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Abstract. The World Wide Web can be thought of as a global com-
puting architecture supporting the deployment of distributed networked
applications. Currently, such applications can be programmed by resort-
ing mainly to two distinct paradigms: one devised for orchestrating dis-
tributed services, and the other designed for coordinating distributed
(possibly mobile) agents. In this paper, the issue of designing a pro-
gramming language aiming at reconciling orchestration and coordina-
tion is investigated. Taking as starting point the orchestration calculus
Orc and the tuple-based coordination language Klaim, a new formalism
is introduced combining concepts and primitives of the original calculi.
To demonstrate feasibility and effectiveness of the proposed approach,
a prototype implementation of the new formalism is described and it
is then used to tackle a case study dealing with a simplified but realis-
tic electronic marketplace, where a number of on-line stores allow client
applications to access information about their goods and to place orders.

Keywords: Global computing, Orchestration, Coordination, Tuple-
based languages, Formal methods, Software tools

1 Introduction

In recent years, the growing success of e-business, e-learning, e-government,
and similar emerging models, has led the World Wide Web, initially thought
of as a tool supporting humans in looking for information, to evolve towards
a service-oriented architecture, where more and more networked applications,
the so-called services, are deployed. This has promoted the rising of a novel pro-
gramming paradigm for the orchestration of concurrent and distributed services.
There are by now some successful and well-developed technologies supporting
this paradigm, like e.g. WS-BPEL [31], the standard language for orchestration
of web services. However, current software engineering technologies remain at the
descriptive level and lack rigorous formal foundations. Hence, many researchers
have tackled the problem at a more foundational level, by developing formal
languages for designing and programming service orchestrations.

Among the many proposed formalisms (see, e.g., [26, 8, 10, 21, 11, 7]), we will
focus on Orc [29, 35], a task orchestration language with applications in work-
flow, business process management, and web service orchestration. Orc is the
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Fig. 1. The Orc (a), Klaim (b) and Korc (c) approaches

result of a tension between simplicity and expressiveness, and its primitives,
differently from most the formalisms mentioned above, focus on orchestration
rather than on communication. An Orc program, graphically depicted in Fig-
ure 1(a), is an expression that orchestrates concurrent invocations of a number of
services, called sites in the Orc’s jargon, by means of three operators modelling
sequential and parallel composition.

Although the small numbers of Orc’s operators have been proved to be suf-
ficiently expressive to model the most common orchestration patterns (e.g. those
identified in [33]), they do not provide adequate and flexible mechanisms for dis-
tributed coordination, which may possibly refer and exploit the structures of the
network. Tuple-based languages have, instead, been effectively used to implement
coordination mechanism in a distributed setting. Among the many proposals,
here, we would like to focus on Klaim [14, 6, 15], a coordination language specif-
ically designed to program distributed systems consisting of mobile components
interacting through multiple distributed tuple spaces. Klaim’s communication
model builds over, and extends, Linda’s notion of generative communication
through a single shared tuple space [20] and its primitives allow programmers to
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(Expressions) f, g ::= M(p̄) | E(p̄) | f > p̄ > g | f | g | f < p̄ < g

(Parameters) p ::= x | m

Table 1. Orc syntax

distribute and retrieve data and processes to and from the nodes of a net. Local-
ities are first-class citizens that can be dynamically created and communicated
over the network and can be handled via sophisticated scoping rules.

A Klaim specification, graphically depicted in Figure 1(b), can be thought
of as a net of interconnected nodes, each of which hosts data tuples and (possibly
mobile) processes, and is identified by a unique name.

In this paper, we investigate the issue of designing a programming language
aiming at reconciling the orchestration paradigm with the tuple-based coordina-
tion one and define a new formalism, called Korc, that combines composition
patterns and primitives of Orc and Klaim. Intuitively, a Korc program, graph-
ically depicted in Figure 1(c), consists of an Orc expression and a collection of
Klaim nets. Expressions are enriched with primitives for acting on the tuple
spaces within the Klaim nets, the latter are named and can be referred within
the expressions.

The choice of using Orc and Klaim as theoretical basis for Korc has been
mainly motivated by the fact that they are compact formalisms and are already
supported by software tools for programming networked applications. Such tools
are Java-based and, hence, easily integrable. Indeed, to demonstrate effectiveness
of the programming paradigm fostered by Korc and to experiment with it, we
have developed a prototype implementation of the new language that builds
upon the implementations of Orc and Klaim.

The rest of the paper is structured as follows. Section 2 presents the design
and the formal definition of Korc, by introducing concepts and definitions of
Orc and Klaim. Section 3 introduces an e-commerce scenario that illustrates
the relevant and specific aspects of Korc. Section 4 provides an overview of the
prototype implementation of Korc and describes an excerpt of the e-commerce
scenario written in the syntax accepted by the tool. Finally, Section 5 draws a
few conclusions and reviews some strictly related work.

2 From Orc and Klaim to Korc

In this section, we first recap the basic notions of Orc and Klaim, borrowed
from [35] and [15], then we use them to define Korc.

Orc: an orchestration language. An Orc program consists of a goal expres-
sion and a set of definitions; the goal expression is evaluated in order to run the
program. The definitions can be used in the expression and in other definitions.
Formally, the Orc syntax is defined in Table 1, where M ranges over site names,
E over expression names, x over variables, and m over values. It is assumed that
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the sets of site names, expression names, variables and values are countable and
pairwise disjoint.

