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Abstract. Social Web Services (SWSs) constitute a novel paradigm of service-
oriented computing, where Web services, just like humans, sign up in social net-
works that guarantee, e.g., better service discovery for users and faster replace-
ment in case of service failures. In past work, composition of SWSs was mainly
supported by specialised social networks of competitor services and cooperating
ones. In this work, we continue this line of research, by proposing a novel SWSs
composition procedure driven by the SWSs reputation. Making use of a well-
known formal language and associated tools, we specify the composition steps
and we prove that such reputation-driven approach assures better results in terms
of the overall quality of service of the compositions, with respect to randomly
selecting SWSs.
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1 Introduction

In line with previous research, e.g., [8, 17, 20] and [21], this paper studies the blend
of social computing (exemplified by social networks) with service-oriented computing
(exemplified by Web services). When the latter joins the former, we obtain Social Web
Services (SWSs). Social Networks (SNs) illustrate the willingness of users to share in-
formation, work with others, and recommend services and applications. These various
and rich forms of interactions are built upon the basic principles of “I offer services that
somebody else may need” and “I require services that somebody else may offer”, prin-
ciples that regulate Web services operation too. Following this intuition and comparing
SWSs to regular Web services, SWSs establish and maintain networks of contacts,
count on their contacts when needed, form strong and long lasting collaborative social
groups.

To support a SWS to carry out these operations, past literature relies on social net-
works of collaboration, substitution, and competition in which SWSs sign up and thus,
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become members. A SWS uses these networks to identify the services that it likes to
work with in case of composition, to identify the services that can replace it in case
of failure when it participates in a composition, and to be aware of the services that
compete against it in case of selection.

In this work, we focus on competition and collaboration SNs: as proposed in [18],
collaborations and competitions are social networks of SWSs that are built to support
the development of composite Web services. In particular:

– Competition Social Networks. Web services that expose similar functionalities
belong to these networks. They are in competition against each other when a SWS
has to be selected to perform a specific task within a service composition. Typi-
cally, competitor SWSs are chosen according to some quality valued they expose,
quantifying both business and security guarantees (see, e.g., [22]).

– Collaboration Social Networks. This kind of networks involve Web services that
expose different functionalities. By being part of a collaboration SN, a SWS knows
the services that it likes to work with when the time for developing compositions
comes.

Building upon competing and collaborating SWSs, we aim at formally modelling
and analysing a composition of SWSs, where SWSs selection is based on their rep-
utation. Reputation systems are used as decision support systems to drive interactions
between parties in a networked system. The basic assumption is that for each party is
possible to store the information related to party’s past interactions. On the basis of
such information a reputation score is computed for each party. Thus, when a party has
to choose another party to interact with, it makes the decision on the basis of parties’
reputation score. Usually, higher the reputation score, higher the probability that a party
will be selected for a future interaction. In fact, a high reputation score means that the
party is trustworthy (in terms of provided QoS) and thus the risk when interacting with
it will be low. In this work we use reputation scores to drive SWSs composition.

Contribution With this paper, we envisage a twofold contribution. On the one hand,
we make use of formal specification languages and analysis tools to model a novel
procedure for SWSs composition and prove properties related to the overall quality
of the composition result. To the best of our knowledge, this is the first attempt to
analyse QoS properties of the composed social Web services making use of such formal
languages and tools. On the other hand, we continue the research effort to aid societies
and enterprises to benefit and capitalise on Web 2.0 applications [5], matching together
social networks, web services, and reputation systems, the latter as the novel factor to
automatically drive formation of high-quality social Web service compositions.

Roadmap This paper is structured as follows. Section 2 discusses related work. In Sec-
tion 3, we describe how to compose SWSs by relying on their reputation. Section 4
recalls the formal methods we use for specifying and analyzing the scenario associ-
ated with SWSs composition. Section 5 provides the formal specification of the SWSs
composition. In Section 6, we analyse properties of the specification. Finally, Section 7
concludes the paper.
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2 Related Work

We recall research approaches on the combination of social computing and service-
oriented computing.

Work in [8, 17, 20] and [21], deploys SNs of SWSs to address certain issues like
Web services discovery. In [8], Chen and Paik build a global social service-network to
improve service discovery. The authors link services together using specific data corre-
lations. In [17], Maamar et al. develop a method to engineer SWSs. Questions that the
method addresses include: what relations between Web services exist, what SNs corre-
spond to these relations, how to build SNs of SWSs, and what social behaviors SWSs
can exhibit. Last but not least, Maamar et al. use SNs of SWSs to tackle the “thorny”
problem of Web services discovery [20]. At run-time Web services run into various situ-
ations like competing against similar peers during selection, collaborating with different
peers during composition, and replacing similar Web services during failure despite the
competition. These situations help build the privileged contacts of a SWS.

