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Abstract. The World Wide Web can be thought of as a global com-
puting architecture supporting the deployment of distributed networked
applications. Currently, such applications can be programmed by resort-
ing mainly to two distinct paradigms: one devised for orchestrating dis-
tributed services, and the other designed for coordinating distributed
(possibly mobile) agents. In this paper, the issue of designing a pro-
gramming language aiming at reconciling orchestration and coordina-
tion is investigated. Taking as starting point the orchestration calculus
Orc and the tuple-based coordination language Klaim, a new formalism
is introduced combining concepts and primitives of the original calculi.
To demonstrate feasibility and effectiveness of the proposed approach,
a prototype implementation of the new formalism is described and it
is then used to tackle a case study dealing with a simplified but realis-
tic electronic marketplace, where a number of on-line stores allow client
applications to access information about their goods and to place orders.

Keywords: Global computing, Orchestration, Coordination, Tuple-
based languages, Formal methods, Software tools

1 Introduction

In recent years, the increasing success of e-business, e-learning, e-government,
and similar emerging models, has led the World Wide Web, initially thought of as
a tool supporting humans in looking for information, to evolve towards a service-
oriented architecture, where more and more distributed networked applications,
the so-called services, are deployed. This has promoted the rising of a novel pro-
gramming paradigm for the orchestration of concurrent and distributed services.
There are by now some successful and well-developed technologies supporting
this paradigm, like e.g. WS-BPEL[33], the standard language for orchestration of
web services. However, current software engineering technologies remain at the
descriptive level and lack rigorous formal foundations. Hence, many researchers
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Fig. 1. The Orc (a), Klaim (b) and Korc (c) approaches

have tackled the problem at a more foundational level, by developing formal
languages for designing and programming service orchestrations.

Among the many proposed formalisms (see, e.g., [28, 10, 34, 11, 27, 23, 8, 12,
9]), we will focus on Orc [30, 25, 37], a task orchestration language with applica-
tions in workflow, business process management, and web service orchestration.
Orc is the result of a tension between simplicity and expressiveness, and its
primitives focus on orchestration rather than on communication such as those of
most formal languages. An Orc program, graphically depicted in Figure 1(a),
is an expression that orchestrates the concurrent invocations of a number of ser-
vices, called sites in the Orc’s jargon, by means of three operators for sequential
and parallel composition.

Although the small numbers of Orc’s operators have been proved to be suf-
ficiently expressive to model the most common orchestration patterns (see e.g.
those identified in [35]), they do not provide adequate and flexible mechanisms
for distributed coordination, which may possibly refer and exploit the structures
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of the network. In this respect, it has been proved that tuple-based languages can
be effectively used to implement coordination mechanism in a distributed set-
ting. In particular, here we focus on Klaim [15, 7, 16], a coordination language
specifically designed to program distributed systems consisting of several mo-
bile components that interact through multiple distributed tuple spaces. Klaim
components refer and control the spatial structures of the network at any point
of their evolution (i.e. they are network-aware). Klaim’s communication model
builds over, and extends, Linda’s notion of generative communication through a
single shared tuple space [21]. Klaim primitives allow programmers to distribute
and retrieve data and processes to and from the (tuple spaces of the) nodes of
a net. Moreover, localities are first-class citizens that can be dynamically cre-
ated and communicated over the network and can be handled via sophisticated
scoping rules. A Klaim specification, graphically depicted in Figure 1(b), can
be thought of as a net of interconnected nodes, each of which hosts data tuples
and (possibly mobile) processes, and is identified by an unique name.

In this paper, we investigate the issue of designing a programming language
aiming at reconciling the orchestration paradigm with the tuple-based coordi-
nation one. We tackle the problem first at foundational level, by defining a new
formalism, called Korc, that combines the composition patterns and primitives
of Orc and Klaim. Intuitively, a Korc program, graphically depicted in Fig-
ure 1(c), consists of an Orc expression and a collection of Klaim nets, where
expressions are extended with primitives for acting on the tuple spaces within
the Klaim nets. To distinguish nets from each other, any net has a name used
to refer to it from a Korc expression.

The choice of using Orc and Klaim has theoretical basis for Korc has been
mainly motivated by the fact that they are compact formalisms and, moreover,
are already equipped with software tools for programming networked applica-
tions. Such tools are both Java-based and, hence, easily integrable. In fact, to
demonstrate feasibility and effectiveness of the programming paradigm fostered
by Korc and to experiment with it, as a second contribution of this paper we
have developed a prototype implementation of the language that build upon the
implementations of Orc and Klaim.

The rest of the paper is structured as follows. Section 2 presents the design
and the formal definition of Korc, by exploiting concepts and definitions of Orc
and Klaim. Section 3 introduces an e-commerce scenario used for illustrating
the relevant and peculiar aspects of Korc. Section 4 provides an overview of the
prototype implementation of Korc and describes an excerpt of the e-commerce
scenario written in the syntax accepted by the tool. Finally, Section 5 draws a
few conclusions and reviews some strictly related work.

2 From Orc and Klaim to Korc

In this section, we first recap the basic notions of Orc and Klaim, by borrow-
ing syntax and semantics definitions from [37] and [16]. Then, we exploit such
linguistic bases to define our formalism Korc.
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(Expressions) f, g ::= M(p̄) | E(p̄) | f > p̄ > g | f | g | f < p̄ < g

(Parameters) p ::= x | m

Table 1. Orc syntax

2.1 Orc: an orchestration language

An Orc program consists of a goal expression and a set of definitions; the goal
expression is evaluated in order to run the program. The definitions are used
in the expression and in other definitions. Formally, the Orc syntax is defined
in Table 1, where M ranges over site names, E over expression names, x over
variables, and m over values. It is assumed that the sets of site names, expres-
sion names, variables and values are countable and pairwise disjoint. Notation ¯
stands for tuples of parameters, e.g. m̄ is a compact notation for denoting the
tuple of values 〈m1, . . . ,mn〉 (with n ≥ 0); variables in the same tuple are pair-
wise distinct. The empty tuple, written 〈〉, corresponds to a signal, the Orc unit
value that has no additional information. We shall write a, b̄ to denote the tuple
obtained by concatenating the element a to the tuple b̄.

Expressions can be composed by means of sequential composition · > p̄ > ·,
symmetric parallel composition · | ·, and asymmetric parallel composition
· < p̄ < ·, starting from the elementary expressions M(p̄), i.e. site calls, and E(p̄),
i.e. expression calls. The variables within p̄ are bound in g for the expressions
f > p̄ > g and g < p̄ < f . We use fv(f) to denote the set of variables that are
not bound (i.e. which occur free) in f . Each expression name E has a unique
declaration of the form E(x̄) , f , where only the variables x̄ are free in f , i.e.
x̄ = fv(f).

It is worth noticing that, since we aim at merging Orc with a coordina-
tion language exploiting a tuple-based communication mechanism, we consider
a polyadic variant of Orc. Thus, site calls, expression calls, sequential composi-
tion and asymmetric parallel composition take as argument tuples of parameters
rather than single parameters. For the best of our knowledge, this is the first
formalization of this (standard) extension of the calculus (which is only infor-
mally described in [26]), hence it can be thought of as a minor contribution of
this paper.

Evaluation of expressions may call a number of sites and returns a (possibly
empty) stream of (tuple of) values. So, in summary, an Orc expression can be
either a site call, an expression call or a composition of expressions according to
one of the three basic orchestration patterns.

Site call: a site call can have the form M(p̄), where the site name is known
statically, and p̄ are the parameters of the call. A site call returns at most
one response and, hence, a site can also never respond to a call. If p̄ contains
variables, then they must be instantiated before the call is made (i.e. site
calls are strict).

Expression call: an expression call has the form E(p̄) and executes the ex-
pression defined by E(x̄) , f after having replaced x̄ by p̄ (of course, the
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tuples x̄ and p̄ must have the same length). Here p̄ is passed by reference.
Note that expression definitions can be recursive.

Symmetric parallel composition: the composition f | g executes both f and
g concurrently, assuming that there is no interaction between them. It pub-
lishes the interleaving of the two streams of tuples published by f and g, in
temporal order.

Sequential composition: the composition f > p̄ > g executes f , and, for each
tuple of values m̄ returned by f , it checks if p̄ and m̄ match: in the posi-
tive case, it executes an instance of g with variables in p̄ replaced by the
corresponding values in m̄, otherwise the publication is ignored and no new
instance of g is executed. The composition publishes the interleaving (in
temporal order) of the streams of tuples published by the different instances
of g (tuples published by f are consumed within f > p̄ > g).

Asymmetric parallel composition: the composition g < p̄ < f starts in par-
allel both f and the parts of g that do not need the variables in p̄. When
f publishes a tuple, let say m̄, the matching between p̄ and m̄ is checked:
in the positive case, the evaluation of f is immediately terminated and the
variables within p̄ are replaced by the corresponding values in m̄. (in this
way, the suspended parts of g can proceed). The composition publishes the
stream obtained from g (instantiated with values in m̄).

Example 1. Consider a service orchestration that, given a US zip code, first
contacts a service for getting the current weather conditions and the temperature
in Fahrenheit degrees of the city corresponding to the zip code and, then, contacts
a second service for converting Fahrenheit degrees into Celsius ones.

The corresponding Orc specification is as follows:

CelsiusTemperature(xzip) ,Weather(xzip)
> 〈xcity, xweather, xtemperature〉 >
FahrenheitToCelsius(xtemperature)

Now, the evaluation of the Orc expression CelsiusTemperature(10109) involves
first a call to expression CelsiusTemperature with argument 10109, i.e. the zip
code of an area of New York, then a call to site Weather with the same argument
and, subsequently, a call to site FahrenheitToCelsius with the temperature
value returned by the first call as argument; the expression finally publishes the
current temperature of New York converted into Celsius degrees.