Since we aim at merging Orc with a coordination language based on tuple
spaces, we consider the polyadic variant of Orc informally described in [24] that
permits using tuples as parameters rather than single values.

The overbar ¯ over a name denotes tuples of parameters, thus m̄ is the com-
pact notation for the tuple of values 〈m1, . . . ,mn〉 (with n ≥ 0). Variables in the
same tuple are pairwise distinct. The empty tuple, written 〈〉, corresponds to a
signal, the Orc unit value that has no additional information.

Expressions can be composed by means of sequential composition · > p̄ > ·,
symmetric parallel composition · | ·, and asymmetric parallel composition
· < p̄ < ·, starting from the elementary expressions M(p̄), i.e. site calls, and E(p̄),
i.e. expression calls. The variables within p̄ are bound in g for the expressions
f > p̄ > g and g < p̄ < f . We use fv(f) to denote the set of variables that are
not bound (i.e. which occur free) in f . Each expression name E has a unique
declaration of the form E(x̄) , f , where only the variables x̄ are free in f , i.e.
x̄ = fv(f). The evaluation of an expressions may call a number of sites and
returns a (possibly empty) stream of (tuple of) values.

An Orc expression can be either a site call, or an expression call or a compo-
sition of expressions according to one of the three basic orchestration patterns.

Site call: a site call can have the form M(p̄), where the site name is known
statically, and p̄ are the parameters of the call. A site call returns at most
one response and, hence, a site might also not respond. If p̄ contains variables,
then they must be instantiated before the call.

Expression call: an expression call has the form E(p̄) and executes the ex-
pression defined by E(x̄) , f after replacing x̄ by p̄ (of course, the tuples x̄
and p̄ must have the same length). Here p̄ is passed by reference. Expression
definitions can be recursive.

Symmetric parallel composition: the composition f | g executes both f and
g concurrently, assuming that there is no interaction between them. It pub-
lishes the interleaving of the two streams of tuples published by f and g.

Sequential composition: the composition f > p̄ > g executes f and, for each
tuple of values m̄ returned by f , it checks if p̄ and m̄ match. If this is the case,
an instance of g is executed with variables in p̄ replaced by the corresponding
values in m̄. Otherwise the publication is ignored and no new instance of g
is executed. The composition publishes the interleaving of the streams of
tuples published by the different instances of g3.

Asymmetric parallel composition: the composition g < p̄ < f starts in par-
allel both f and the parts of g that do not need the variables in p̄. When f
publishes a tuple, let say m̄, if p̄ and m̄ do match the evaluation of f ter-
minates and the variables within p̄ are replaced by the corresponding values
in m̄ (in this way, the suspended parts of g can proceed). The composition
publishes the stream obtained from g (instantiated with values in m̄).

3 The tuples published by f are consumed within f > p̄ > g.
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(Nets) N ::= 0 | s ::ρ C | N1 ‖ N2 | (νs)N

(Components) C ::= 〈t〉 | P | C1 | C2

(Processes) P ::= nil | α.P | P1 | P2 | A(p̄)

(Actions) α ::= out(t)@` | eval(P )@`

| in(T )@` | read(T )@` | newloc(s)

(Tuples) t ::= e | ` | P | t1, t2

(Templates) T ::= e | ` | !x | ! l | !X | T1, T2

Table 2. Klaim syntax

The operational semantics of Orc is given in terms of a labelled transition
relation and an auxiliary function for pattern-matching on semi-structured data.
Due to space limitations, we refer the interested reader to [27] for a full account
of the Orc’s semantics considered in this paper.

Klaim: a language for agents interaction and mobility. Klaim is a
formal language equipped with primitives for network-aware programming that
combines a process algebraic approach with a coordination-oriented one. The
syntax of Klaim is reported in Table 2, where s, s′,. . . range over locality names
(i.e. network addresses); self , l, l′,. . . range over locality variables (i.e. aliases
for addresses); `, `′,. . . range over locality names and variables; x, y,. . . range
over value variables; X, Y ,. . . range over process variables; e, e′,. . . range over
expressions4; A, B,. . . range over process identifiers5. We assume that the set
of variables (i.e. locality, value and process variables), the set of values (locality
names and basic values) and the set of process identifiers are countable and
pairwise disjoint.

Nets are finite plain collections of nodes where components (i.e. evaluated tu-
ples and processes) can be allocated. A node is a triple s ::ρ C, where locality s is
the address of the node, ρ is the allocation environment and C are the host com-
ponents. An allocation environment binds the locality variables occurring free
in the processes allocated in the corresponding node. Basically, allocation envi-
ronments provide a name resolution mechanism by mapping locality variables l
into localities s. The distinguished locality variable self is used by processes to
refer to the address of their current hosting node. In the net (νs)N , the scope
of the name s is restricted to N ; the intended effect is that if one considers the
net N1 ‖ (νs)N2 then locality s of N2 cannot be referred to from within N1.

4 The precise syntax of expressions is deliberately not specified, but we assume that
they contain, at least, basic values (ranged over by v, v′,. . . ) and variables.