Work in [1, 4, 24–26] and [27] deploys SNs of persons using Web services as
an implementation technology. In particular, in [1], Al-Sharawneh and Williams mix
semantic Web, social networks, and recommender systems to assist users selecting
Web services with respect to their functional and non-functional requirements. In [4],
Bansal et al. examine trust for Web services discovery. Users’ trust in Web services’
providers is the social element in this discovery. In [24], Maaradji et al. propose a social
composer (aka SoCo) that provides advices to users on what actions they need to take
in response to specific events like selecting specific Web services. Wu et al. rank Web
services based on their popularity among users [26].

A community exists that mixes SNs of users and SNs of SWSs, Maamar et al. in-
tertwine these two categories of networks to compose, execute, and monitor composite
Web services [18]. To achieve this intertwine, three components are developed: com-
poser, executor, and monitor. The social composer develops composite Web services
considering relations between users and between Web services. The social executor as-
sesses the impact of these relations on the execution progress of these composite Web
services. Finally, the social monitor replaces failing Web services to guarantee the exe-
cution continuity of these composite Web services.

With respect to the works on SWSs discussed so far, our work differs for a syner-
gistic usage of reputation systems and social networks. Reputation of Web services is
based on the Quality of Service (QoS) perceived by their users and is exploited to sup-
port selection decisions in SWSs compositions. This reputation-based selection strat-
egy, on the one hand, permits removing non-deterministic or user-driven choices, which
results in a more automatable approach. On the other hand, as demonstrated by the for-
mal analysis illustrated in Sections 5 and 6, this approach ensures, in general, better
performance in terms of compositions’ QoS.

Concerning techniques and tools for analysing distributed systems, among the many
works proposed in the literature we mention those regarding the stochastic instruments
we have exploited for our analysis: StoKlaim, MoSL and SAM. [9] introduces the
stochastic specification language StoKlaim and the stochastic logic MoSL. [6] presents
the analysis tool SAM, which permits checking properties specified in MoSL against
StoKlaim specifications. In particular, the tool is used there to model and analyse three
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Fig. 1: Social Web Service scenario

classical leader election algorithms. Finally, [14] and [7] present the application of this
stochastic verification methodology and related tools to two different domains: collec-
tive robotic systems and reputation systems, respectively. In both cases, simulation and
model checking results are discussed.

3 Reputation-based Composition of Social Web Services

This section describes a reputation-based procedure to compose SWSs. During compo-
sition, selection is also aided by competition and collaboration SNs. Such social com-
position is partly inspired by the work in [23]. As a novel factor, we introduce here the
SWSs reputation as the metric to select the high quality Web services within a set of
collaboration and competition networks. This should lead to higher quality composi-
tions, as demonstrated by the analysis described in Sections 5 and 6.

In the scenario shown in Fig. 1, Users put together a composite service by selecting
the appropriate SWSs via the two kinds of SNs. In order to be part of a composition,
SWSs receive composition requests from Composers. A Composer is a software en-
tity, activated by a User, that is in charge of discovering and querying a pool of SWSs
suitable for the desired composition.

When a SWS receives a composition request, it can either accept or reject such re-
quest [19]. The SWS makes such decision based on its current load (e.g., availability,
level of commitment in other compositions and so on). Notably, the service can accept
and serve more requests simultaneously, up to a given threshold. If it accepts the com-
position request, it activates a new transaction (i.e., a service instance) waiting for the
service request coming from the user’s composer.

A transaction is completed, with a given QoS, once the service is provided to the
user. According to such QoS, the transaction of a SWS is rated by the user. Such rat-
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Fig. 2: Reputation-based composition: initial steps

ings are then aggregated to compute the reputation score of SWSs. Different reputation
models can be used to aggregate ratings (in this work, we rely on the Beta model [15]).
The reputation of an SWS is therefore an estimation of its QoS based on its past inter-
actions.

The SWSs’ reputation scores can be aggregated in order to obtain the overall rep-
utation of social networks of SWSs. Also in this case, depending on the considered
application domain, different forms of aggregation can be used: average of reputations
(possibly excluding highest and lowest values), minimum reputation, maximum repu-
tation, etc.

In the following, we describe the various steps of the reputation-based composition.
We assume that each service offered in this scenario is free of charge.

First, each User chooses the desired SWSs composition and activates the corre-
sponding Composer (Figure 2, step 1). Then, the Composer manages all transactions
required by the service composition. When the composed service completes, the User
evaluates the overall QoS of the composition according to the QoS of all sub-services.

Secondly, the Composer works by selecting a competition network whose mem-
bers are SWSs providing the same service type of the first service in the composition
(Figure 2, step 2). The network selection is driven by the overall reputation of all the
competition networks available, whose members provide that service type.

The Composer selects the competition network with the highest reputation score.
Among the network members, the Composer sends a composition request to the SWS
with the highest reputation (Figure 2, step 3). If this service rejects the request, the
Composer selects the SWS with the highest reputation (of course, not considering the
previous service) belonging to one of the competition networks whose the previous
SWS is a member (Figure 3). It proceeds in this way until it finds an available service.

Notably, we assume that a SWS is member of a restricted number of competition
networks; indeed, a high quality SWS will tend to only belong to networks with high
reputation in order to avoid compositions with low quality services. It is worth notic-
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ing that selection from a competition network should guarantee a faster discovery than
considering larger sets of SWSs.