The asynchronous operational semantics of Orc3 is given in terms of a la-
belled transition relation and, to represent intermediate states in service inter-
actions, is defined over a syntax enriched with auxiliary terms: expressions are

3 It is worth noticing that the operational semantics of Orc we present here is obtained
from the timed semantics introduced in [37] by discharging the timed aspects and
adding tuples. We have chosen to rely on the syntax and operational semantics
defined in [37], rather than the untimed ones described in [30, 25], only for the sake
of update. Indeed, the formal presentation of the calculus in [37] is the latest one
and is that used as theoretical base for the implementation of the Orc programming
language [26].
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M(x,m) = [m/x]

M(m,m) = ε

M(〈〉, 〈〉) = ε

M(p1,m1) = σ1 M(p̄2, m̄2) = σ2

M((p1, p̄2), (m1, m̄2)) = σ1 ◦ σ2

Table 2. Orc matching rules

extended with the elementary expression 0, which has no observable transitions,
and the intermediate expression ?k, which denotes an instance of a site call that
has not yet returned a response. Intuitively, k is an handle that describes a possi-
ble behavior of a site when it is called with a tuple of values. Formally, an handle
is a set of tuples of values that can be returned by a site call as a response. We
write Σ(M, m̄) for the set of handles that correspond to expression M(m̄).

To define the labelled transition relation, we need an auxiliary function
M(· , ·) for performing pattern-matching on semi-structured data. The rules
defining M(· , ·) are shown in Table 2. They state that two tuples match if
they have the same number of fields and corresponding fields have matching
values/variables. Variables match any value, and two values match only if they
are identical. When tuples p̄ and m̄ do match, M(p̄, m̄) returns a substitution
for the variables in p̄; otherwise, it is undefined. Substitutions (ranged over by σ)
are functions mapping variables to values and are written [m̄/x̄]. Application of
substitution [m̄/x̄]to an expression f , written [m̄/x̄].f , has the effect of replacing
every free occurrence of variables x̄ in f with the corresponding values in m̄. We
use ε to denote the empty substitution (i.e. a substitution [m̄/x̄] where tuples m̄
and x̄ have length 0), and σ1 ◦ σ2 to denote the union of σ1 and σ2 when they
have disjoint domains. With abuse of notation, we shall use [p̄/x̄].f to indicate
the replacing of variables x̄ in f by parameters p̄.

The labelled transition relation
a−−→ is the least relation over expressions

induced by the rules in Table 3, where label a is generated by the following
grammar:

a ::= τ | !m̄

The meaning of labels is as follows: label τ indicates an internal event while
label !m̄ indicates a publication event corresponding to the communication to
the environment of the tuple of values m̄ resulting from the evaluation of an
expression.

Let us now comment on the operational rules. A site call can progress only
when the actual parameter is a tuple of values m̄ (rule (SiteCall)); it evolves
to an intermediate expression ?k, where k is an handle for the site call M(m̄).
The expression ?k can then evolve to 0 by eliciting one response m̄ (rule (Re-

turn)), with m̄ possible response included in k. While site calls use a call-by-value
mechanism, expression calls use a call-by-name mechanism (rule (Def)), namely
the actual parameters replace the formal ones and then the corresponding ex-
pression is evaluated. We assume a global set of definitions. Symmetric parallel
composition f | g consists of concurrent evaluations of f and g (rules (Sym1)

and (Sym2)). Sequential composition f > p̄ > g allows f to evolve by performing
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k ∈ Σ(M, m̄)
(Call)

M(m̄)
τ−−→?k

m̄ ∈ k
(Return)

?k
!m̄−−−→ 0

f
a−−→ f ′

(Sym1)
f | g a−−→ f ′ | g

g
a−−→ g′

(Sym2)
f | g a−−→ f | g′

f
τ−−→ f ′

(Seq1)
f > p̄ > g

τ−−→ f ′ > p̄ > g

f
!m̄−−−→ f ′ M(p̄, m̄) = σ

(Seq2)
f > p̄ > g

τ−−→ (f ′ > p̄ > g) | σ.g

E(x̄) , f
(Def)

E(p̄)
τ−−→ [p̄/x̄].f

f
!m̄−−−→ f ′ M(p̄, m̄) undefined

(Seq3)
f > p̄ > g

τ−−→ f ′ > p̄ > g

f
a−−→ f ′

(Asym1)
f < p̄ < g

a−−→ f ′ < p̄ < g

g
τ−−→ g′

(Asym2)
f < p̄ < g

τ−−→ f < p̄ < g′

g
!m̄−−−→ g′ M(p̄, m̄) = σ

(Asym3)
f < p̄ < g

τ−−→ σ.f

g
!m̄−−−→ g′ M(p̄, m̄) undefined

(Asym4)
f < p̄ < g

τ−−→ f < p̄ < g′

Table 3. Orc asynchronous operational semantics

internal transition (rule (Seq1)) and, for each matching tuple m̄ returned by f ,
activates a concurrent copy of g instantiated with the substitution generated by
the matching function (rule (Seq2)). If f publishes a non-matching tuple, the
publication is ignored (rule (Seq3)). Asymmetric parallel composition f < p̄ < g
prunes threads selectively. It starts in parallel both g and the part of f that
does not need variables within p̄ (rules (Asym1) and (Asym2)). When the first
matching tuple is returned by g, the generated substitution is applied to f and
the continuation of g and all its descendants are then terminated (rule (Asym3)).
If g publishes a non-matching tuple, the publication is ignored and g continues
to run (rule (Asym4)).

2.2 Klaim: a tuple-based language for agent interaction

Klaim is a formal language equipped with primitives for network-aware pro-
gramming that combines the process algebra approach with the coordination-
oriented one. The syntax of Klaim is reported in Table 4, where:

– s, s′,. . . range over locality names, i.e. network addresses;
– self , l, l′,. . . range over locality variables, i.e. aliases for addresses;
– `, `′,. . . range over locality names and variables;
– x, y,. . . range over value variables;
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(Nets) N ::= 0 | s ::ρ C | N1 ‖ N2 | (νs)N

(Components) C ::= 〈t〉 | P | C1 | C2

(Processes) P ::= nil | α.P | P1 | P2 | A(p̄)

(Actions) α ::= out(t)@` | eval(P )@`

| in(T )@` | read(T )@` | newloc(s)

(Tuples) t ::= e | ` | P | t1, t2

(Templates) T ::= e | ` | !x | ! l | !X | T1, T2

Table 4. Klaim syntax

– X, Y ,. . . range over process variables;

– e, e′,. . . range over expressions; the precise syntax of expressions is deliber-
ately not specified, but we assume that they contain, at least, basic values
(ranged over by v, v′,. . . and whose set is left unspecified too) and variables;

– A, B,. . . range over process identifiers; we assume that each process identifier
A with arity n has an unique definition available at any locality of a net of
the form A(f1, . . . , fn) , P , where fi are pairwise distinct (p̄ and f̄ denote
tuples of actual and formal parameters, respectively, consisting of values and
variables.)

We assume that the set of variables (i.e. locality, value and process variables) the
set of values (locality names and basic values) and the set of process identifiers
are countable and pairwise disjoint.

Nets are finite plain collections of nodes where components (i.e. evaluated
tuples and processes) can be allocated. A node is a triple s ::ρ C, where lo-
cality s is the address of the node, ρ is the an allocation environment and C
are the host components. An allocation environment binds the locality variables
occurring free in the processes allocated in the corresponding node. Basically,
allocation environments provide a name resolution mechanism by mapping lo-
cality variables l into localities s. The distinguished locality variable self is used
by processes to refer to the address of their current hosting node. In the net
(νs)N , the scope of the name s is restricted to N ; the intended effect is that if
one considers the net N1 ‖ (νs)N2 then locality s of N2 cannot be immediately
referred to from within N1.

Processes are the Klaim active computational units that are built up from
the special process nil, that does not perform any action, and from the basic
operations by means of action prefixing α.P , parallel composition P1 | P2 and
process definition. Process may be executed concurrently either at the same
locality or at different localities and can perform five different basic operations,
called actions.
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Actions out, in and read manage data repositories by adding/withdraw-
ing/accessing data to/from node repositories. Action eval activates a new thread
of execution, i.e. a process, in a (possibly remote) node. Action newloc permits
creation of new network nodes. The latter action is not indexed with an address
because it always acts locally; all other actions indicate explicitly the (possibly
remote) locality where they will take place. in and read are (possibly) blocking
actions and exploit templates as patterns to select data in shared repositories.
Templates are sequences of actual and formal fields, where the latter are written
!x, ! l or !X and are used to bind variables to basic values, locality names or
processes, respectively. out and eval are non-blocking actions and implement
static and dynamic scoping disciplines, respectively (see below).

A net is well-formed if for each node s ::ρ C, we have that ρ(self) = s, and,
for any pair of nodes s ::ρ C and s′ ::ρ′ C

′, we have that s = s′ implies ρ = ρ′.
Hereafter,we will only consider well-formed nets.

Names and variables occurring in Klaim processes and nets can be bound.
More precisely, prefix newloc(s).P binds name s in P , and, similarly, net restric-
tion (νs)N binds s in N . The sets fn(·) and bn(·) of, respectively, free and bound
locality names of a term are defined accordingly. Prefixes in(. . . , ! , . . .)@`.P and
read(. . . , ! , . . .)@`.P binds variable in P . A name/variable that is not bound
is called free. As usual, we say that two terms are alpha-equivalent, written =α,
if one can be obtained from the other by renaming bound names/variables. In
the sequel, we shall work with terms whose bound variables are all distinct and
whose bound names are all distinct and different from the free ones.