5 We assume that each process identifier of the form A(f1, . . . , fn) , P , where fi are
pairwise distinct, has a unique definition, visible from any locality. Like for Orc, p̄
and f̄ denote tuples of actual and formal parameters, respectively.
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Processes are the Klaim active computational units that are built up from
the special process nil, that does not perform any action, and from the basic
operations by means of action prefixing α.P , parallel composition P1 | P2 and
process definition. Process may be executed concurrently either at the same
locality or at different localities and can perform five different basic operations,
called actions.

Actions out, in and read manage data repositories by adding/withdraw-
ing/accessing data to/from node repositories. Action eval activates a new thread
of execution, i.e. a process, in a (possibly remote) node. Action newloc permits
creation of new network nodes. All actions, apart for newloc, are indexed by
the (possibly remote) locality where they will take place. Actions in and read
are blocking actions and exploit templates as patterns to select data in shared
repositories. Templates are sequences of actual and formal fields, where the latter
are written !x, ! l or !X and are used to bind variables to basic values, locality
names or processes, respectively. out and eval are non-blocking actions and
implement static and dynamic scoping disciplines, respectively (see [15, 27]).

Names and variables occurring in Klaim processes and nets can be bound.
More precisely, prefix newloc(s).P binds name s in P , and, similarly, net restric-
tion (νs)N binds s in N . The sets fn(·) and bn(·) of, respectively, free and bound
locality names of a term are defined accordingly. Prefixes in(. . . , ! , . . .)@`.P and
read(. . . , ! , . . .)@`.P binds variable in P . A name/variable that is not bound
is called free.

The operational semantics of Klaim is given in terms of a structural congru-
ence relation and a reduction relation expressing the evolution of nets. Due to
space limitations, we refer the interested reader to [27] for a complete account
of the Klaim’s semantics considered in this paper.

Korc: a language for orchestrating Klaim agents. We now show how the
orchestration approach of Orc and the network-aware one of Klaim can be
combined in order to define a new formalism for orchestrating concurrent pro-
cesses coordinated via distributed tuple spaces. More specifically, in this section
we present the syntax and the operational semantics of the new calculus, that
we call Korc.

A Korc program consists of a configuration (f,K), where f is an extended
Orc expression (possibly equipped with a set of expression definitions) and K is
a set of named Klaim nets. To execute a program, f is evaluated while the nets
are concurrently running. The Korc syntax is defined in Table 3, where f is an
Orc expression (like in Table 1) extended with Klaim actions; η ranges over
net names. Parameters p are defined in Table 1, and N , P , t and T are defined
in Table 2. We assume that the Korc set of values, ranged over by m, includes
the Klaim set of values. Symbol ] is used to denote disjoint union of sets.

A Korc expression can interact with different Klaim nets that can be re-
ferred (and distinguished) by means of net names. A named net is a triple η ::ρ N ,
where η is the name of the net, ρ is the allocation environment used to bind loca-
tion variables within Korc expressions, and N is a Klaim net. Besides site and
expression calls, a Korc expression can perform out, eval, in and read actions
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(Expressions) f, g ::= M(p̄) | E(p̄) | f > p̄ > g | f | g | f < p̄ < g

| out(t)@ η : ` | eval(P )@ η : `

| in(T )@ η : ` | read(T )@ η : `

(Named nets) K ::= {ηi ::ρi Ni}i∈I

Table 3. Korc syntax

over named nets within the associated set K. The actions have an additional
argument η that explicitly indicates the target net. Action newloc cannot be
directly executed by a Korc expression, because it only acts locally to a Klaim
node. However, it can be indirectly performed via eval actions.

A Korc program (f, {ηi ::ρi Ni}i∈I) is well-formed if names ηi are pairwise
distinct and for each i ∈ I we have that self is not in the domain of ρi and Ni is
a well-formed net (see [15] and [27, Section 2.2]). Hereafter, we will only consider
well-formed programs. Notably, we consider named nets, rather than unnamed
ones, to avoid requiring locality names of all nets to be pairwise distinct. In fact,
while this is reasonable when considering a single net, it becomes a too strong
requirement in a distributed, loosely coupled, environment where different and
independent subnets co-exist. The requirement on self is due to the fact that
ρi are used to evaluate actions executed by a Korc expression and that, hence,
are not hosted by any Klaim node.

The operational semantics of Korc is given in terms of a labelled transition
relation

a−−→ over configurations, which relies on the standard reduction relation
7−→ over Klaim nets (see [27, Table 7]). As in the semantics of Orc, label a is
generated by the following grammar:

a ::= τ | !m̄

Label τ indicates an internal event, while label !m̄ indicates a publication event
corresponding to the communication of the tuple of values m̄ after the evaluation
of an expression. The operational rules defining the labelled transition relation
are those in Table 4 together with those defining the Orc semantics (see [27,
Table 3]) extended to Korc configurations in standard way6. For example, the
rule for the left component of symmetric parallel composition extends to config-
urations as follows:

(f,K)
a−−→ (f ′,K′)

(f | g,K)
a−−→ (f ′ | g,K′)

Notably, site and expression calls cannot modify the setK, only the Korc actions
out, eval, in and read can.

