
NCS Toolbox
Eindhoven University of Technology

May 11, 2011

Contents

1 Installation 1

2 Required MATLAB (2007a or later) Toolboxes 1

3 Overview 2

4 NCS Editor 3

5 Discretized NCS Approach 6

5.1 How to use the Discretized NCS Functions 6

5.2 JNF & CH Implementation . 7

5.3 GNB Implementation . 12

6 Hybrid NCS Approach 14

6.1 How to use the Hybrid NCS Function 14

6.2 Hybrid Implementation . 14

1 Installation

Unzip all the contents of NCStoolbox.zip into a folder on your computer. Add

this folder and all subfolders to the MATLAB path using ‘File > Set Path...’

2 Required MATLAB (2007a or later) Toolboxes

• Yalmip LMI parser (latest version)

• SeDuMi Solver (latest version)

• Linear Systems Toolkit

• Symbolic Toolbox

• Robust Control Toolbox

• Optimization Toolbox

1

3 Overview

This toolbox models, analyzes and synthesizes control of a linear time invariant

plant over a network. There are two modeling frameworks taken in this toolbox,

the discretized NCS model and the hybrid NCS model. At this developmental

stage in the toolbox, each modeling approach differs in the network effects in-

cluded in the models.

In the discretized NCS framework, stability analysis and synthesis of state feed-

back controllers is considered with the network including the following effects:

• varying transmission intervals hk ∈ [h, h]

• varying delays τk ∈ [τ , τ] (small delay τk ≤ hk for all k ∈ N)

• varying dropouts δk ∈ {0, 1, ..., δ̄}.

• communication constraints σk ∈ {1, ..., N}

Due to the fact that the parameters hk and τk vary in an infinite set, the dis-

cretized NCS approach requires to transform the system into a polytopic set

which captures the dynamics of the original discretized NCS. Three methods of

transformation into a polytopic set are implemented in this toolbox: the Jordan

Normal Form overapproximation, the Cayley-Hamilton overapproximation and

the Gridding and Norm Bounding overapproximation. Stability and synthesis

can be preformed on the polytopic system representation using LMI techniques.

In the hybrid framework, stability analysis of dynamic controllers is considered

with the network including the following effects:

• varying transmission intervals hk ∈ [h, h]

• varying delays τk ∈ [0, τ] (small delay τk ≤ hk for all k ∈ N)

• communication constraints: only a subset of input and a subset of output

signals are transmitted simultaneously.

The hybrid approach has the advantage that a polytopic overapproximation is

not needed and stability can be performed directly on the original model of the

networked control system. This Lyapunov function has a special form suitable

for the NCS dynamics.

2

4 NCS Editor

Before using any tools available in the NCS toolbox, an NCS object must be

created. An NCS object contains the following properties:

Category Parameter Explanation

Control Data A,B,C A,B,C continuous-time plant matrices

ctrlType ‘Static Feedback’

‘D-LTI observer-based feedback’

‘D-LTI dynamic feedback’

‘C-LTI dynamic feedback’

Ac,Bc,Cc,Dc A,B,C,D controller matrices

K K controller matrix

L L observer matrix

Network Data h [hmin,hmax] bounds on the transmission time

tau [taumin,taumax] bounds on the delay

delta delta ∈ N bound on the number of subsequent dropouts

gammaU matrices which define nodes

gammaY matrices which define nodes

prot ‘RR’,‘TOD’ protocol

The easiest way to create a NCS object is using the NCS Editor shown in

Figure 1.

Figure 1: NCS Editor

To display the NCS Editor, simply type ‘ncsEditor’ in the MATLAB com-

mand line and the GUI will appear. Here the NCS properties can be defined and

an NCS object can be exported by clicking ‘File > Export’. If a modification

to a NCS object needs to be made, by clicking on ‘File > Import’, NCS objects

can be loaded and modified.

3

4.0.1 Plant

First we need to define the system which is to be controlled. In this toolbox the

plant is a linear time-invariant system expressed as

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t)

the matrices A, B and C are the first parameters input to define a NCS object.

In these input boxes, either matrices can be directly input, variables defined in

the workspace can be input or a mathematical expression can also be input.

4.0.2 Controller

Next, the controller needs to be specified. The type can be defined by clicking

on a choice from the drop down dialog box. There are three possible controller

types currently available in this toolbox. The first is ‘Static Feedback’ where

the feedback law is u(t) = Ky(t). The second controller type is ‘C-LTI Dynamic

Feedback’ control law which is given by

ẋc(t) = Acxc(t) +Bcu(t),

y(t) = Ccxc(t) +Dcu(t).

The third controller type is a ‘D-LTI Dynamic Feedback’ control law, which is

given by

xck+1 = Acxck +Bcuk,

y = Ccxck +Dcuk.

The matrices K or Ac, Bc, Cc and Dc are input into the corresponding text

boxes. In these input boxes, either matrices can be directly input, variables

defined in the workspace can be input or a mathematical expression can also be

input.