Example 2. Consider an application that converts a list of some famous US
places into the corresponding zip code by filtering out the places that are not
located in the State of New York4.

The Klaim net corresponding to this scenario is as follows:

szip ::{self 7→szip} . . . | 〈10109, “Times Square”〉 | . . . | 〈10451, “Bronx”〉 | . . .
| 〈20500, “White House”〉 | . . . | 〈89144, “Las V egas”〉 | . . .

‖ splaces ::{self 7→splaces,lzip 7→szip} Filter(10001, 14905) | 〈“Times Square”〉
| 〈“White House”〉 | 〈“Bronx”〉 | . . .

where locality szip represents a US zip codes database, locality splaces contains
a list of places, and Filter is a process defined as follows:

Filter(zipmin, zipmax) ,
in(!place)@self . read(!zip, place)@lzip.

( if (zipmin 6 zip 6 zipmax) then out(zip)@self .nil
| Filter(zipmin, zipmax) )

Basically, the above process cyclically reads (and consumes) the name of a place
locally and uses it to retrieve the corresponding zip code from szip, then checks if

4 The geographical area of the State of New York is identified by the set of corre-
sponding zip codes, which range from 10001 to 14905.
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(Monoid) N ‖ 0 ≡ N N1 ‖ N2 ≡ N2 ‖ N1 (N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

(RCom) (νs1)(νs2)N ≡ (νs2)(νs1)N (PDef) s ::ρ A(p̄) ≡ s ::ρ P [p̄/f̄ ] if A(f̄) , P

(Ext) N1 ‖ (νs)N2 ≡ (νs)(N1 ‖ N2) if s 6∈ fn(N1) (Alpha) N ≡ N ′ if N =α N
′

(Abs) s ::ρ C ≡ s ::ρ (C |nil) (Clone) s ::ρ C1|C2 ≡ s ::ρ C1 ‖ s ::ρ C2

Table 5. Klaim structural congruence

the zip code is within the given range and, in the positive case, produces a tuple
containing the zip code. For the sake of simplicity, in defining the Filter process
we have used a conditional construct, which can be easily programmed in Klaim
by exploiting the dynamic creation of new nodes and the parallel composition
operator.

The operational semantics of Klaim is given in terms of a structural con-
gruence relation and a reduction relation expressing the evolution of a net. The
structural congruence ≡ identifies syntactically different terms that intuitively
represent the same term. It is defined as the least congruence closed under the
equational laws shown in Table 5. Most of the laws are standard, while laws
(Abs) and (Clone) are peculiar to this setting. The first one states that nil is the
identity for · | ·; the second one turns a parallel between co-located components
into a parallel between nodes (thus, it is also used to achieve commutativity and
associativity of · | ·).

To define the reduction relation, we need two auxiliary functions. First, we
exploit a function E [[ ]]ρ for evaluating tuples/templates, which evaluates the ex-
pressions within and, in case of success, returns an evaluated tuple/template.
In particular, E [[ ]]ρ replaces the free locality variable occurring in according
to the allocation environment ρ of the node performing the action whose ar-
gument is . Notice that the free occurrences of variables within the argument
of eval actions are not involved by such replacement. However, E [[ ]]ρ cannot
be explicitly defined because the exact syntax of expressions is deliberately not
specified.

Then, through the rules in Table 6, we define a pattern-matching function
match(·, ·), to verify the compliance of a tuple w.r.t. a template and to associate
basic values, locality names and processes to variables bound in templates. In-
tuitively, a tuple matches against a template if they have the same number of
fields, and corresponding fields match (where a bound name matches any value,
while two names match only if they are identical). Notably, differently from Orc
where constructs · > p̄ > · and · < p̄ < · bind all variables within p̄, in Klaim
variables can be either bound or not (in the former case they are preceded by
the symbol ‘!’). Thus, bound variables match any (corresponding) value, while
the matching always fails for free variables.

The reduction relation is given in Table 7. The intuition beyond the opera-
tional rules of Klaim is the following. In rule (Out), the local allocation environ-
ment ρ of the node performing the action out(t)@` is used both to evaluate `, in
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match(!x, v) = [v/x] match(!l, s) = [s/l] match(!X,P ) = [P/X]

match(v, v) = ε

match(s, s) = ε

match(T1, t1) = σ1 match(T2, t2) = σ2

match((T1, T2), (t1, t2)) = σ1 ◦ σ2

Table 6. Klaim matching rules

ρ(`) = s′ E [[ t ]]ρ = t′

(Out)
s ::ρ out(t)@`.P ‖ s′ ::ρ′ nil 7−→ s ::ρ P ‖ s′ ::ρ′ 〈t′〉

ρ(`) = s′

(Eval)
s ::ρ eval(Q)@`.P ‖ s′ ::ρ′ nil 7−→ s ::ρ P ‖ s′ ::ρ′ Q

ρ(`) = s′ match(E [[ T ]]ρ, t) = σ
(In)

s ::ρ in(T )@`.P ‖ s′ ::ρ′ 〈t〉 7−→ s ::ρ Pσ ‖ s′ ::ρ′ nil

ρ(`) = s′ match(E [[ T ]]ρ, t) = σ
(Read)

s ::ρ read(T )@`.P ‖ s′ ::ρ′ 〈t〉 7−→ s ::ρ Pσ ‖ s′ ::ρ′ 〈t〉

s ::ρ newloc(s′).P 7−→ (νs′)(s ::ρ P ‖ s′ ::ρ[s′/self ] nil) (New)

N1 7−→ N ′
1

(Par)
N1 ‖ N2 7−→ N ′

1 ‖ N2

N 7−→ N ′

(Res)
(νs)N 7−→ (νs)N ′

N ≡ M 7−→ M ′ ≡ N ′

(Str)
N 7−→ N ′

Table 7. Klaim operational semantics

order to determine the location that is the target of the action, and to evaluate
the argument tuple t, in order to evaluate the expressions within t and, hence, to
replace the locality variables occurring free in t. This way, if the argument tuple
contains a field with a process, the corresponding field of the evaluated tuple
contains the process resulting from the evaluation of its free variables w.r.t. the
environment ρ (static scoping discipline). A dynamic linking strategy is adopted
in rule (Eval) for the action eval(P )@`, since the local allocation environment
is used only to evaluate `, while the argument process P is not interpreted (i.e.
free variables in P will be translated according to the remote allocation envi-
ronment). Rules (In) and (Read) require existence of a matching datum in the
target node. The tuple is then used to replace the free occurrences of the vari-
ables bound by the template in the continuation of the process performing the
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(Extended expressions) f + = out(t)@ η : ` | eval(P )@ η : `

| in(T )@ η : ` | read(T )@ η : `

(Named nets) K ::= {ηi ::ρi Ni}i∈I

Table 8. Korc syntax

actions. With action in, the matched datum is consumed while with action read
it is not. In rule (New), the environment of a new node is derived from that of
the creating one with the obvious update for the self variable (notice that the
environment update ρ[s′/self ] is defined only if s′ is not in the codomain of ρ).
Therefore, the new node inherits all the bindings of the creating node. The last
three rules are standard: rule (Par) states that if a part of a larger net evolves,
the whole net evolves accordingly; rule (Res) states that reductions are not in-
hibited even if they arise from the scope of a restriction; finally, rule (Str) states
that structural congruent nets have the same reductions.

2.3 Korc: a language for orchestrating Klaim agents

We now show how the orchestration approach of Orc and the network-aware one
of Klaim can be combined in order to define a new formalism for orchestrating
concurrent processes coordinated via distributed tuple spaces. In particular, in
this section we present the syntax and the operational semantics of the resulting
calculus, which we have called Korc.

A Korc program consists of a configuration (f,K), where f is an extended
Orc expression (possibly coming with a set of expression definitions) and K is
a set of named Klaim nets. To execute a program, its expression is evaluated
while the nets concurrently run. Formally, the Korc syntax is defined in Table 8,
where f is an Orc expression (as in Table 1) extended with Klaim actions, η
ranges over net names, and nets N , processes P , tuples t and templates T are
defined in Table 4. We assume that the Korc set of values, ranged over by m,
includes the Klaim set of values (containing locality names, basic values and
processes). As a matter of notation, given a grammar such as e ::= p1 | . . . | pm,
we write e+ = pm+1 | . . . | pm+n as a shorthand for e ::= p1 | . . . | pm+n.
Moreover, in the sequel, we will use ] to denote the disjoint union operator
between sets.

A Korc expression can interact with different Klaim nets that can be re-
ferred (and distinguished) by means of net names. Specifically, a named net is
a triple η ::ρ N , where η is the name of the net, ρ is the allocation environment
used for evaluating the add/withdrawal/access actions performed by the Korc
expression with target the named net, and N is a Klaim net. Besides site and
expression calls, a Korc expression can perform out, eval, in and read ac-
tions over named nets within the associated set K. Such actions, in Korc, have
a further argument η that explicitly indicates the target net. Actions newloc
cannot be directly executed by a Korc expression, since they only act locally in
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a Klaim node. Anyway, they can be indirectly performed by resorting to eval
actions.