The rules in Table 4, like those in the semantics of Klaim, expolit two
auxiliary functions: E [[ ]]ρ for evaluating tuples/templates using the allocation
environment ρ, and match(·, ·) for verifying the compliance of a tuple w.r.t. a

6 Since Korc inherits pairwise disjoint variables sets from Klaim, the definition of the
pattern-matching function M(·, ·) has been revised to guarantee that each variable
only matches with values of the corresponding category (see [27, Section 2.3]).
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ρ(`) = s′ E [[ t ]]ρ = t′ (fn(t′) ∪ {s′}) 6⊆ (bn(N) ∪ s̄)
(Ko-out)

(out(t)@ η : `,K ] {η ::ρ (νs̄)(N ‖ s′ ::ρ′ nil)})
!〈〉−−−→ (0,K ] {η ::ρ (νs̄)(N ‖ s′ ::ρ′ 〈t′〉)})

ρ(`) = s′ (fn(P ) ∪ {s′}) 6⊆ (bn(N) ∪ s̄)
(Ko-eval)

(eval(P )@ η : `,K ] {η ::ρ (νs̄)(N ‖ s′ ::ρ′ nil)})
!〈〉−−−→ (0,K ] {η ::ρ (νs̄)(N ‖ s′ ::ρ′ P )})

ρ(`) = s′ match(E [[ T ]]ρ, t) = σ (fn(T ) ∪ {s′}) 6⊆ (bn(N) ∪ s̄)
(Ko-in)

(in(T )@ η : `,K ] {η ::ρ (νs̄)(N ‖ s′ ::ρ′ 〈t〉)})
!〈t〉−−−→ (0,K ] {η ::ρ (ν s̄\fn(t))(N ‖ s′ ::ρ′ nil)})

ρ(`) = s′ match(E [[ T ]]ρ, t) = σ (fn(T ) ∪ {s′}) 6⊆ (bn(N) ∪ s̄)
(Ko-read)

(read(T )@ η : `,K ] {η ::ρ (νs̄)(N ‖ s′ ::ρ′ 〈t〉)})
!〈t〉−−−→ (0,K ] {η ::ρ (ν s̄\fn(t))(N ‖ s′ ::ρ′ 〈t〉)})

N 7−→ N ′

(Ko-net)
(f,K ] {η ::ρ N})

τ−−→ (f,K ] {η ::ρ N
′})

Table 4. Korc operational semantics (additional rules)

template and associating basic values, locality names and processes to corre-
sponding variables in templates.

Let us now comment on the rules in Table 4. All actions evolve to expres-
sion 0 (which has no observable transitions), act on a net named η, require
the existence of the target node s′ (which must not be restricted in η) and
exploit the allocation environment ρ for evaluating their arguments. We abbre-
viate (νs1) . . . (νsn) to (νs̄) with s̄ = 〈s1, . . . , sn〉. Actions out and eval, rules
(Ko-out) and (Ko-eval), can be performed only if the components they intend
to insert in s′ (i.e. the evaluated tuple 〈t′〉 or the process P ) do not contain
locality names restricted in η. If such actions can be performed, a signal 〈〉 is
published. It has been decided to emit a signal and not to perform a τ event,
to use the signal in further sequential or asymmetric parallel compositions (see
rules (Seq1) and (Asym2) in [27, Table 3]). Similarly, actions in and read, rules
(Ko-in) and (Ko-read), can be performed only if the template T does not contain
locality names restricted in η, because a private name cannot be matched by any
name used outside the net (private names cannot be ‘guessed’). Instead, these
actions can be performed if the tuple t they intend to withdraw/read contains
some locality names restricted in η; in this case, the restriction of such names is
removed. If a matching datum t exists in the target node, actions in and read
can proceed and publish the withdrawn/read tuple 〈t〉. Notice that, to properly
integrate in and read actions with the binding operators of Orc, in rules (Ko-
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in) and (Ko-read) the generated substitution σ is not applied and the complete
withdrawn/read tuple is published. The values in the returned tuple can be then
caught via pattern-matching through sequential or asymmetric parallel compo-
sitions. Finally, rule (Ko-net) says that Klaim nets in K can freely evolve w.r.t.
the evolution of expression f .

In Korc, execution of actions in and read does not yield a substitution,
but simply the publication of the involved tuple. However, as mentioned above,
in and read actions à la Klaim can be easily modelled in Korc: expression
in(5, !x)@ η : ` .f , where a substitution for x is applied to f , can be rendered in
Korc as in(5, !y)@ η : ` > 〈5, x〉 > f , where y is a fresh local variable. Moreover,
in Klaim, locality names can be private, i.e. restricted with operator (νs) and
their freshness can be guaranteed by a middleware supporting the execution of
a Klaim net. Instead, the loosely coupled nature of the service-oriented archi-
tecture underlying Korc makes it more difficult to guarantee names freshness
over a global net consisting of many independent Klaim subnets. Therefore, in
Korc, when a private name is extracted from a Klaim net, through an in/read
action, the name becomes public; like in the (open) rule of π-calculus [28].

It is worth noticing that Korc is not equipped with specific linguistic prim-
itives for composing programs, which are indeed designed to be separately ex-
ecuted. However, Korc programs can be easily composed by resorting to the
three Orc orchestration operators. More specifically, if two programs act on the
same set K of named Klaim nets, their composition is the program consisting of
the set K and the expression obtained by applying the composition operator to
the two expressions of the argument programs. As an example, consider the two
Korc programs (f,K) and (g,K), the program corresponding to their sequential
composition is (f > p̄ > g,K). If the two programs act on different sets of nets,
the composition is done similarly, except that the two sets must be composed
by means of an appropriate union operator that guarantees the well-formedness
of the resulting Korc program.