4.0.3 Network

Lastly, the network effects need to be defined. There are roughly five recog-

nized Networked Control System (NCS) side-effects: time-varying transmission

intervals, time-varying delays, packet dropouts, quantization and communica-

tion constraints (the latter meaning that not all information can be sent over

the network at once). In this toolbox, quantization is not yet implemented.

The bounds on the time-varying transmission intervals and time-varying

delays are input to the corresponding input box. If the transmission intervals

or delays are considered constant then the ‘min’ can be set equal to the ‘max.’

4

If delays are not considered, then both ‘min’ and ‘max’ can be set equal to zero.

Next, a bound on successive packet dropouts needs to be input. If dropouts are

not considered, this can be set to zero.

Next there is a check box to indicate whether or not communication are

present. Once this box is checked, it is possible to click the button ‘Define

Nodes.’ Another GUI will, shown in Fig. 2, appear where the nodes can be

defined by ‘adding’ inputs and outputs to each node.

Figure 2: GUI to define nodes.

Nodes can be added or removed and moved up and down to change the

ordering. After the nodes have been defined, clicking ‘Save’ will save the node

configuration. Clicking ‘Cancel’ will keep the old configuration previously saved.

Once saved the node GUI will closed and in the ncsEditor, the protocol needs

to be chosen as ‘RR’ for Round Robin or ‘TOD’ for Try-Once-Discard.

5

5 Discretized NCS Approach

5.1 How to use the Discretized NCS Functions

Currently, there are two main functions which use the Jordan Normal Form

(JNF) and Cayley-Hamilton (CH) overapproximation techniques, namely, ro-

bust stability verification and state feedback synthesis, which can be performed

on an NCS with network effects mentioned in the Overview Section. First, sta-

bility can be verified with the following command

stable = ncsObj.isNcsStable(ovraprx,drpmdl,lyap,gamma)

where the decay rate of the system is (1 − gamma). Second, a stabilizing state

feedback gain K with decay rate (1 − gamma) can be synthesized with the fol-

lowing command

[stable,K] = ncsObj.stabilizeNcs(ovraprx,drpmdl,lyap,gamma)

The parameters for these two functions are described as follows:

Category Parameter Explanation

Stability Options ovraprx ‘JNF’ for Jordan Normal Form overapproximation

‘CH’ for Caley-Hamilton overapproximation

drpmdl ‘lngtrans’ for ‘prolonged transmission-interval’ dropout model

‘explicit’ for explicit dropout model

lyap ‘common’ for common quadratic Lyapunov function

‘pardep’ for parameter dependent Lyapunov function

gamma 0 ≤ gamma < 1 measure of the Lyapunov function decay

Output stable 0 = stability not guaranteed, 1 = stable

To see commented code in an example run the command ‘doc example dncs’

in the MATLAB command window.

If verification of robust stability via the gridding and norm bounding (GNB)

overapproximation technique is desired, robust stability analysis can be per-

formed with the following command

stable = ncsObj.isNcsStable(ovraprx,gridpntM,epsilon u,uWired)

The parameters are described as follows:

6

Category Parameter Explanation

Stability Options ovraprx ‘GNB’ for Gridding and Norm Bounding overapproximation

gridpntM gridpntM ∈ N maximum number of gridpoints tolerated

epsilon_u epsilon_u ∈ R user defined tightness of overapproximation

uWired 1 if u is continuously known by controller

0 if u is sampled and sent over network

Output stable 0 = stability not guaranteed, 1 = stable

5.2 JNF & CH Implementation

We consider controlling the following plant

ẋ(t) = Ax(t) +Bu(t),

by using the static control law u(t) = Kx(t) subject to

• time-varying transmission intervals hk ∈ [h, h]

• time-varying delays (small) τk ∈ [τ , τ]

• varying dropouts δk ≤ δ̄

To simplify the explanation of how we modeled the NCS in the discretized NCS

framework, we consider the NCS that only incorporates time-varying sampling

intervals and time-varying communication delays. The case that dropouts are

present can be handled analogously in the toolbox and is discussed in Sec-

tion 5.2.5. The general NCS model is given by

ξk+1 =

[
eAhk

∫ hk
hk−τk e

AsdsB

0 0

]
︸ ︷︷ ︸

Ã

ξk +

[∫ hk−τk
0

eAsdsB

I

]
︸ ︷︷ ︸

B̃

uk (1)

where the lifted state vector ξk = [xk uk−1].