A Korc program (f, {ηi ::ρi Ni}i∈I) is well-formed if names ηi are pairwise
distinct and for each i ∈ I we have that self is not in the domain of ρi and
Ni is a well-formed net (see Section 2.2). Hereafter, we will only consider well-
formed programs. Notably, we consider named nets, rather than unnamed ones,
to avoid requiring locality names of all nets to be pairwise distinct. In fact, while
this is reasonable at level of a single net, it becomes, from a practical point of
view, a requirement too strong at level of a distributed and loosely coupled
environment where some different and independent subnets cohabit. Notice also
that the requirement about the self variable is due to the fact that ρi are used to
evaluate actions executed by a Korc expression and that, hence, are not hosted
by any Klaim node.

Example 3. Consider an application that combines the functionalities of the ap-
plications described in Examples 1 and 2 to calculate the current temperature
of a given set of places of interest within the State of New York. We suppose
here that the localities szip and splaces of Example 2 belong to a Klaim net
ηzip, while the locality stemperature, where the results will be stored, belongs to
another net ηny, which is dedicated to applications concerning the State New of
York.

The whole scenario is rendered in Korc as

( f, {ηzip ::{lplaces 7→splaces}
(νszip)( szip ::{self 7→szip} . . . | 〈10109, “Times Square”〉 | . . .

‖ splaces ::{self 7→splaces,lzip 7→szip} 〈“Times Square”〉 | . . . ) ,
ηny ::{lnyTemp 7→stemperatures}

( stemperatures ::{self 7→stemperatures} 0 ‖ . . . ) } )

where locality szip here is assumed restricted in order to disallow processes ex-
ternal to the net to directly access to the zip codes database.

The expression f is as:

eval(Filter(10001, 14905))@ ηzip : lplaces >> fcalculateTemperature

Basically, it spawns the process Filter on the node splaces within ηzip and than
activates the expression fcalculateTemperature, which is defined as follows:

fcalculateTemperature ,
in(!zip)@ ηzip : lplaces > 〈xzip〉 >
Weather(xzip) > 〈xcity, xweather, xtemperature〉 >
FahrenheitToCelsius(xtemperature) > 〈xcelsius〉 >
out(xzip, xcelsius)@ ηny : lnyTemp >> fcalculateTemperature

This expression cyclically reads a zip code generated by the process Filter,
invokes the sites Weather and FahrenheitToCelsius and inserts the result into
the localities stemperatures of ηny.
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ρ(`) = s′ E [[ t ]]ρ = t′ (fn(t′) ∪ {s′}) 6⊆ (bn(N) ∪ s̄)
(Ko-out)

(out(t)@ η : `,K ] {η ::ρ (νs̄)(N ‖ s′ ::ρ′ nil)})
!〈〉−−−→ (0,K ] {η ::ρ (νs̄)(N ‖ s′ ::ρ′ 〈t′〉)})

ρ(`) = s′ (fn(P ) ∪ {s′}) 6⊆ (bn(N) ∪ s̄)
(Ko-eval)

(eval(P )@ η : `,K ] {η ::ρ (νs̄)(N ‖ s′ ::ρ′ nil)})
!〈〉−−−→ (0,K ] {η ::ρ (νs̄)(N ‖ s′ ::ρ′ P )})

ρ(`) = s′ match(E [[ T ]]ρ, t) = σ (fn(T ) ∪ {s′}) 6⊆ (bn(N) ∪ s̄)
(Ko-in)

(in(T )@ η : `,K ] {η ::ρ (νs̄)(N ‖ s′ ::ρ′ 〈t〉)})
!〈t〉−−−→ (0,K ] {η ::ρ (ν s̄\fn(t))(N ‖ s′ ::ρ′ nil)})

ρ(`) = s′ match(E [[ T ]]ρ, t) = σ (fn(T ) ∪ {s′}) 6⊆ (bn(N) ∪ s̄)
(Ko-read)

(read(T )@ η : `,K ] {η ::ρ (νs̄)(N ‖ s′ ::ρ′ 〈t〉)})
!〈t〉−−−→ (0,K ] {η ::ρ (ν s̄\fn(t))(N ‖ s′ ::ρ′ 〈t〉)})

N 7−→ N ′

(Ko-net)
(f,K ] {η ::ρ N})

τ−−→ (f,K ] {η ::ρ N
′})

Table 9. Korc operational semantics (additional rules)

The operational semantics of Korc is given in terms of a labelled transition
relation

a−−→ over configurations, which relies on the reduction relation 7−→ over
Klaim nets defined by the rules in Table 7. As in the semantics of Orc, labels a
indicate either internal events τ or publication events !m̄. The operational rules
defining the labelled transition relation are those in Table 9 together with those
in Table 3 extended to Korc configurations in standard way. For example, rule
(Sym1) in Table 3 extends to configurations as follows:

(f,K)
a−−→ (f ′,K′)

(f | g,K)
a−−→ (f ′ | g,K′)

Notably, site and expression calls cannot modify the setK, only the Korc actions
out, eval, in and read can. Notice also that, since Korc inherits pairwise
disjoint variables sets from Klaim, the rule M(x,m) = [m/x] of the pattern-
matching function M(·, ·) must be replaced by the following ones:

M(x, v) = [v/x] M(l, s) = [s/l] M(X,P ) = [P/X]

Let us now comment on the operational rules in Table 9. All actions evolve
to expression 0, act on a net named η, require the existence of the target
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node s′ (which must not be restricted in η) and exploit the allocation environ-
ment ρ for evaluating their arguments. As a matter of notation, we abbreviate
(νs1) . . . (νsn) to (νs̄) with s̄ = 〈s1, . . . , sn〉. Actions out and eval, rules (Ko-out)

and (Ko-eval), can be performed only if the components they intend to insert in
s′ (i.e. the evaluated tuple 〈t′〉 or the process P ) do not contain locality names
restricted in η. If such actions can be performed, a signal 〈〉 is published. Notice
that a signal is produced, rather than a τ event, to enable possible sequential
or asymmetric parallel compositions (see rules (Seq1) and (Asym2) in Table 3).
Similarly, actions in and read, rules (Ko-in) and (Ko-read), can be performed
only if the template T does not contain locality names restricted in η, because
a private name cannot be matched by any name used outside the net (i.e. pri-
vate names cannot be ‘guessed’). Instead, these actions can be performed if the
tuple t they intend to withdraw/read contains some locality names restricted in
η; in this case, the restriction of such names is removed. If a matching datum
t exists in the target node, actions in and read can proceed and publish the
withdrawn/read tuple 〈t〉. Notice that, in order to properly integrate in and
read actions with the binding operators of Orc, in rules (Ko-in) and (Ko-read)

the generated substitution σ is not applied and the complete withdrawn/read
tuple is published (rather than, e.g., only the values matching with the template
variables). The values in the returned tuple can be then caught via pattern-
matching through sequential or asymmetric parallel compositions. Finally, rule
(Ko-net) says that Klaim nets in K can freely evolve w.r.t. the evolution of
expression f .

Remark 1 (Actions à la Klaim). In Korc, as previously pointed out, execution
of actions in and read does not involve a direct application of a substitution,
but simply the publication of the withdrawn/read tuple. Anyway, in and read
actions à la Klaim can be easily expressed: e.g. expression in(5, !x)@ η : ` .f ,
where a substitution for x is applied to f , can be rendered in Korc as
in(5, !y)@ η : ` > 〈5, x〉 > f , where y is a variable never used elsewhere (i.e.
it can be thought of as a wildcard).

Remark 2 (Dealing with private names). In Klaim, locality names can be pri-
vate, i.e. restricted by means of the operator (νs). In fact, the freshness of a
private name can be reasonable ensured by a middleware supporting the exe-
cution of a Klaim net (such as, e.g., Klava [5]). Instead, the loosely coupled
nature of the service-oriented architecture at the base of Korc implies that
names freshness cannot be guaranteed over a whole global net, which can be po-
tentially composed of many independent Klaim subnets. Therefore, in Korc,
when a private name is extracted from a Klaim net, through an in/read action,
the name becomes public (somehow, the effect is similar to that of rule (open)

in π-calculus [29]).

Of course, other different policies for dealing with private names can be
considered. For example, we could prevent the access to all Klaim tuples
containing private names. This can be realized by simply adding the premise
fn(t) 6⊆ (bn(N) ∪ s̄) to rules (Ko-in) and (Ko-read). However, this requirement
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could turn out to be too strong. Another possibility could be to extend Korc
expressions with a restriction operator (νs) but this, as already explained above,
would violate the loosely coupling principle underlying Korc.

3 Korc at work on an e-commerce case study

In this section, we illustrate an application of Korc to a simplified but realistic
electronic marketplace scenario, where a number of on-line stores allow client
applications to (read-only) access their data about items availability and to
place orders. We suppose that each store has one on-line portal and relies on
many ‘realworld’ stores, each of which with its own warehouse. Specifically, here
we consider a client application that aims at finding a store that has in stock
a given quantity of a specific item, by concurrently accessing the stores data,
and then placing an order to the first store found. For the sake of presentation,
hereafter we consider a scenario consisting of only three on-line stores.