3 Korc at work on an e-commerce case study

In this section, we illustrate an application of Korc to a simplified but realistic
electronic marketplace scenario, where a number of on-line stores allow client
applications to read data about items availability and to place orders. We assume
that each store has an on-line portal and relies on many ‘realworld’ stores, each of
which with its own warehouse. Specifically, here we consider a client application
that aims at finding a store that has in stock a given quantity of a specific item,
by concurrently accessing different stores, and placing an order to the first store
found. For the sake of presentation, we shall consider a scenario consisting of
only three on-line stores. The outlined scenario can be rendered in Korc by:

(f, {ηstore1 ::ρ N1, ηstore2 ::ρ N2, ηstore3 ::ρ N3, ηclient ::ρ (s ::{self 7→s} nil)})

where ρ stands for {l 7→ s} and each net Ni has the following form

s1 ::{self 7→s1,l 7→s,lnext 7→s2,lend 7→se} 〈t1i1〉 | . . . | 〈t
ki
i1〉 | 〈“next”, lnext〉
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‖ s2 ::{self 7→s2,l 7→s,lnext 7→s3,lend 7→se} 〈t1i2〉 | . . . | 〈t
wi
i2 〉 | 〈“next”, lnext〉

‖ . . . ‖ smi
::{self 7→smi

,l 7→s,lnext 7→se,lend 7→se} 〈t1im〉 | . . . | 〈t
ri
im〉 | 〈“next”, lnext〉

‖ s ::{self 7→s,l1 7→s1} 〈“start”, l1〉
In Korc, each store store i consists of a site Mstore i, representing the on-line
portal to place orders to the store (see expression g below), and a named net
ηstore i ::ρ Ni whose nodes sj represent the data storages of its warehouses while
node s is used for computation support. Each tuple tuij represents the data of a
specific item stored inside the warehouse sj of the store store i. Specifically, such
tuples have the form 〈id, q, p〉, where id is the item identifier, q (with q > 0) is the
quantity available at the warehouse, and p is the price (which can be different
from a warehouse to another). We assume that each node contains at most one
tuple for each item identifier. Finally, the client application is rendered in Korc
as the expression f and the net ηclient. The latter contains a node s, initially
empty, to elaborate the retrieved data. The expression f is defined as follows:

eval(FindItem(“itemId3”, 20, “reqId12”))@ ηstore1 : l
| eval(FindItem(“itemId3”, 20, “reqId12”))@ ηstore2 : l
| eval(FindItem(“itemId3”, 20, “reqId12”))@ ηstore3 : l
| fmoveFromStore1 | fmoveFromStore2 | fmoveFromStore3 | g

Basically, it represents a client’s search request for 30 items7 of type “itemId3”
whose maximum price per item that the client is willing to pay is less or equal to
20. To avoid that data of different search requests are erroneously mixed together,
a request identifier, say “reqId12”, is provided by the client and inserted into
each tuple. Of course, the above expression could be parameterized w.r.t. item
identifier, price, request identifier and quantity, but we prefer to leave it as it is
for the sake of presentation.

Specifically, by means of three eval actions, the client expression spawns
three copies of the process FindItem into the locality s of each store net. Such
process looks for tuples having as arguments the item identifier “itemId3” and
a price less or equal to 20. A copy of each tuple (extended with the request
identifier “reqId12”) that meets this requirement is stored in the locality s of
the net. Then, by means of three expression calls fmoveFromStore i, as tuples are
inserted into the node s of each store’s net, they are moved to the node s of the
client’s net. Each expression fmoveFromStore i is defined as a recursive expression
performing a sequence of in and out actions:

fmoveFromStore i , in(“itemId3”, !xq, !xp, “reqId12”)@ ηstore i : l
> 〈“itemId3”, xq, xp, “reqId12”〉 >
out(“store i”, “reqId12”, xq)@ ηclient : l� fmoveFromStore i

where f1 � f2 is used as short-hand for f1 > 〈·〉 > f2. Notably, in performing
such movements, information about prices and item identifiers are left out, while
information about the source stores are added.

The Klaim process FindItem is defined as follows:

7 As it will be clearer later, the check of the availability of 30 items is performed by
the subexpression g of f (to be more precise, by the three components gi of g).
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FindItem(itemId,maxPrice, reqId) ,
read(“start”, !lstart)@self . eval(Find(itemId,maxPrice, reqId))@lstart

It locally reads the ‘start’ locality of the hosting net and then activates there
a mobile process Find (i.e. an agent) that will visit all net nodes to find the
availability of the wanted item. The mobile process is defined as follows:

Find(itemId,maxPrice, reqId) ,
read(itemId, !q, !p)@self .

if (p 6 maxPrice) then out(itemId, q, p, reqId)@l
| read(“next”, !ln)@self .

if (ln 6= lend) then eval(Find(itemId,maxPrice, reqId))@ln

The process simply checks if a tuple for the given item is present locally; if the
item per price is not greater than the maximum price then it add a corresponding
tuple to the node s of the hosting net (referred by means of the locality variable
l). Moreover, it reads the locality of the next node and, if it there exists, than
a new copy of the process is spawned on such node. This second check exploits
the locality variable lend that is properly bound by the allocation environment
of each net node. For the sake of simplicity, in defining the above agent we have
used a conditional construct (which can be easily programmed by exploiting the
dynamic creation of new nodes and the parallel composition operator) and we
have omitted trailing occurrences of nil.