When a SWS accepts the composition request, the Composer sends the service
request, receives the service, evaluates its quality (i.e., rates it) on behalf of the User,
and starts searching the next SWS. After the first service completion, the subsequent
services are identified by resorting to the collaboration networks of the previous SWS
(Figure 4). Analogously to the previous case, the selection of the SWS is based on the
type of the service and on its reputation. If the chosen SWS rejects the composition
request, its competition networks are exploited to find an alternative SWS of the same
type, as discussed above. When the Composer receives the service from the last SWS
in the composition, it notifies the User, who will evaluate the overall composition.

It is worth noticing that, as in [23], Composers follow a sequential approach in
order to use the SNs of the last run service in the composition.

4 Klaim and Related Stochastic Verification Tools

In this section, we provide a brief overview of the formal methods we use for specify-
ing and analysing the scenario associated with SWSs compositions: the coordination
language Klaim [10] (and its stochastic extension [9]), the stochastic logic MoSL [11]
and the analysis tool SAM [16].

4.1 Specification

Klaim is a tuple-based coordination language specifically designed for modelling mo-
bile and distributed applications and their interactions, which run in a network environ-
ment.
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In our presentation of Klaim we consider a version of the language enriched with
standard control flow constructs (i.e., assignment, if-then-else, sequence, etc.). Such
constructs were not included in the original presentation of the language [10], however
they can be easily rendered in Klaim (by resorting, e.g., to choice, fresh names and
recursion in the usual way) and are directly supported by related tools (and, in particular,
by the analysis tool used in this work).

The syntax we use is reported in Table 1, where s, s′,. . . range over locality names
(i.e., network addresses); self, l, l′,. . . range over locality variables (i.e., aliases for
addresses); `, `′,. . . range over locality names and variables; x, y,. . . range over value
variables; X, Y ,. . . range over process variables; e, e′,. . . range over expressions4; A,
B,. . . range over process identifiers5. We assume that the set of variables (i.e., locality,
value and process variables), the set of values (locality names and basic values), and the
set of process identifiers are countable and pairwise disjoint.

Klaim specifications consist of nets, namely finite plain collections of nodes where
components, i.e. processes and data tuples, can be allocated. Nodes are composed by
means of the parallel composition operator ‖ . At net level, it is possible to restrict the
visibility scope of a name s by using the operator (νs) : in a net of the form N1 ‖ (νs)N2,
the effect of the operator is to make s invisible from within the subnet N1.

Nodes have the form s ::ρ C, where s is a unique locality name ρ is an allocation
environment, and C is a set of hosted components. An allocation environment provides a

4 The precise syntax of expressions is not specified here. Suffice it to say that expressions contain
basic values (booleans, integers, strings, floats, etc.) and variables, and are formed by using the
standard operators on basic values.

5 We assume that each process identifier A with arity n has a unique definition, visible from
any locality of a net, of the form A( f1, . . . , fn) , P, where formal parameters fi are pairwise
distinct.
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(Nets) N ::= 0
∣∣∣ s ::ρ C

∣∣∣ N1 ‖ N2

∣∣∣ (νs)N

(Components) C ::= 〈t〉
∣∣∣ P

∣∣∣ C1 | C2

(Processes) P ::= nil
∣∣∣ a

∣∣∣ P1 ; P2

∣∣∣ P1 | P2

∣∣∣ if (e) then {P} else {Q}∣∣∣ for i = n to m { P }
∣∣∣ while (e) {P}

∣∣∣ A(p1, . . . , pn)

(Actions) a ::= in(T )@`
∣∣∣ read(T )@`

∣∣∣ out(t)@`
∣∣∣ eval(P)@`

∣∣∣ x := e∣∣∣ newloc(s)

(Tuples) t ::= e
∣∣∣ `

∣∣∣ P
∣∣∣ t1, t2

(Templates) T ::= e
∣∣∣ `

∣∣∣ P
∣∣∣ ! x

∣∣∣ ! l
∣∣∣ ! X

∣∣∣ T1,T2

Table 1: Klaim syntax

name resolution mechanism by mapping locality variables l, occurring in the processes
hosted in the corresponding node, into localities. The distinguished locality variable
self is used by processes to refer to the address of their current hosting node. In the rest
of this section, we will use ` to range over locality names and variables.

Processes are the Klaim active computational units and may be executed concur-
rently either at the same locality or at different localities. They are built up from the
process nil, which does nothing, from the process calls A(p1, . . . , pn), where pi denote
actual parameters, and from basic actions by means of sequential composition ; , par-
allel composition | , conditional choice if (e) then { } else { }, the iterative constructs
for i = n to m { } and while (e) { }.

During their execution, processes perform some basic actions. Actions in(T )@` and
read(T )@` are retrieval actions and permit to withdraw/read data tuples (i.e. sequences
of values) from the tuple space hosted at the (possibly remote) locality `: if a matching
tuple is found, one is non-deterministically chosen, otherwise the process is blocked.
These actions exploit templates as patterns to select tuples in shared tuple spaces. Tem-
plates are sequences of actual and formal fields, where the latter are written ! x, ! l or
! X and are used to bind variables to values, locality names or processes, respectively.