The whole scenario, graphically depicted in Figure 2, can be rendered in
Korc as

(f, {ηstore1 ::ρ N1, ηstore2 ::ρ N2, ηstore3 ::ρ N3, ηclient ::ρ (s ::{self 7→s} nil)})

where ρ stands for {l 7→ s} and each net Ni has the following form

s1 ::{self 7→s1,l 7→s,lnext 7→s2,lend 7→se} 〈t1i1〉 | . . . | 〈t
ki
i1〉 | 〈“next”, lnext〉

‖ s2 ::{self 7→s2,l 7→s,lnext 7→s3,lend 7→se} 〈t1i2〉 | . . . | 〈t
wi
i2 〉 | 〈“next”, lnext〉

‖ . . . ‖ smi ::{self 7→smi
,l 7→s,lnext 7→se,lend 7→se} 〈t1im〉 | . . . | 〈t

ri
im〉 | 〈“next”, lnext〉

‖ s ::{self 7→s,l1 7→s1} 〈“start”, l1〉

Intuitively, each store store i is modelled by a site Mstore i, representing its on-
line portal, and a net named ηstore i, whose nodes sj represent the data storages
of its warehouses, while node s is used for computation support. Instead, a client
application consists of an expression f and a net named ηclient, which contains
a node, initially empty, used to elaborate the retrieved data. Finally, each tuple
tuij represents the data of a specific item stored inside the warehouse sj of the
store store i. Specifically, an item tuple has the form 〈id, q, p〉, where id is the
item identifier, q (with q > 0) is the quantity available at the warehouse, and p
is the price (which can be different from a warehouse to another). We assume
that each node contains at most one tuple for each item identifier. Notice that
the item tuples have been thought to be read only data for client processes; this
could be guaranteed by resorting to, e.g., the tuple access control systems like
that presented in [22].

The expression f is defined as follows:

f ,
eval(FindItem(“itemId3”, 20, “reqId12”))@ ηstore1 : l
| eval(FindItem(“itemId3”, 20, “reqId12”))@ ηstore2 : l
| eval(FindItem(“itemId3”, 20, “reqId12”))@ ηstore3 : l
| fmoveFromStore1 | fmoveFromStore2 | fmoveFromStore3 | g
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Fig. 2. The e-commerce scenario in Korc

Basically, it represents a client’s search request for 30 items of type “itemId3”
whose maximum price per item that the client is willing to pay is less or equal to
20. To avoid that data of different search requests are erroneously mixed together,
a request identifier, say “reqId12”, is provided by the client and inserted into
each tuple. Of course, the above expression could be parameterized w.r.t. item
identifier, price, request identifier and quantity, but we prefer to leave it as it is
for the sake of presentation.

Specifically, by means of three eval actions, the client expression spawns
three copies of the process FindItem into the locality s of each store net. Such
process looks for tuples having as arguments the item identifier “itemId3” and
a price less or equal to 20. A copy of each tuple (extended with the request
identifier “reqId12”) that meets this requirement is stored in the locality s of
the net. Then, by means of three expression calls fmoveFromStore i, as tuples are
inserted into the node s of each store’s net, they are moved to the node s of the
client’s net. Each expression fmoveFromStore i is defined as a recursive expression
performing a sequence of in and out actions:

fmoveFromStore i ,
in(“itemId3”, !xq, !xp, “reqId12”)@ ηstore i : l
> 〈“itemId3”, xq, xp, “reqId12”〉 >
out(“store i”, “reqId12”, xq)@ ηclient : l >> fmoveFromStore i
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where we have used the short-hand expression f >> g to denote the expression
f > 〈·〉 > g. Notably, in performing such movements, information about prices
and item identifiers are left out, while information about the source stores are
added.

The Klaim process FindItem is defined as follows:

FindItem(itemId,maxPrice, reqId) ,
read(“start”, !lstart)@self . eval(Find(itemId,maxPrice, reqId))@lstart

It locally reads the ‘start’ locality of the hosting net and then activates there
a mobile process Find (i.e. an agent) that will visit all net nodes to find the
availability of the wanted item. The mobile process is defined as follows:

Find(itemId,maxPrice, reqId) ,
read(itemId, !q, !p)@self .

if (p 6 maxPrice) then out(itemId, q, p, reqId)@l
| read(“next”, !ln)@self .

if (ln 6= lend) then eval(Find(itemId,maxPrice, reqId))@ln

The process simply checks if a tuple for the given item is present locally; if the
item per price is not greater than the maximum price then it add a corresponding
tuple to the node s of the hosting net (referred by means of the locality variable
l). Moreover, it reads the locality of the next node and, if it there exists, than
a new copy of the process is spawned on such node. This second check exploits
the locality variable lend that is properly bound by the allocation environment
of each net node. For the sake of simplicity, in defining the above agent we have
used a conditional construct (which can be easily programmed by exploiting
the dynamic creation of new nodes and the parallel composition operator) and
omitted trailing occurrences of nil.

The expression g is defined as follows:

g ,
out(“sum”, “store1”, “reqId12”, 0)@ ηclient : l
| out(“sum”, “store2”, “reqId12”, 0)@ ηclient : l
| out(“sum”, “store3”, “reqId12”, 0)@ ηclient : l
| ( ( if (x =“store1ok”) >> Mstore1(“itemId3”, 30) )
| ( if (x =“store2ok”) >> Mstore2(“itemId3”, 30) )
| ( if (x =“store3ok”) >> Mstore3(“itemId3”, 30) ) ) < 〈x〉 < ( g1 | g2 | g3 )

It adds to the node s of the client’s net three tuples containing the partial sum
of the quantity of the requested item available at each store (initially set to 0).
It also starts the concurrent evaluation of three expressions gi, each of which
computes the sum of the item quantity for a store and publishes the string
“store i ok” if the store has in stock at least 30 items of the requested type. The
asymmetric parallel composition operator is used here to bind the variable x with
the string “store i ok” and to terminate the evaluation of the other functions gj ,
with j 6= i. Then, according to the published string, the corresponding site
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Mstore i is called to place an order. We have exploited here the fundamental5

Orc site if (b), which returns a signal 〈·〉 if b evaluates to true, otherwise it does
not respond.

Finally, an expression gi is defined as follows:

gi ,
in(“store i”, “reqId12”, !yq)@ ηclient : l
> 〈“store i”, “reqId12”, yq〉 >
in(“sum”, “store i”, “reqId12”, !ysum)@ ηclient : l
> 〈“sum”, “store i”, “reqId12”, ysum〉 >
( ( if (yq + ysum > 30) >> let(“store i ok”) )
| ( if (yq + ysum < 30) >>

out(“sum”, “store i”, “reqId12”, yq + ysum)@ ηclient : l ) >> gi )

basically, this a recursive expression that, at each recursive call, consumes a tuple
containing an item availability and a tuple containing the actual sum, computes
the sum between the read values and, if the sum is less than the desired number
(i.e. 30) it produces a new ‘sum’ tuple and calls itself, otherwise publishes the
string “store i ok” and terminates. Notably, to publish the string “store i ok”,
expression gi exploits the fundamental Orc site let(x, y, . . .), which returns the
argument values as a tuple.

4 Implementation issues

In this section, we first provide a brief overview of the implementations of the
programming languages derived from Orc and Klaim, then we give a glimpse
of the proof-of-concept implementation of Korc.

4.1 The Orc programming language

Although Orc was originally conceived as a process calculus, then it has evolved
into a complete language for programming orchestration-based concurrent ap-
plications [26]. Such a programming language provides the Orc’s orchestration
operators and the site call construct with their original syntax, while expres-
sion definitions take the form def f(x1, . . . , xn) = fbody. The language is also
equipped with arithmetic and logical operators, data structures, a conditional
construct, and a variable binder construct val (e.g., val x = 5 binds x to 5).
Moreover, the language supporting libraries provides predefined functions and
fundamental sites.

A feature of the Orc implementation, particularly relevant for our purposes,
is its capability of integrating with Java applications. In fact, Java classes can
be accessed by an Orc expression as sites. To make a class available to an

5 To effective programming in Orc, the language is equipped with a few ‘fundamental’
sites (e.g. if (b), let(x, y, . . .)) that have to be considered local and whose behavior is
predefined and predictable [37].
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expression, a site declaration and a variable binding must be used like in the
following example

site WebServiceFactory = orc.lib.net.Webservice
val service = WebServiceFactory(...)

where the variable service can be then used for invoking a web service defined
in the Java class orc.lib.net.Webservice. To be accessed as an Orc site, a Java
class must extended one of the specific classes provided with the Orc’s libraries
(e.g. EvalSite).

We refer the interested reader to [1, 2] for a complete account of the Orc
programming language and its supporting libraries. The source code and binaries
of the Orc’s implementation are released under the BSD License and can be
downloaded from http://orc.csres.utexas.edu.

4.2 The X-Klaim programming language

Similarly to the evolution of Orc to a full programming language, also the
process calculus Klaim has been extended, to effectively program distributed
networked applications, with high-level features, such as variable declarations,
assignments, and (standard) control flow constructs. As shown in Figure 3, the
implementation of the resulting programming language, called X-Klaim (eX-
tended Klaim, [6]), is based on a compiler, which generates Java code, and on
the Java library Klava [5], which provides the run-time support for X-Klaim
actions.

For example, the Klaim net N1 belonging to the store1 of the e-commerce
case study introduced in Section 3 can be rendered in X-Klaim as follows:

nodes
shop11::succ ~ localhost:11002,finish ~ localhost:11005, s ~ localhost:11004

port 11001
begin

out("next", succ)@self;
out("id1",10,11)@self;
...

end;

shop12::succ ~ localhost:11003,finish ~ localhost:11005, s ~ localhost:11004
port 11002
begin

out("next", succ)@self;
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out("id1",6,15)@self;
...

end;

...

l1::startS ~ localhost:11001
port 11004
begin

out("start",startS)@self
end

endnodes

A net, as expected, is a collection of node definitions, which must be included
within nodes and endnodes. A node, e.g. the first one in the net above, is defined
by specifying its name (shop11), its allocation environment (containing, e.g.,
the mapping from the locality variable succ to the locality localhost : 11002),
the port (11001) where it is listening, and a set of processes running on it
(out("next", succ)@self; . . .). It is worth noticing that the (physical) locality
of a node is not defined by its name, but by the IP address of the computer
where the node will run (in our example, this always is localhost) together
with its port number.