The expression g is defined as follows:

g , out(“sum”, “store1”, “reqId12”, 0)@ ηclient : l
| out(“sum”, “store2”, “reqId12”, 0)@ ηclient : l
| out(“sum”, “store3”, “reqId12”, 0)@ ηclient : l
| ( ( if (x =“store1ok”) � Mstore1(“itemId3”, 30) )
| ( if (x =“store2ok”) � Mstore2(“itemId3”, 30) )
| ( if (x =“store3ok”) � Mstore3(“itemId3”, 30) ) )

< 〈x〉 < ( g1 | g2 | g3 )

It adds to the node s of the client’s net three tuples containing the partial sum
of the quantity of the requested item available at each store (initially set to 0).
It also starts the concurrent evaluation of three expressions gi, each of which
computes the sum of the item quantity for a store and publishes the string
“store i ok” if the store has in stock at least 30 items of the requested type. The
asymmetric parallel composition operator is used here to bind the variable x with
the string “store i ok” and to terminate the evaluation of the other functions gj ,
with j 6= i. Then, according to the published string, the corresponding site
Mstore i is called to place an order. We have exploited here the fundamental8

Orc site if (b), which returns a signal 〈·〉 if b evaluates to true, otherwise it does
not respond.

8 To effective programming in Orc, the language is equipped with a few ‘fundamental’
sites (e.g. if (b), let(x, y, . . .)) that have to be considered local and whose behavior is
predefined and predictable [35].
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Finally, an expression gi is defined as follows:

gi , in(“store i”, “reqId12”, !yq)@ ηclient : l
> 〈“store i”, “reqId12”, yq〉 >
in(“sum”, “store i”, “reqId12”, !ysum)@ ηclient : l
> 〈“sum”, “store i”, “reqId12”, ysum〉 >
( ( if (yq + ysum > 30) � let(“store i ok”) )
| ( if (yq + ysum < 30) �

out(“sum”, “store i”, “reqId12”, yq + ysum)@ ηclient : l ) � gi )

Basically, this a recursive expression that, at each recursive call, consumes a tuple
containing an item availability and a tuple containing the actual sum, computes
the sum between the read values and, if the sum is less than the desired number
(i.e. 30) it produces a new ‘sum’ tuple and calls itself, otherwise publishes the
string “store i ok” and terminates. Notably, to publish the string “store i ok”,
expression gi exploits the fundamental Orc site let(x, y, . . .), which returns the
argument values as a tuple.

4 Implementation issues

In this section, we first provide a brief overview of the implementations of the
programming languages derived from Orc and Klaim, then we give a glimpse
of the proof-of-concept implementation of Korc.

Although Orc was originally conceived as a process calculus, it has then
evolved into a complete language for programming orchestration-based concur-
rent applications [24]. Such a programming language provides the Orc’s orches-
tration operators and the site call construct with their original syntax, while
expression definitions take the form def f(x1, . . . , xn) = fbody. The language is
also equipped with arithmetic and logical operators, data structures, a condi-
tional construct, and a variable binder construct val (e.g., val x = 5 binds x

to 5). Moreover, Java classes can be accessed by an Orc expression as sites.
To make a class available to an expression, a site declaration and a variable
binding must be used like in the following example

site orcNode = com.orcNode
val client = orcNode(...)

where the variable client can be then used for called functionalities provided
by the Java class com.orcNode. To be accessed as an Orc site, a Java class
must extend one of the specific classes provided with the Orc’s libraries (e.g.
EvalSite). We refer the interested reader to [1] for a complete account of the
Orc programming language and its supporting libraries9.

Similarly to Orc, also the process calculus Klaim has been extended with
high-level features, such as variable declarations, assignments, and (standard)

9 The source code and binaries of the Orc’s implementation can be downloaded from
http://orc.csres.utexas.edu.
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control flow constructs, to effectively program distributed networked applica-
tions. The implementation of the resulting programming language, called X-
Klaim (eXtended Klaim [5]), is based on a compiler, which generates Java
code, and on the Java library Klava [4], which provides the run-time support
for X-Klaim actions within the generated code. The Klaim net N1 belonging
to store1 of the e-commerce case study introduced in Section 3 can be rendered
in X-Klaim as follows:

nodes
shop11::{succ ~ localhost:11002,finish ~ localhost:11005, s ~ localhost:11004}

port 11001
begin

out("next", succ)@self; out("id1",10,11)@self; ...
end;

shop12::{...}
port 11002 ...

...
endnodes

A net, as expected, is a collection of node definitions, which must be included
within nodes and endnodes. A node, e.g. the first one in the net above, is defined
by specifying its name (shop11), its allocation environment (containing, e.g.,
the mapping from the locality variable succ to the locality localhost : 11002),
the port (11001) where it is listening, and a set of processes running on it
(out("next", succ)@self; . . .). It is worth noticing that the (physical) locality
of a node is not defined by its name, but by the IP address of the computer
where the node will run (in our example, this always is localhost) together
with its port number. Instead, as an example of process definition, consider the
process FindItem exploited in the e-commerce case study:

rec FindItem [itemId: str, maxPrice:int, reqId:str ]
declare var locstart: loc
begin

read("start",!locstart)@self; eval(Find(itemId,maxPrice,reqId))@locstart
end

Notice that str and int are the standard base types for strings and integers,
while loc is the type for locality variables10.