Action out(t)@` adds the tuple resulting from the evaluation of tuple t (which may
contain expressions) to the tuple space of the target node identified by `, while action
eval(P)@` sends the process P for execution to the (possibly remote) node identified
by `. Actions out and eval are both non-blocking.

Finally, action newloc creates new network nodes, while action x := e assigns the
value of e to x. These latter two actions, differently from all the others, are not indexed
with an address because they always act locally.

4.2 Klaim’s Related Tools

We introduce now the stochastic analysis tools of Klaim, that enable us to perform
quantitative analysis of systems. In general, two main kinds of analysis can be per-
formed over systems, quantitative or qualitative. In qualitative analysis it is verified
whether a certain event will occur. In quantitative analysis, instead, it is verified what is



9

the probability that a certain event will occur. In order to perform quantitative analysis
of a Klaim specification, we have to enrich the formalism by enabling the modelling of
random phenomena. Klaim specifications can be enriched with stochastic aspects, us-
ing the Klaim’s stochastic extension StoKlaim, while the properties of the considered
system can be expressed by using the stochastic logic MoSL. The properties of interest
are then checked against the StoKlaim specifications by means of the analysis software
tool SAM. We provide below a very short overview of StoKlaim, MoSL and SAM.

StoKlaim In StoKlaim [11], Klaim’s process actions are enriched with a rate. Such
rate is the parameter of an exponentially distributed random variable characterising the
duration of the execution of an action. In particular, such random variables are gov-
erned by a negative exponential distribution. This distribution is related to the Poisson
distribution and describes the time between events in a Poisson process, i.e. a process
in which events occur continuously at a constant average rate λ, independently of the
time t. A real valued random variable X has a negative exponential distribution with
rate λ > 0 if and only if the probability that X ≤ t with t > 0 (i.e., the probability that
an event occurs within t time units) is 1− e−λ·t. The expected value of X is λ−1, while its
variance is λ−2. The use of the exponential distribution is motivated by the fact that it
enjoys convenient properties enabling automated analyses that are not always allowed
by other distributions.

The operational semantics of StoKlaim permits associating to each specification
a Continuous Time Markov Chain (CTMC), one of the most popular models for the
evaluation of the performance and dependability of information processing systems.
Such CTMC is then used to perform quantitative analyses of the considered system.

MoSL The desired properties of a system under verification are formalised using the
mobile stochastic logic MoSL [11]. MoSL formulae use predicates on located tuples
and express reachability of states of interest, while passing through, or avoiding, other
intermediate states.

MoSL builds on CTL [13] and CSL [2, 3] but incorporates the basic features of
MoMo [12] to exploit the distributed features of systems. Indeed two key operators of
MoSL are variants of the MoMo consumption (→) and production (←) operators.

Intuitively, a Klaim net satisfies a consumption formula A(p1, ..., pn)@` → Φ if it
contains a process A running at site `, and the remaining network, namely the context
in which A(p1, ..., pn) is operating, satisfies Φ. Similarly, formula 〈T 〉@` → Φ holds
whenever a tuple t matching T is stored at site `, and the remaining network satisfies
Φ. A production formula 〈t〉@` ← Φ holds if the network satisfies Φ whenever tuple
t is stored in a node of site `. In particular, the satisfaction of Φ is checked after the
insertion of the tuple t in the network.

MoSL distinguishes between path and state formulae that are built from basic state
formulae defined as follows:

ℵ ::= A(p1, ..., pn)@` → Φ | !X@` → Φ | 〈T 〉@` → Φ

| A(p1, ..., pn)@` ← Φ | 〈t〉@` ← Φ
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The syntax of path formulae is the following:

ϕ ::= Φ U<t
∆ Ω Ψ | Φ U<t

∆ Ψ.

The basic component of path formulae is the CTL until formula ΦUΨ parameterised
with action sets: a path satisfies Φ U∆ Ω Ψ whenever (eventually) a state satisfying Ψ
(a Ψ -state) is reached via a Φ-path (i.e., a path composed only of Φ-states) and, in
addition, while evolving between Φ-states, the performed actions satisfy ∆, and the Ψ -
state is entered via an action satisfying Ω. Path formulae have also a time constraint.
This is expressed by parameter t that requires that a Ψ -state be reached within t time
units. Similarly, a path satisfies Φ U<t

∆ Ψ if the initial state satisfies Ψ (at time 0) or a
Ψ -state will be reached, within time t, via aΦ-path; in addition, while evolving between
Φ-states only, actions satisfying ∆ are performed.