The process definition is rendered in X-Klaim through the construct

rec Proc name [ parameters decl ] declare variables decl begin . . . end

For example, the definition of the process FindItem exploited in the e-commerce
case study is as follows:

rec FindItem [itemId: str, maxPrice:int, reqId:str ]
declare

var locstart: loc
begin

read("start",!locstart)@self;
eval(Find(itemId,maxPrice,reqId))@locstart

end

Notice that str and int are the standard base types for strings and integers,
while loc is the type for locality variables.

A complete documentation of X-Klaim and Klava, together with source
and binary files (distributed under the GNU General Public License), can be
found at http://music.dsi.unifi.it/klaim.html.

4.3 The Korc implementation

To speed up the experimentation with the programming paradigm fostered by
Korc, we have exploited the compile- and run-time support tools for Orc and
Klaim presented above to implement a prototype implementation of Korc.
The underlying idea is as follows: Korc expressions are rendered as standard
Orc expressions that rely on ad-hoc sites for performing the Klaim actions.
Specifically, we have developed a Java class com.orcNode, extending EvalSite,
that can be used to define a new type of Orc site and that relies on the Klava
library for performing the Klaim actions. Since Klava uses types for values
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different from those of Orc, i.e. KString, KInteger, etc., and allows patterns
to use both actual and formal parameters, we have also developed another kind
of Orc site, com.orcTuple, that can be used to create objects having the correct
types for invoking the Klava methods.

An example of a Korc expression rendered in our implementation is as
follows

site orcNode = com.orcNode
site orcTuple = com.orcTuple

val client = orcNode("client",15000,"localhost",9999)
val store1 = orcNode("store1",15001,"localhost",9998)
val store2 = orcNode("store2",15002,"localhost",9997)
val store3 = orcNode("store3",15003,"localhost",9996)
val c = orcTuple()

def addLocality() =
client.addEnv("l",14000)
>> store1.addEnv("l",11004)
>> ...

def moveToStore1() =
store1.in(c.tuple("id3",c.intFormal(),c.intFormal(),"reqId12"),c.locality("l"))
> x > c.get(x,1) > z >
client.out(c.tuple("store1","reqId12",z),c.locality("l")) >> moveToStore1()

def ...

addLocality()
>> (startSearch()

>> (moveToStore1() | moveToStore2() | moveToStore3() | g()) )

At the beginning, our sites com.orcNode and com.orcTuple are declared and
assigned to some variables. Each com.orcNode site permits interfacing with a
Klaim net; thus, the corresponding variable can play the role of net name in
Korc actions. For example, the action out(“store1”, “reqId12”, z)@ ηclient : l
is rendered as

client.out(c.tuple("store1","reqId12",z),c.locality("l"))

where client represents ηclient.

It is worth noticing that a com.orcNode site corresponds to a node belonging
to the corresponding Klaim net (in the example above, for the client net such
node has name client and locality localhost : 9999). Thus, specific methods
have been provided to set the allocation environment of such nodes and to load
processes into them: addEnv and loadProcess, respectively. Notice also that for-
mal parameters are unnamed in com.orcTuple tuples and, hence, a get method
has to be used after in/read actions to extract the values associated to the formal
parameters by pattern-matching.

We refer the interested reader to Appendix A for the Java code of
classes com.orcNode and com.orcTuple. Such classes can be downloaded from
http://rap.dsi.unifi.it/korc/korc.zip and can be installed in Orc as any other
Java class defining an external site. The Korc implementation has been tested
with Orc 1.1.0, X-Klaim 2.b9 and Klava 2.b1.
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The complete specification of the e-commerce case study, written in the syn-
tax accepted by our tool, is relegated to Appendix B. A run of the program
consists on the activation of the Klaim nets and on the evaluation of the Korc
expression.

5 Concluding Remarks

We have introduced Korc, a formalism aiming at reconciling the orchestration
paradigm of Orc with the coordination one of Klaim. Specifically, we have
formally defined the syntax and operational semantics of Korc, and developed
a prototype implementation supporting Korc programming.

Related work. From the theoretical point of view, the formalisms closest to ours
are Orc and Klaim. In fact, to define Korc, we have chosen them as repre-
sentative of the broader classes of orchestration calculi (as, e.g., [28, 11, 27, 23,
8, 12, 9]) and coordination calculi for network-aware and mobility programming
(as, e.g., [20, 24, 13, 36]). Although Korc, w.r.t. the above calculi, does not pro-
vide any new primitive or mechanism, since it results from the combination of
Orc and Klaim, it enables experimenting and reasoning on a novel program-
ming paradigm that allows the combined use of orchestration and coordination
operators.

From the technological point of view, our work falls within a main line of re-
search that aims at developing programming frameworks based on, or strongly in-
spired to, process calculi. Among the several proposals, we want to mention below
those designed for programming distributed networked applications. JCaSPiS [4]
is a Java implementation of the service-oriented calculus CaSPiS (Calculus of
Sessions and Pipelines, [9]) that, as well as Korc, takes inspiration by Orc (in
particular, for the use of the sequential composition operator, called pipeline, over
value streams). CaSPiS’s implementation is based on the generic Java framework
IMC (Implementing Mobile Calculi, [3]) that provides recurrent mechanisms for
network applications and, hence, can be used as a middleware for the imple-
mentation of different process calculi. JOLIE [31, 32] is an interpreter written in
Java for a programming language based on the process calculus SOCK (Service
Oriented Computing Kernel, [23]), which is a formalism inspired by the WS-
BPEL language for formalizing some fundamental concepts of Service-Oriented
Computing, such as the design of a service behaviour, its deployment in an exe-
cuting enviroment and the composition of services within a system. JSCL (Java
Signal Core Layer, [19]) is a Java-based coordination middleware for services
based on the event notification paradigm of the Signal Calculus [18], a variant of
the π-calculus with explicit primitives to deal with event notification and com-
ponent distribution. Finally, PiDuce [14] is a distributed run-time environment
that implements a variant of the asynchronous π-calculus extended with native
XML values, datatypes and patterns. The environment also permits interacting
and experimenting with web services technologies.
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Anyway, our work differs from all ones above because we have not developed
an interpreter for Korc from scratch, but we have exploited and extended the
established implementation of Orc and Klaim.

Ongoing and future work. At foundational level, we intend to investigate the
extension of Korc with name passing communication. Indeed, currently Orc
does not allow expressions to receive site names and use them in site calls, e.g.
the term M() > x > x(5) is not an Orc expression since the variable x cannot
occur as a site name in the call x(5) (see Orc’s syntax in Table 1). In Korc,
besides site name passing, also net name passing is disallowed. In fact, on the one
hand, a language that permits passing net names but not site ones would not be
particularly meaningful for programming networked applications. On the other
hand, the Korc’s implementation exploits site calls for executing Klaim actions
over nets (see Section 4.3), hence net name passing cannot be realized without
site name passing in the current implementation. We also plan to investigate
extension of Korc with other orchestration/coordination primitives, e.g. the
‘otherwise’ operation introduced in [26].

At support tool level, we intend revise the programming language based on
Korc presented in Section 4.3. Tto make it more usable by programmers, for ex-
ample, Klaim actions should have a syntax more similar to that shown in Table 8
and allows the direct use of named formal parameters. This could be realized,
e.g., by means of a pre-compiling step. To further simplifying the task of writing
Korc programs, we also intend to provide programmers with an Eclipse-based
development environment relying on the Xtext framework [17]. Finally, while
Korc is basically an extension of Orc with Klaim actions and nets, we are
also currently investigating a sort of reverse extension, i.e. Klaim with mech-
anisms for calling sites (specifically, web services via SOAP over HTTP). Such
extension mainly involves the Klaim middleware (i.e. X-Klaim and Klava)
rather than the process calculus itself. In fact, we rely on standard out/in ac-
tions for interacting with web services.
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A Korc implementation: com.orcNode and com.orcTuple
classes

We report in this appendix the Java code of the classes com.orcNode and
com.orcTuple (Listings 1.1 and 1.2), which can be used to create Orc sites
for accessing Klaim nets.

Listing 1.1. Java class com.orcNode

1 package com;

2
3 import orc.error.runtime.TokenException;

4 import orc.runtime.sites.EvalSite;

5 import orc.runtime.sites.DotSite;

6 import orc.runtime.sites.Site;

7 import orc.runtime.sites.ThreadedSite;

8 import orc.runtime .*;

9 import Klava .*;

10
11
12 public class orcNode extends EvalSite{

13 public Object evaluate (Args args) throws TokenException{

14 return new orcNodeInstance(args.stringArg (0),

15 args.intArg (1),

16 args.stringArg (2),

17 args.intArg (3));

18 }

19 }

20
21 class orcNodeInstance extends DotSite {

22 private String loc;

23 private NetNode klavaNode;

24 private Integer nport;

25 private String server;

26
27
28 orcNodeInstance (String loc ,Integer nport ,String server ,Integer port){

29 try{

30 this.loc = loc;

31 this.nport = nport;

32 this.server = server;

33
34 System.out.println("Create Node" + server+":"+loc+"-"+port);

35 klavaNode = new Node( loc , nport , server , port );

36
37 addMember("in", new InMethod ());

38 addMember("out", new OutMethod ());

39 addMember("read", new ReadMethod ());

40 addMember("inp",new InpMethod ());

41 addMember("readp",new ReadpMethod ());

42 addMember("eval", new EvalMethod ());

43 addMember("getLocality", new GetLocalityMethod ());

44 addMember("getPort",new GetPortMethod ());

45 addMember("addEnv",new AddEnvironmentMethod ());

46
47 klavaNode.start();