To speed up the experimentation with the programming paradigm fostered
by Korc, we have exploited the compile- and run-time support tools for Orc
and Klaim presented above to implement Korc. The underlying idea is the
following: Korc expressions are rendered as standard Orc expressions that rely
on ad-hoc sites for performing the Klaim actions. Specifically, we have developed
a Java class com.orcNode, extending EvalSite, that can be used to define a new
type of Orc site and that relies on the Klava library for performing the Klaim
actions. Since Klava uses types for values different from those of Orc, i.e.
KString, KInteger, etc., and allows patterns to use both actual and formal
parameters, we have also developed another kind of Orc site, com.orcTuple,
that can be used to create objects having the correct types for invoking the
Klava methods.
10 Complete documentation of X-Klaim and Klava, together with source and binary

files can be found at http://music.dsi.unifi.it/klaim.html.
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As an example of how a Korc expression is rendered in our implementation,
the expression f of the e-commerce case study is written as follows

site orcNode = com.orcNode
site orcTuple = com.orcTuple

val client = orcNode("client",15000,"localhost",9999)
val store1 = orcNode("store1",15001,"localhost",9998)
val store2 = orcNode("store2",15002,"localhost",9997)
val store3 = orcNode("store3",15003,"localhost",9996)
val c = orcTuple()

def addLocality() =
client.addEnv("l",14000) >> store1.addEnv("l",11004) >> ...

def moveFromStore1() =
store1.in(c.tuple("id3",c.intFormal(),c.intFormal(),"reqId12"),c.locality("l"))
> x > c.get(x,1) > z >
client.out(c.tuple("store1","reqId12",z),c.locality("l")) >> moveFromStore1()

def ...

addLocality()
>> (startSearch() >> (moveFromStore1() | moveFromStore2() | moveFromStore3() | g()) )

At the beginning, our sites com.orcNode and com.orcTuple are declared
and assigned to some variables. Each com.orcNode site permits interfac-
ing with a Klaim net; thus, the corresponding variable can play the role
of net name in the subsequent Korc actions. For example, the action
out(“store1”, “reqId12”, z)@ ηclient : l is rendered as client.out(c.tuple(

"store1","reqId12",z),c.locality("l")), where client represents ηclient.
It is worth noticing that a com.orcNode site corresponds to a node belonging

to the corresponding Klaim net (in the example above, for the client net such
node has name client and locality localhost : 9999). Thus, specific methods
have been provided to set the allocation environment of such nodes and to load
processes into them: addEnv and loadProcess, respectively. Notice also that for-
mal parameters are unnamed in com.orcTuple tuples and, hence, a get method
has to be used after in/read actions to extract the values associated to the formal
parameters by pattern-matching.

We refer the interested reader to [27] for the Java code of classes
com.orcNode and com.orcTuple. Such classes can be downloaded from
http://rap.dsi.unifi.it/korc/korc.zip and can be installed in Orc as any other
Java class defining an external site. The Korc implementation has been tested
with Orc 1.1.0, X-Klaim 2.b9 and Klava 2.b1. Due to lack of space, also
the complete specification of the e-commerce case study, written in the syntax
accepted by our tool, is relegated to [27].

5 Concluding Remarks

We have introduced Korc, a formalism aiming at reconciling the orchestration
paradigm of Orc with the coordination one of Klaim. Specifically, we have for-
mally defined syntax and operational semantics of Korc, and we have developed
a prototype implementation supporting Korc programming.
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As witnessed by the case study presented in Section 3, the combined ap-
proach that we propose is very convenient to program distributed networked
applications. In fact, on the one hand, the Klaim approach alone does not per-
mit exploiting the powerful Orc’s orchestration operators and interacting with
external sites. On the other hand, the Orc approach used alone is not suitable
for distributed coordination tasks. This would require the use of dummy sites
and would make programming complex and awkward.

In particular, while the operators for sequential composition and for sym-
metric parallel composition could be rendered in Klaim by properly exploiting
action prefixing and parallel composition, it would be tricky to express Orc
asymmetric parallel composition · < p̄ < · in terms of Klaim constructs. In-
deed, f < p̄ < g permits immediately terminating the evaluation of g when a
given event occurs (i.e. g publishes a tuple) while Klaim lacks primitives for
interrupting processes. In general, as seen in the case study, asymmetric parallel
composition is very suitable for orchestration purposes, e.g. to implement trans-
actional behaviours and fault handling. Another relevant aspect where Korc
improves on Klaim concerns the capability of interacting with external Orc
sites, which may act as proxies for different kinds of services and applications.
This enables the possibility of contacting and, hence, coordinating web services.

