setting and executing experiments.

Another line of research we want to explore is to enlarge our evaluation approach
of reputation systems by applying other forms of analysis that still rely on the Klaim

15

model presented in Section 3. The Klaim model, used here as a formal basis to develop
Java implementations based on the Klava library, can also be used for analysis purposes
by means of existing tools already developed for Klaim. In particular, we believe that
the use of the stochastic logic introduced in [7] for formalising the desired system’s
properties and the use of the corresponding analysis tool [15] could allow us to obtain
results that would integrate those obtained by using our framework.

References
1. RePast. Web site: http://repast.sourceforge.net.
2. Source and binary code of the evaluation framework, 2012. Available at http://cse.lab.
imtlucca.it/rep_sys_eval/.

3. L. Bettini, R. De Nicola, D. Falassi, M. Lacoste, and M. Loreti. A Flexible and Modular
Framework for Implementing Infrastructures for Global Computing. In DAIS, volume 3543
of LNCS, pages 181–193. Springer, 2005.

4. L. Bettini, R. De Nicola, and R. Pugliese. Klava: a Java Package for Distributed and Mobile
Applications. Software - Practice and Experience, 32(14):1365–1394, 2002.

5. L. Bettini et al. The Klaim Project: Theory and Practice. In Global Computing, volume 2874
of LNCS, pages 88–150. Springer, 2003.

6. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A Kernel Language for Agents Interac-
tion and Mobility. Transactions on Software Engineering, 24(5):315–330, 1998.

7. R. De Nicola, J. Katoen, D. Latella, M. Loreti, and M. Massink. Model checking mobile
stochastic logic. Theor. Comput. Sci., 382(1):42–70, 2007.

8. Z. Despotovic and K.Aberer. A Probabilistic Approach to Predict Peers’ Performance in P2P
Networks. In CIA, volume 3191 of LNCS, pages 62–76. Springer, 2004.

9. A. Jøsang and J. Golbeck. Challenges for robust of trust and reputation systems. In STM,
2009.

10. A. Jøsang and R. Ismail. The beta reputation system. In Bled Conference on Electronic
Commerce, 2002.

11. A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online service
provision. Decision Support Systems, 43(2):618–644, 2007.

12. K.K. Fullam et al. A specification of the Agent Reputation and Trust (ART) testbed: exper-
imentation and competition for trust in agent societies. In AAMAS, pages 512–518. ACM,
2005.

13. K. Krukow, M. Nielsen, and V. Sassone. Trust models in ubiquitous computing. Phil. Trans.
R. Soc., 366:37813793, 2008.

14. S. Kullback and R.A. Leibler. On information and sufficiency. Annals of Mathematical
Statistics, 22(1):7986, 1951.

15. M. Loreti. SAM: Stochastic Analyser for Mobility, 2010. Available at http://rap.dsi.
unifi.it/SAM/.

16. J. Sabater and C. Sierra. Review on computational trust and reputation models. Artif. Intell.
Rev., 24:3360, 2005.

17. V. Sassone, K. Krukow, and M. Nielsen. Towards a formal framework for computational
trust. In FMCO, volume 4709 of LNCS, pages 175–184. Springer, 2006.

18. A. Schlosser, M. Voss, and L. Brückner. Comparing and Evaluating Metrics for Reputation
Systems by Simulation. In Workshop on Reputation in Agent Societies, 2004.

19. Y. Wang and J. Vassileva. Trust and reputation model in peer-to-peer networks. In P2P,
pages 150–157. IEEE, 2003.

20. L. Xiong and L. Liu. A reputation-based trust model for peer-to-peer e-commerce commu-
nities. In CEC, pages 275–284. IEEE, 2003.