The syntax of state formulae is the following:

Φ,Ψ ::= tt | ℵ | ¬Φ | Φ ∨ Ψ | P./p(ϕ) | S./p(ϕ)

They are divided in three groups. The first group includes formulae in propositional
logic, where the atomic propositions are tt and the basic state formulae ℵ introduced
previously in this section. The second group includes statements about the likelihood of
paths satisfying a property, P./p(ϕ). Finally the third category includes formulae for the
so-called long-run properties, S./p(ϕ). State s satisfies the property P./p(ϕ) if the total
probability mass for all paths starting in s that satisfy ϕ meets bound ./ p. Here, ./ is a
binary comparison operator from the set {<, >,≤,≥}, and p a probability in [0, 1]. Long-
run properties refer to the system when it has reached equilibrium. A state s satisfies
S./p(ϕ) if, when starting from s, the probability of reaching a state which satisfies Φ in
the long run is ./ p.

SAM Verification of MoSL formulae against StoKlaim specifications is assisted by
the SAM tool [16, 6], which uses a statistical model checking algorithm to estimate
probabilities of property satisfaction by considering a set of independent observations.
This algorithm is parameterised with respect to a given tolerance ε and error probability
p, and guarantees that the difference between the computed values and the exact ones
exceeds ε with a probability that is less than p. SAM is a command-line software tool
developed in OCaML.

5 Formal Specification of SWS Compositions

We present in this section the Klaim formalisation of the reputation-based approach
introduced in Section 3. In our specification we assume the presence of a given number
of possible kinds of service compositions from which users can choose.

The overall SWSs system is rendered in Klaim by the following net:
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ssws 1 ::ρ1
sws

Psws(thresholdsws 1) | 〈“swsType”, th〉 | CompNetList1 | CollNetList1
‖ . . . ‖

ssws m ::ρm
sws Psws(thresholdsws m) | 〈“swsType”, tk〉 | CompNetListm | CollNetListm

‖

scomp net 1 ::ρ1
comp

SWScomp 1 ‖ . . . ‖ scomp net h ::ρh
comp

SWScomp h

‖

scoll net 1 ::ρ1
coll

SWScoll 1 ‖ . . . ‖ scoll net q ::ρq
coll

SWScoll q

‖

suser 1 ::ρ1
user

Puser | CompNetListuser 1 | 〈“composer”, P1〉 | . . . | 〈“composer”, P j〉

‖ . . . ‖

suser n ::ρn
user Puser | CompNetListuser n | 〈“composer”, P1〉 | . . . | 〈“composer”, Pk〉

‖

srating server ::ρrs RatingList

where

ρi
sws = {self 7→ ssws i}

ρ
j
comp = {self 7→ scomp net j}

ρk
coll = {self 7→ scoll net k}

ρt
user = {self 7→ suser t, lrating server 7→ srating server}

ρrs = {self 7→ srating server}

Competition and collaboration networks, which represent the social aspects of the
scenario, are expressed as collection of tuples organised in lists. In particular, a list x
(e.g., CompNet) is specified in Klaim as a collection of indexed tuples of this form:

xList , 〈“xList”, n〉 | 〈“x”, 1, xItem1〉 | . . . | 〈“x”, n, xItemn〉

The tuple 〈“xList”, n〉, denoting that the list of type xList has length n, is used in Klaim
to read the whole list.

Each SWS and User in the system is rendered as a Klaim node. Each User node
has a list of known competition networks that are used to select the first SWS for new
compositions (the first SWS is selected from the competition network with the highest
reputation score). The node srating server represents the central server collecting all the
ratings given to the SWSs by users. The presence of this node is an abstraction of the
rating storage system in use, that can be centralized or distributed. This abstraction does
not affect the results of our analysis. Each SWS has a type and a list of competition and
collaboration network to which it belongs. Each competition and collaboration network
is rendered as a Klaim node that contains the list of the SWSs belonging to the network.
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Each SWS node runs the following Klaim process, that describe SWSs’ behaviour:

Psws(threshold) ,
// wait for a composition request

in(“compositionReq”, !lrequester, !reqId)@self;
in(“numTransactions”, !counter)@self;
// check the number of running transactions

if (counter ≤ threshold) then{
out(“numTransactions”, counter + 1)@self;
out(“compositionResp”, “accept”, reqId)@lrequester;
// a new transaction can be served

eval(Psws transaction(reqId, lrequester))@self
} else {

out(“numTransactions”, counter)@self;
out(“compositionResp”, “re ject”, reqId)@lrequester

};
Psws(threshold)

Each SWS waits for a new composition request. Upon request receipt, the
SWS checks if can fulfill it or not. The check is made on the basis of the
number of ongoing transactions. A new service can be provided (via action
eval(Psws transaction(reqId, lrequester))@self) only if the check is positive.