48
49 } catch(Exception e) {

50 System.out.println("Error in the Klava node creation");

51 e.printStackTrace ();

52 }

53 }

54
55
56 private class InMethod extends ThreadedSite{

57 public Object evaluate(Args args) throws TokenException{

58 Tuple t= null;

59 try {

60 t = (Tuple) args.getArg (0);

61 Locality l = (Locality) args.getArg (1);

62 klavaNode.in(t,l);

63 } catch (KlavaException e) {

64 e.printStackTrace ();

65 }

66 return t;

67 }

68 }

69
70 private class InpMethod extends ThreadedSite{

71 public Object evaluate(Args args) throws TokenException{

72 Tuple t = null;

73 try {

74 t = (Tuple) args.getArg (0);

75 Locality l = (Locality) args.getArg (1);
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76 Integer timeout = args.intArg (2);

77
78 boolean a = klavaNode.in_t(t,l,timeout);

79 if (a == false){

80 return new Tuple(new KBoolean(false));

81 }

82
83 } catch (KlavaException e) {

84 e.printStackTrace ();

85 }

86 return t;

87 }

88 }

89
90 private class ReadMethod extends ThreadedSite {

91 public Object evaluate(Args args)throws TokenException{

92 Tuple t = null;

93 try {

94 t = (Tuple) args.getArg (0);

95 Locality l = (Locality) args.getArg (1);

96
97 klavaNode.read(t,l);

98
99 } catch (KlavaException e) {

100 e.printStackTrace ();

101 }

102 return t;

103 }

104 }

105
106 private class ReadpMethod extends ThreadedSite {

107 public Object evaluate(Args args)throws TokenException{

108 Tuple t = null;

109 try {

110 t = (Tuple) args.getArg (0);

111 Locality l = (Locality) args.getArg (1);

112 Integer timeout = args.intArg (2);

113
114 boolean a = klavaNode.read_t(t,l,timeout);

115 if (a == false){

116 return new Tuple(new KBoolean(false));

117 }

118 } catch (KlavaException e) {

119 e.printStackTrace ();

120 }

121 return t;

122 }

123 }

124
125 private class OutMethod extends EvalSite{

126 public Object evaluate(Args args) throws TokenException{

127 try {

128 Tuple t = (Tuple) args.getArg (0);

129 Locality l = (Locality) args.getArg (1);

130
131 klavaNode.out(t,l);

132
133 } catch (KlavaException e) {

134 e.printStackTrace ();

135 }

136 return signal ();

137 }

138 }

139
140 private class EvalMethod extends EvalSite{

141 public Object evaluate(Args args) throws TokenException{

142 try {

143
144 KlavaProcess p = (KlavaProcess) args.getArg (0);

145
146 Locality loc = (Locality) args.getArg (1);

147 klavaNode.eval(p,loc);

148
149
150 } catch (KlavaException e) {

151 e.printStackTrace ();

152 }

153 return signal ();

154 }

155 }

156
157 private class GetLocalityMethod extends Site{

158 public void callSite(Args args , Token token) throws TokenException{

159 token.resume(loc);

160 }

161 }

162
163 private class GetPortMethod extends Site{

164 public void callSite(Args args , Token token) throws TokenException{

165 token.resume(nport);
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166 }

167 }

168
169 private class AddEnvironmentMethod extends EvalSite{

170 public Object evaluate(Args args) throws TokenException{

171 try{

172 klavaNode.addToEnv(args.stringArg (0),

173 NetUtils.createNodeAddress(server+":"+args.intArg (1)));

174 }catch(KlavaException e){

175 e.printStackTrace ();

176 }

177 return signal ();

178 }

179 }

180
181 protected void addMembers () {

182 }

183
184 }

Listing 1.2. Java class com.orcTuple

1 package com;

2
3 import java.lang.reflect.Constructor;

4
5 import orc.error.runtime.TokenException;

6 import orc.runtime.sites.EvalSite;

7 import orc.runtime.sites.DotSite;

8 import orc.runtime.sites.Site;

9 import orc.runtime .*;

10 import Klava .*;

11
12 public class orcTuple extends EvalSite{

13 public Object evaluate (Args args) throws TokenException{

14 return new orcTupleInstance ();

15 }

16 }

17
18
19 class orcTupleInstance extends DotSite{

20
21 orcTupleInstance (){

22 addMember("tuple", new TupleMethod () );

23 addMember("stringFormal", new StringFormalMethod ());

24 addMember("intFormal", new IntFormalMethod ());

25 addMember("boolFormal", new BooleanFormalMethod ());

26 addMember("get",new getMethod ());

27 addMember("loadProcess", new loadProcessMethod ());

28 addMember("locality", new localityMethod ());

29 addMember("equals", new EqualsMethod () );

30 }

31
32 private class localityMethod extends Site{

33 public void callSite(Args args , Token token)throws TokenException{

34 try{

35 token.resume(new LogicalLocality(args.stringArg (0)));

36 }catch(Exception e){

37 e.printStackTrace ();

38 }

39 }

40 }

41
42 private class TupleMethod extends Site{

43 public void callSite(Args args , Token token) throws TokenException{

44 try {

45 Tuple t = new Tuple();

46 for (int i = 0; i< args.size(); i++){

47 if (args.getArg(i) instanceof java.lang.String){

48 KString g = new KString(args.stringArg(i));

49 t.add(g);

50 }

51 if (args.getArg(i) instanceof java.lang.Integer ){

52 KInteger g = new KInteger(args.intArg(i));

53 t.add(g);

54 }

55 if (args.getArg(i)instanceof java.math.BigInteger){

56 KInteger g = new KInteger ((( java.math.BigInteger)

57 args.getArg(i)).intValue ());

58 t.add(g);

59 }

60 if (args.getArg(i) instanceof java.lang.Boolean){

61 KBoolean g = new KBoolean(args.boolArg(i));

62 t.add(g);

63 }

64 if (args.getArg(i)instanceof Klava.TupleItem){
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65 t.add(args.getArg(i));

66 }

67 }

68 token.resume(t);

69 } catch (Exception e) {

70 e.printStackTrace ();

71 }

72 }

73 }

74
75 private class StringFormalMethod extends Site{

76 public void callSite(Args args , Token token) throws TokenException{

77 try {

78 token.resume(new KString ());

79 } catch (Exception e) {

80 e.printStackTrace ();

81 }

82 }

83 }

84 private class BooleanFormalMethod extends Site{

85 public void callSite(Args args , Token token) throws TokenException{

86 try {

87 token.resume(new KBoolean ());

88 } catch (Exception e) {

89 e.printStackTrace ();

90 }

91 }

92 }

93 private class IntFormalMethod extends Site{

94 public void callSite(Args args , Token token) throws TokenException{

95 try {

96 token.resume(new KInteger ());

97 } catch (Exception e) {

98 e.printStackTrace ();

99 }

100 }

101 }

102
103 private class loadProcessMethod extends Site{

104 public void callSite(Args args , Token token)throws TokenException{

105 try{

106 Object o;

107 if (args.size() == 1){

108 Class process = Class.forName(args.stringArg (0));

109 o = process.newInstance ();

110 }else{

111 Class process = Class.forName(args.stringArg (0));

112 Class paramtype [] = new Class[args.size() -1];

113 Object arguments [] = new Object[args.size() -1];

114 for (int i = 1; i < args.size(); i++){

115 if (args.getArg(i) instanceof java.math.BigInteger ){

116 paramtype[i-1] = KInteger.class;

117 arguments[i-1] = new KInteger(

118 ((java.math.BigInteger)

119 args.getArg(i)).intValue ());

120 }

121 if (args.getArg(i) instanceof java.lang.Integer ){

122 paramtype[i-1] = KInteger.class;

123 arguments[i-1] = new KInteger(args.intArg(i));

124 }

125 if (args.getArg(i) instanceof java.lang.String ){

126 paramtype[i-1] = KString.class;

127 arguments[i-1] = new KString(args.stringArg(i));

128 }

129 if (args.getArg(i) instanceof java.lang.Boolean ){

130 paramtype[i-1] = KBoolean.class;

131 arguments[i-1] = new KBoolean(args.boolArg(i));

132 }

133 if (args.getArg(i) instanceof KInteger

134 || args.getArg(i) instanceof KBoolean

135 || args.getArg(i) instanceof KString){

136 paramtype[i-1] = args.getArg(i).getClass ();

137 arguments[i-1] = args.getArg(i);

138 }

139 }

140 Constructor ct = process.getConstructor(paramtype);

141 o = ct.newInstance(arguments);

142 }

143 token.resume(o);

144
145 }catch(Exception e){

146 e.printStackTrace ();

147 }

148 }

149 }

150
151 private class EqualsMethod extends Site{

152 public void callSite (Args args , Token token) throws TokenException{

153 try{

154 TupleItem tupleitem = (TupleItem)args.getArg (0);
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155 Object val = null;

156 if (args.getArg (1) instanceof java.lang.Integer

157 || args.getArg (1) instanceof java.math.BigInteger){

158 val = new KInteger(args.intArg (1));

159 }

160 if (args.getArg (1) instanceof java.lang.Integer

161 || args.getArg (1) instanceof java.math.BigInteger){

162 val = new KInteger(args.intArg (1));

163 }

164 if (args.getArg (1) instanceof java.lang.String){

165 val = new KString(args.stringArg (1));

166 }

167 if (args.getArg (1) instanceof java.lang.Boolean){

168 val = new KBoolean(args.boolArg (1));

169 }

170 token.resume(tupleitem.equals(val));

171 }catch(Exception e){

172 e.printStackTrace ();

173 }

174 }

175 }

176
177 private class getMethod extends Site {

178 public void callSite (Args args , Token token) throws TokenException{

179 try{

180 Tuple tuple = (Tuple)args.getArg (0);

181 token.resume(tuple.getItem(args.intArg (1)));

182 }catch(Exception e){

183 e.printStackTrace ();

184 }

185 }

186 }

187
188 protected void addMembers () {

189 }

190 }

B E-commerce case study implementation

We report in this appendix the Korc code of the e-commerce case study in-
troduced in Section 3. We first show the Korc code of the main function f
(Listing 1.3) and then the X-Klaim code of the nets ηstore1, ηstore2, ηstore3 and
ηclient (Listings 1.4, 1.5, 1.6, 1.7, 1.8) Notably, for simplifying the experimen-
tation with the scenario, all Klaim nets here are set to be run over the local
machine (identified by localhost).