Some of the drawbacks of relying only on Orc approach are evident from
our case study. There, the data storages of the warehouses of a store are ren-
dered in a natural way as nodes of a Klaim net. In this way, in Korc, to check
the availability of items of type “itemId3”, it is sufficient to perform the action
read(“itemId3”, !q, !p)@self on the nodes; among all information stored in the
tuple spaces about different kinds of items, by exploiting the pattern-matching
mechanism, this action directly accesses the information for “itemId3”. If we
would use Orc alone to model this aspect, we would have to create a site, for
each data storage, that publishes all items available at the corresponding ware-
house and, then, use the pattern-matching provided by sequential composition
to identify “itemId3” among all published values. Another solution would be
to implement the search completely at site-side, thus leaving just site calls at
expression-side; the programmer would then be forced to use another language
(i.e. Java) to complete the implementation of the case study rather than simply
using Orc. Notice also that, unless a single site would handle the data of all
warehouses (which would not be reasonable in a distributed setting), the Orc
program has to contact separately all warehouse sites and then to elaborate the
retrieved information. In Korc, all the data storages associated to a given store
can be visited through a single mobile process.

Related work. From the theoretical point of view, the formalisms closest to ours
are Orc and Klaim. In fact, to define Korc, we have chosen them as representa-
tive of the broader classes of orchestration calculi (as, e.g., [26, 10, 21, 11, 7]) and
coordination calculi for network-aware and mobility programming (as, e.g., [19,
22, 12, 34]). Relatively to these calculi, Korc does not provide new primitives,
but it permits experimenting and reasoning on a novel programming paradigm
combining orchestration and coordination operators.
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In the web services literature [32], the terms orchestration and choreography
are used to describe composition of web services. Orchestration describes how
services can interact from the perspective of one party (local descriptions), while
choreography tells of the sequence of messages according to a global perspective,
where each party describes the part that plays in the choreography (global de-
scriptions). Means to check conformance of local and global descriptions have
been defined in [9, 10, 25], by relying on bisimulation-like relations, and in [23],
by relying on session types. In Korc, the Orc part describes the orchestration,
while the Klaim part represents a form of collaborative coordination that can
be used to enforce the involved parties to adhere to a given protocol, which can
be thought of as a sort of choreography. Notably, both components of a Korc
program play an active role, i.e. represent running programs, and describe dif-
ferent parts of the same system. This makes our approach different from the
above mentioned works, where a choreography is intended to be either checked
for conformance w.r.t. an orchestration of the different parties, or projected onto
individual parties; in both cases, only orchestration is actually executed.

From the technological point of view, our work falls within the line of re-
search that aims at developing programming frameworks based on process cal-
culi. Among the several proposals, we want to mention below those designed
for programming distributed networked applications. JCaSPiS [3] is a Java im-
plementation of the service-oriented calculus CaSPiS (Calculus of Sessions and
Pipelines, [7]) that, as well as Korc, takes inspiration by Orc (in particular,
for the use of the sequential composition operator, called pipeline, over value
streams). CaSPiS’s implementation is based on the generic Java framework IMC
(Implementing Mobile Calculi, [2]) that provides recurrent mechanisms for net-
work applications and, hence, can be used as a middleware for the implemen-
tation of different process calculi. JOLIE [30] is an interpreter written in Java
for a programming language based on the process calculus SOCK (Service Ori-
ented Computing Kernel, [21]), which is a formalism inspired by the WS-BPEL
language for formalizing some fundamental concepts of Service-Oriented Com-
puting, such as the design of a service behaviour, its deployment, and the com-
position of services within a system. JSCL (Java Signal Core Layer, [18]) is a
Java-based coordination middleware for services based on the event notification
paradigm of the Signal Calculus [17], a variant of the π-calculus with explicit
primitives to deal with event notification and component distribution. Finally,
PiDuce [13] is a distributed run-time environment that implements a variant of
the asynchronous π-calculus extended with native XML values, datatypes and
patterns. The environment also permits interacting and experimenting with web
services technologies.

Ongoing and future work. At foundational level, we intend to investigate the
extension of Korc with name passing communication. Indeed, the Orc’s for-
malization considered in this paper, drawn from [35], does not allow expressions
to receive site names and use them in site calls, e.g. the term M() > x > x(5) is
not an Orc expression since the variable x cannot occur as a site name in the call
x(5). However, in other formalizations of Orc, see e.g. [29], sites are intended
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to be published as values by other sites and then called or used as parameters.
Moreover, in Korc, besides site name passing, also net name passing is disal-
lowed. In fact, a language for programming networked applications that permits
passing net names but not site names would not be particularly meaningful. We
also plan to investigate extension of Korc with other orchestration/coordination
primitives, like the ‘otherwise’ operation introduced in [24].

We intend also to revise the programming language based on Korc presented
in Section 4 to make it more usable by programmers. For example, Klaim ac-
tions should have a syntax more similar to that shown in Table 3 and permit the
direct use of named formal parameters. This could be realized, e.g., by means of
a pre-compiling step. To further simplifying the task of writing Korc programs,
we also intend to provide programmers with an Eclipse-based development en-
vironment relying on the Xtext framework [16]. Finally, while Korc is basically
an extension of Orc with Klaim actions and nets, we are also currently inves-
tigating a sort of reverse extension, i.e. Klaim with mechanisms for calling sites
(specifically, web services via SOAP over HTTP). Such extension mainly involves
the Klaim middleware (i.e. X-Klaim and Klava) rather than the process cal-
culus itself, since we would still rely on standard out/in actions for interacting
with web services.
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