The Psws transaction process is as follows:

Psws transaction(reqId, lrequester) ,
// wait for a service request

in(“serviceReq”, lrequester, !data)@self;
// the result depends on the QoS of the service

result := qos(data, sws);
out(“serviceQuality”, reqId, result)@lrequester;
in(“numTransactions”, !counter)@self;
out(“numTransactions”, counter − 1)@self

A Psws transaction process is activated for each new composition and is used by SWSs
to provide services. A transaction once activate waits for a service request. Once the
request is received the result of the provided service, as well as its quality, is calculated
by a function qos() that we intentionally left unspecified. Once the service requested
has been provided, the SWS closes the transaction.
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Each user node runs the following Klaim process:

Puser ,

// choose a composition

in(“composer”, !Xcomposer)@self;
// activate the chosen composition locally

eval(Xcomposer)@self;
// wait for the result of the composition

in(“ f inalResult”, compositionResult)@self;
rating := evaluateS ervice(compositionResult);
out(“evaluation”, self, rating)@lrating server;
Puser

Whenever a user wants to start a composition he (non-deterministically or probabilisti-
cally) chooses one of them, then it starts to compose services. Each service composition
is managed by a composer. At the end of the composition, the user releases a rating re-
ferred to the quality of the whole composition of services. Such rating will be only used
for evaluation purposes by users for future interaction with the SWSs.

A composer process is defined as follows:

Pcomposer i ,

// Search the first SWS of type ’tx’ and send it a composition request

Pselect sws(tx);
in(“mostTrusted”, !ltrusted, !repMT )@self;
resp = “re ject”;
while (resp = “re ject”)

id := f reshId();
out(“compositionReq”, self, id)@ltrusted;
in(“compositionResp”, !resp, id)@self;
// Check the request response, if the SWS reject the composition

// search a new SWS in the competition network of ltrusted

if (resp = “re ject”) then{
Pselect comp sws(ltrusted);
in(“mostTrusted”, !ltrusted, !repMT )@self;

}

}

// When a SWS has accepted the composition request: send a service request

out(“serviceReq”, self, data)@ltrusted;
in(“serviceQuality”, id, result)@self;
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// Evaluate the service and rate it

rating := evaluateS ervice(result);
out(“rating”, self, rating, ltrusted)@lrating server;
// Search the next SWS of type ’ty’

Pselect coll sws(ty, ltrusted);
.........

// Check the request response, if the SWS reject the composition

// search a new SWS in the competition network of ltrusted

.........

// Keep searching SWS till the composition is completed

The composer starts selecting the competition network with the highest reputation
score. Inside this network it selects the SWS the highest reputation and it sends to
the SWS a composition request. This is the first SWS of the composition. During the
composition process, competition and collaboration networks are used to find SWSs. In
particular, when a SWS rejects a composition a new SWS is selected from the competi-
tion network of the SWS who rejected the composition. Instead when a SWS accepts a
composition the next SWS is selected from the collaboration network of the SWS who
accepted the composition.

For each service received, the composer, in behalf of the user, gives a rating to
the SWS. Such ratings are used to compute SWSs’ reputation scores. Each composer
Pcomposer i has a different sequence of SWS to search, each composition has possibly a
different number of SWS of different types.

The processes Pselect sws(type), Pselect comp sws(lsws) and Pselect coll sws(type, lsws) are
used to implement the SWS selection strategies. A different strategy is used on the
bases of when and where a SWS has to be selected: select the first SWS of the com-
position (Pselect sws(type)), select a SWS after that a composition has been rejected
(Pselect comp sws(lsws)), select the next SWS of the composition (Pselect coll sws(type, lsws)).

Pselect sws(type) ,
// Initialization

out(“mostTrusted”, self,NO ONE)@self
in(“netList”, !n)@self;
for j = 1 to n{

read(“net”, j, !lnet)@self;
read(“netType”, !net type)@lnet;
// Check the type of sws in the network

if (net type = type) then{
Pevaluate reputation(lnet);
in(“reputation”, !rep)@self;
in(“mostTrusted”, !ltrusted, !repMT )@self;
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if (rep > repMT ) then{
out(“mostTrusted”, !lnet, !rep)@self

} else {
out(“mostTrusted”, !ltrusted, !repMT )@self

}

}

}

out(“netList”, n)@self;
// Select the competition network to use

in(“mostTrusted”, !ltrusted net, !repMT )@self;
out(“mostTrusted”, self,NO ONE)@self
in(“swsList”, !m)@ltrusted net;
// Search the most trusted SWS

for i = 1 to m{
read(“sws”, i, !lsws)@ltrusted net;
// Calculate the SWS’s reputation score

Pevaluate reputation(lsws);
in(“reputation”, !rep)@self;
in(“mostTrusted”, !ltrusted, !repMT )@self;
if (rep > repMT ) then{

out(“mostTrusted”, !lsws, !rep)@self
} else {

out(“mostTrusted”, !ltrusted, !repMT )@self
}

}

out(“swsList”,m)@lnet;

The Pselect sws(type) looks for the first SWS of the composition by searching in the
competition networks it knows. It first selects the competition network, that contains the
SWS of the desired type, with the highest reputation score. Inside the chosen network
Pselect sws(type) selects the SWS with the highest reputation score.

The process Pevaluate reputation() is used to compute the reputation score of a SWS, its
specification depends on the type of reputation system in use. For our scenario we used
the Beta reputation system [15].