Listing 1.3. Function f

1 site orcNode = com.orcNode

2 site orcTuple = com.orcTuple

3
4 val client = orcNode("client" ,15000,"localhost" ,9999)

5 val store1 = orcNode("store1" ,15001,"localhost" ,9998)

6 val store2 = orcNode("store2" ,15002,"localhost" ,9997)

7 val store3 = orcNode("store3" ,15003,"localhost" ,9996)

8
9 val c = orcTuple ()

10
11
12 def addLocality () =

13 client.addEnv("lClient" ,14000)

14 >> store1.addEnv("l" ,11004)

15 >> store2.addEnv("l" ,12004)

16 >> store3.addEnv("l" ,13004)

17
18
19 def moveFromStore1 () =

20 store1.in(c.tuple("id3",c.intFormal (),c.intFormal (),"reqId12"),c.locality("l"))

21 > x > c.get(x,1) > z >

22 client.out(c.tuple("store1","reqId12",z),c.locality("lClient")) >> moveFromStore1 ()

23
24
25 def moveFromStore2 () =

26 store2.in(c.tuple("id3",c.intFormal (),c.intFormal (),"reqId12"),c.locality("l"))

27 > x > c.get(x,1) > z >

28 client.out(c.tuple("store2","reqId12",z),c.locality("lClient")) >> moveFromStore2 ()

29
30
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31 def moveFromStore3 () =

32 store3.in(c.tuple("id3",c.intFormal (),c.intFormal (),"reqId12"),c.locality("l"))

33 > x > c.get(x,1) > z >

34 client.out(c.tuple("store3","reqId12",z),c.locality("lClient")) >> moveFromStore3 ()

35
36
37 def startSearch () =

38 c.loadProcess("FindItem","id3" ,200,"reqId12")

39 > proc > store1.eval(proc ,c.locality("l"))

40 >> store2.eval(proc ,c.locality("l"))

41 >> store3.eval(proc ,c.locality("l"))

42
43 def g() =

44 client.out(c.tuple("sum","store1","reqId12" ,0),c.locality("lClient")) |

45 client.out(c.tuple("sum","store2","reqId12" ,0),c.locality("lClient")) |

46 client.out(c.tuple("sum","store3","reqId12" ,0),c.locality("lClient"))

47 |

48 (if x = "store1ok" then print("\n \n Order placed at store 1 \n \n") >> stop

49 else (if x = "store2ok" then print("\n \n Order placed at store 2 \n \n") >> stop

50 else (if x = "store3ok" then print("\n \n Order placed at store 3 \n \n") >> stop ) ) )

51 < x < (g1() | g2() | g3())

52
53
54 def g1() =

55 client.in(c.tuple("store1","reqId12",c.intFormal ()),c.locality("lClient"))

56 > x > c.getInt(x,2) > y >

57 client.in(c.tuple("sum","store1","reqId12",c.intFormal ()),c.locality("lClient"))

58 > x > c.getInt(x,3) > sum >

59 (if (y + sum ≥ 30) then

60 let("store1ok")

61 else

62 (client.out(c.tuple("sum","store1","reqId12",y + sum),c.locality("lClient")) >> g1()) )

63
64
65 def g2() =

66 client.in(c.tuple("store2","reqId12",c.intFormal ()),c.locality("lClient"))

67 > x > c.getInt(x,2) > y >

68 client.in(c.tuple("sum","store2","reqId12",c.intFormal ()),c.locality("lClient"))

69 > x > c.getInt(x,3) > sum >

70 (if (y + sum ≥ 30) then

71 let("store2ok")

72 else

73 (client.out(c.tuple("sum","store2","reqId12",y + sum),c.locality("lClient")) >> g2()) )

74
75
76 def g3() =

77 client.in(c.tuple("store3","reqId12",c.intFormal ()),c.locality("lClient"))

78 > x > c.getInt(x,2) > y >

79 client.in(c.tuple("sum","store3","reqId12",c.intFormal ()),c.locality("lClient"))

80 > x > c.getInt(x,3) > sum >

81 (if (y + sum ≥ 30) then

82 let("store3ok")

83 else

84 (client.out(c.tuple("sum","store3","reqId12",y + sum),c.locality("lClient")) >> g3()) )

85
86
87 addLocality ()

88 >> (startSearch ()

89 >> (moveFromStore1 () | moveFromStore2 () | moveFromStore3 () | g()) )

Listing 1.4. Net ηstore1
1 nodes

2 shop11 ::{ succ ~ localhost :11002 , finish ~ localhost :11005 , s ~ localhost :11004}

3 port 11001

4 begin

5 out("next", succ)@self;

6 out("id1" ,10,11) @self;

7 out("id2" ,15,15) @self;

8 out("id3" ,15,8)@self

9 end;

10
11 shop12 ::{ succ ~ localhost :11003 , finish ~ localhost :11005 , s ~ localhost :11004}

12 port 11002

13 begin

14 out("next", succ)@self;

15 out("id1" ,6,15)@self;

16 out("id2" ,15,15) @self;

17 out("id3" ,13,9)@self;

18 out("id4" ,16,6)@self

19 end;

20
21 shop13 ::{ finish ~ localhost :11005 , s ~ localhost :11004}

22 port 11003

23 begin

24 out("next", finish)@self;

32



25 out("id2" ,15,10) @self;

26 out("id3" ,12,8)@self;

27 out("id4" ,11,6)@self

28 end;

29
30 l1::{ startS ~ localhost :11001}

31 port 11004

32 begin

33 out("start",startS)@self

34 end

35
36 endnodes

Listing 1.5. Net ηstore2
1 nodes

2 shop21 ::{ succ ~ localhost :12002 , finish ~ localhost :12005 , s ~ localhost :12004}

3 port 12001

4 begin

5 out("next", succ)@self;

6 out("id1" ,10,12) @self;

7 out("id2" ,15,10) @self;

8 out("id3" ,15,9)@self

9 end;

10
11 shop22 ::{ succ ~ localhost :12003 , finish ~ localhost :12005 , s ~ localhost :12004}

12 port 12002

13 begin

14 out("next", finish)@self;

15 out("id2" ,15,19) @self;

16 out("id3" ,12,29) @self;

17 out("id4" ,11,17) @self

18 end;

19
20 shop23 ::{ finish ~ localhost :12005 , s ~ localhost :12004}

21 port 12003

22 begin

23 out("next", finish)@self;

24 out("id2" ,15,21) @self;

25 out("id3" ,12,10) @self;

26 out("id4" ,11,27) @self

27 end;

28
29 l2::{ startS ~ localhost :12001}

30 port 12004

31 begin

32 out("start",startS)@self

33 end

34
35 endnodes

Listing 1.6. Net ηstore3
1 nodes

2 shop31 ::{ succ ~ localhost :13002 , finish ~ localhost :13005 , s ~ localhost :13004}

3 port 13001

4 begin

5 out("next", succ)@self;

6 out("id1" ,10,12) @self;

7 out("id2" ,15,18) @self;

8 out("id3" ,15,15) @self

9 end;

10
11 shop32 ::{ succ ~ localhost :13003 , finish ~ localhost :13005 , s ~ localhost :13004}

12 port 13002

13 begin

14 out("next", succ)@self;

15 out("id1" ,6,11)@self;

16 out("id2" ,15,15) @self;

17 out("id3" ,13,29) @self;

18 out("id4" ,16,6)@self

19 end;

20
21 shop33 ::{ finish ~ localhost :13005 , s ~ localhost :13004}

22 port 13003

23 begin

24 out("next", finish)@self;

25 out("id2" ,15,17) @self;

26 out("id3" ,12,23) @self;

27 out("id4" ,11,16) @self

28 end;

29

33



30 l3::{ startS ~ localhost :13001}

31 port 13004

32 begin

33 out("start",startS)@self

34 end

35
36 endnodes

Listing 1.7. Net ηclient
1 nodes

2 lclient ::{}

3 port 14000

4 begin

5 out("client")@self

6 end

7 endnodes

Listing 1.8. Klaim processes

1 rec Find [itemId: str , maxPrice:int , reqId:str]

2 declare

3 locname s,finish;

4 var q,p:int;

5 var locnext: phyloc

6 begin

7 p := 0;

8 q := 0;

9 read(itemId ,!q,!p)@self within 200;

10 if (p ≤ maxPrice AND p > 0) then

11 out(itemId ,q,p,reqId)@s

12 endif;

13 read("next" ,!locnext)@self;

14 if (locnext != *( finish)) then

15 eval(Find(itemId ,maxPrice ,reqId))@locnext

16 endif;

17 out("end search")@self

18 end;

19
20
21 rec FindItem [itemId: str , maxPrice:int , reqId:str ]

22 declare

23 var locstart: loc

24 begin

25 read("start",!locstart)@self;

26 eval(Find(itemId ,maxPrice ,reqId))@locstart

27 end

34