Pselect comp sws(lsws) ,
// Initialization

out(“mostTrusted”, self,NO ONE)@self
in(“comNetList”, !n)@lsws;
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for j = 1 to n{
read(“comNet”, j, !lnet)@lsws;
in(“swsList”, !m)@lnet;
for i = 1 to m{

read(“sws”, i, !lnew sws)@lnet;
// Calculate the SWS’s reputation score

Pevaluate reputation(lnew sws);
in(“reputation”, !rep)@self;
in(“mostTrusted”, !ltrusted, !repMT )@self;
if (rep > repMT ) then{

out(“mostTrusted”, !lnew sws, !rep)@self
} else {

out(“mostTrusted”, !ltrusted, !repMT )@self
}

}

}

out(“swsList”,m)@lnet;
out(“comNetList”, n)@lsws;

The Pselect comp sws(lsws) is invoked when a SWS in the composition rejected the
request. Thus, this process select the new SWS from the competition network of the
SWS that rejected. Inside this network Pselect comp sws(lsws) selects the SWS with the
highest reputation score.

Pselect coll sws(type, lsws) ,
// Initialization

out(“mostTrusted”, self,NO ONE)@self
in(“colNetList”, !n)@lsws;
for j = 1 to n{

read(“colNet”, j, !lnet)@lsws;
in(“swsList”, !m)@lnet;
for i = 1 to m{

read(“sws”, i, !lnew sws)@lnet;
read(“swsType”, !t)@lnew sws;
if (t = type) then{

// Calculate the SWS’s reputation score

Pevaluate reputation(lnew sws);
in(“reputation”, !rep)@self;
in(“mostTrusted”, !ltrusted, !repMT )@self;
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if (rep > repMT ) then{
out(“mostTrusted”, !lnew sws, !rep)@self

} else {
out(“mostTrusted”, !ltrusted, !repMT )@self

}

}

}

}

out(“swsList”,m)@lnet;
out(“colNetList”, n)@lsws;

Finally, the Pselect coll sws(type, lsws) is invoked when the next SWS of type ′type′

has to be selected for an ongoing composition. In particular, given lsws the locality
of the last SWS in the ongoing composition. Pselect coll sws(type, lsws) selects from the
collaboration network of lsws the SWS with the highest reputation score.

6 Stochastic Analysis

In this section, we demonstrate how the Klaim specification presented in the previous
section can support the analysis of reputation-based compositions of SWSs. In particu-
lar, in Section 6.1 and 6.2 we present results of simulation and model checking analysis,
respectively.

Our approach relies on the formal tools presented in Section 4.2. Specifically, we
enrich the Klaim specification introduced in the previous section with stochastic as-
pects (obtaining a StoKlaim specification). Then, the properties of interest (expressed
in MoSL) are checked against the StoKlaim specification by means of the analysis tool
SAM. As an excerpt of the StoKlaim specification, we report below the stochastic def-
inition of process Psws transaction(reqId, lrequester) :

Psws transaction(reqId, lrequester) ,
// wait for a service request

in(“serviceReq”, lrequester, !data)@self : λ1 ;
// the result depends on the QoS of the service

result := qos(data, sws);

out(“serviceQuality”, reqId, result)@lrequester : λ2 ;

in(“numTransactions”, !counter)@self : λ3 ;

out(“numTransactions”, counter − 1)@self : λ4

The actions highlighted by a grey background are those annotated with rates λi.
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6.1 Simulations

We present here the simulation results for the analysis of the reputation-based strategy
for SWSs composition discussed in Section 3. We compare two strategies: reputation-
based and random. In the random strategy, social networks are still used for SWSs
selection, but SWSs selection is done randomly inside a network (i.e., once the network
is chosen the selection of the next SWS is done randomly among the SWSs belonging
to such network).

In our scenario, we consider the presence of: twelve SWSs of four different types,
five users, four competition networks and two collaboration networks. Moreover, pro-
vided services can be rated as satisfactory or unsatisfactory by users, i.e. values in {0, 1}
are used to rate services. In the following we report the configuration of competition
and collaboration networks, each competition network contains all the SWSs of a given
type (e.g., the SWSs in competition network number one are of type one):

– Competition Network 1: SWS3, SWS6, SWS7;
– Competition Network 2: SWS1, SWS4, SWS8;
– Competition Network 3: SWS2, SWS5, SWS9;
– Competition Network 4: SWS10, SWS11, SWS12;

– Collaboration Network 1: SWS1, SWS2, SWS3, SWS5, SWS6, SWS12;
– Collaboration Network 2: SWS4, SWS7, SWS8, SWS9, SWS10, SWS11;

For our analysis, we assume SWSs’ behaviours to be probabilistic and we model
them by Bernoulli distributions with success probability θ. We used the Beta reputation
system [15] to compute SWSs’ reputation scores. The complete configuration is as
follows:

SWS1: θ = 1; SWS2: θ = 0, 2; SWS3: θ = 0, 2;
SWS4: θ = 0, 2; SWS5: θ = 0, 8; SWS6: θ = 0, 8;
SWS7: θ = 0, 5; SWS8: θ = 0, 2; SWS9: θ = 0, 5;
SWS10: θ = 0, 2; SWS11: θ = 0, 5; SWS12: θ = 0, 8;

We evaluate the quality of two possible services compositions. The first composi-
tion requires four services of type 4, type 2, type 3 and type 1. The second composition
requires three different services, of type 3, type 1 and type 2. The quality of the com-
position is determined by the average of the ratings received for the single services of
the composition. Figure 5 and 6 report the results of our analysis. From these charts we
observe that a reputation-based strategy can improve the quality of the required compo-
sition. Indeed, when the user (or the composer) is driven by reputation scores for SWSs
selection, the QoS of the requested composition is higher than in the case of random
strategy. We believe that the random strategy can simulate a scenario in which the user
(or the composer) has not additional information (excluding SNs) for SWSs selection.
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Fig. 5: Simulation results: composition 1

6.2 Model Checking

Here, we exploit model checking analysis to check properties of our reputation-based
strategies. Specifically, we formalise a relevant property as a MoSL formula and verify
it against the StoKlaim specification by means of the SAM tool. The property we inves-
tigate asks the probability with which “a user gets a composition whose QoS is higher
than a given threshold”. This property is expressed in MoSL by the formula

φhigh QoS = 〈“high qos composition”〉@ratings→ true

This formula relies on the consumption operator 〈T 〉@s → φ, which is satisfied
whenever a tuple matching template T is located at s and the remaining part of the
system satisfies φ. Hence, the formula φhigh QoS is satisfied if and only if a tuple
〈“high qos composition”〉 is stored in the ratings server tuplespace. Notice that the
model of our system has been slightly modified to enable this analysis. In particular,
a check on the QoS of a composition is done whenever it is completed and service
tuple is produced on the ratings server whenever its QoS is higher then the threshold.
Exploiting the previous formula, we can ask the probability with which “a user gets a
composition whose QoS is higher than a given threadshold within time t”, defined as
true U≤tφhigh QoS , where the until formula φ1U≤tφ2 is satisfied by all the runs that reach
within t time units a state satisfying φ2 while only traversing states that satisfy φ1. The
model checking analysis estimates the total probability of the set of runs satisfying such
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Fig. 6: Simulation results: composition 2

formula. The parameters ε and p of the model checking algorithm (see Section 4.2) have
been both set to 0.05.

We verify the previous property for the two service compositions we discussed in
Section 6.1. In particular, we fixed two different threshold values γ for each composi-
tion. Tables 2 and 3 report the results of the analysis for composition 1 and 2, respec-
tively. In the tables are reported the result for different time interval t, specifically for
t equals to 20, 30 and 40. For each value of t, we obtain a different expected number
of service compositions. In particular, for the composition 1 the expected number of
service compositions of this type for t equals to 20, 30 and 40 are 8, 12 and 17, respec-
tively. Instead, for the composition 2 the expected number of service compositions of
this type for t equals to 20, 30 and 40 are 9, 13 and 18, respectively.

The results show that, when a reputation-based strategy is used, the probability of
getting a composition of high QoS is higher than in the case of a random strategy. Such
results confirm what we already said in Section 6.1, giving us more details, e.g. about
the probability of obtaining a composition whose QoS is higher than γ.

7 Concluding Remarks

In this paper, we made use of Klaim, a formal language specifically designed to model
distributed systems, to formally specify a novel procedure for composition of Web ser-
vices that belong to specialised social networks. The novelty in the way SWSs are
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“a user gets a composition one whose QoS is higher than γ within time t”
Selection Strategy Probability Selection Strategy Probability Time t γ

Random 0.93524335 Reputation 0.97217869 20 0.6
Random 0.98912150 Reputation 0.99962605 30 0.6
Random 0.99860948 Reputation 0.99962605 40 0.6
Random 0.48456449 Reputation 0.80884996 20 0.9
Random 0.67872914 Reputation 0.97556725 30 0.9
Random 0.80071740 Reputation 0.99539034 40 0.9

Table 2: Model checking results: composition 1

“a user gets a composition two whose QoS is higher than γ within time t”
Selection Strategy Probability Selection Strategy Probability Time t γ

Random 0.99200178 Reputation 0.99522091 20 0.5
Random 0.99996490 Reputation 0.99996490 30 0.5
Random 0.74683925 Reputation 0.90101887 20 0.8
Random 0.89508888 Reputation 0.97810867 30 0.8
Random 0.95997986 Reputation 0.99369606 40 0.8

Table 3: Model checking results: composition 2

composed relies on considering their reputation. Reputation scores give a prediction of
their QoS in future transactions, and make them more, or less, trustworthy to be part
of a newly created composition. Supported by a set of Klaim associated tools, we then
analyse in a stochastic fashion properties of reputation-based SWSs composition. Re-
sults of the analysis show that reputation is a value-added attribute when composing
SWSs. The synergetic combination of 1) being part of competition and collaboration
social networks, and 2) capitalising on the outcomes of reputation systems, paves the
way for automatic formation of high-quality SWSs compositions.

As future work, we envisage different directions. First, we aim at investigating dif-
ferent kinds of properties, as well as considering to rate services according to other
attributes than QoS. Then, the Klaim language could be extended with primitives that
natively manage social aspects, while aiming at preserving the usage of the Klaim tools.
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