5.2.1 Polytopic Overapproximation

The first step in the overapproximation process is to separate all Jordan blocks in

JJ = JordanBlocks(J) (where JJ is a cell that contains all separated Jordan

blocks) by checking for ones on the upper diagonal (in case of a real eigen-

value) or non-zero elements on the lower diagonal and ones on the second upper

diagonal (in case of a complex eigenvalue pair). Now that all Jordan blocks

are separated, the exponential terms in (1) can be determined symbolically by

Matlab, using the expressions

eAhk = Q diag(eJ1hk , eJ2hk , . . . , eJphk)Q−1. (2)

7

With this, the matrix exponential eJihk can be written as the sum of varying

functions αj and constant matrices Sj for all i = 1, 2, . . . , p, i.e.

eJihk =

ν∑
j=1

ᾱi,j(hk)S̄i,j , (3)

with ν ≤ n. The values of ᾱi,j(hk) and S̄i,j for the Jordan Normal Form are

determined in the file [S alfa] = exponent(Ji). Then the expression

eAhk =

ν∑
j=1

α1,j(hk)S1,j , (4)

can be formed where α1,j are all the ᾱi,j terms and S1,j are matrices consisting

of S̄i,j matrices which are placed corresponding to the Jordan Block and pre-

and post-multiplied by Q and Q−1 respectively. This concludes how the Jordan

Normal Form is computed.

If the Cayley-Hamilton overapproximation is desired, then the coefficients

αj(hk) and matrices Sj in (4) are changed to fj(hk) and Aj−1, respectively,

where [Ai,f] = Cayley(A,S,alfa) determines the new constants fj where

fj(hk) =

ν∑
l=1

βj,lα1,l(hk),

ν∑
l=1

βj,lA
l−1 = S1,j , (5)

for all l = 1, 2, . . . , ν.

To compute the integral terms of the NCS model, we simply use the expo-

nential terms computed above. If A is invertible we have that∫ b

a

eAsds = A−1eAb −A−1eAa,

= A−1
∑
i

αi(b)Si −A−1
∑
i

αi(a)Si

=
∑
i

[
αi(b)A

−1Si
]

+
∑
i

[
αi(a)[−A−1Si]

]
.

If A is not invertible we use∫ b

a

eAsds =

∫ b

a

∑
i

αi(s)Sids,

=
∑
i

∫ b

a

αi(s)dsSi =
∑
i

(Λi(b)− Λi(a))Si

=
∑
i

[Λi(b)Si] +
∑
i

[Λi(a)[−Si]]

where ∫ b

a

αi(s)ds = Λi(b)− Λi(a)

8

is computed symbolically. Hence, we can express∫ hk−τk

hk

eAsds =

2ν∑
l=1

α2,l(hk, τk)S2,l, (6)

∫ hk−τk

0

eAsds =

2ν∑
l=1

α3,l(hk, τk)S3,l. (7)

Now that each term of the NCS model (1) is written as the sum of varying

functions αi,j and constant matrices Si,j , it is possible to write the model by

substituting (3), (6) and (7) into (1), resulting in

ξk+1 =

(
F0 +

2ν∑
i=1

αi(hk, τk)Fi

)
ξk +

(
G0 +

2ν∑
i=1

αi(hk, τk)Gi

)
uk, (8)

with {α1, . . . , α2ν} is the total set of varying functions that contains all differ-

ent functions from α1,j , α2,l and α3,j , where the objective is that each distinct

varying function only appears once in {α1, . . . , α2ν}. This is done in the routine

[alfa ht,F ht,G ht] = check alpha(alfa11,alfa22,alfa33,S11,S22,S33,Bc)

that puts all functions from α1,j (alfa11), α2,l (alfa22) and α3,j (alfa33) in one

set αi (alfa ht) and then checks each function on multiplicity by using a symbolic

subtraction.

Since the uncertainties hk and τk can take infinitely many values, the model

in (8) needs to be embedded in a convex hull having a finite number of vertices,

i.e.

HS =

{(
F0 +

2ν∑
i=1

αiFi

)
︸ ︷︷ ︸

HF,j

,

(
G0 +

2ν∑
i=1

αiGi

)
︸ ︷︷ ︸

HG,j

| αi ∈ {αi, αi}, i = 1, 2, . . . , 2ν

}
,

(9)

with F0, Fi, G0 and Gi are constant matrices and αi are time-varying functions

with minimal values αi and maximal values αi for i = 1, 2, . . . , 2ν.

To obtain this set of matrices HS , all minima and maxima of αi, αi and αi

respectively, need to be determined by the Matlab toolbox. This is done in

[F,F0,G,G0,alfaMinMaxCombos, alfaMinMax] =

getAlfaMinMax(alfa,Ah,Bh,h,tau).

In this file, all combinations of the minimal and maximal numerical values of

all functions αi are captured in alfaMinMaxCombos with the corresponding

constant matrices in the cells F and G. The matrices F0 and G0 correspond

to constant alfa terms and thus do not need to be overapproximated. The

output alfaMinMax is a matrix of the min and max for each alfa. This step

concludes the overapproximation process: all vertices HF,j and HG,j of the

convex embedding are contained in the finite set HS .

9

5.2.2 Controller Synthesis

In case that no controller matrix K is available, the Matlab toolbox has a state

feedback synthesis function such that a state feedback of the form uk = −Kxk
can be obtained. One can choose for a controller K that is synthesised using

a common quadratic Lyapunov function (K = CQLF(A,B,gamma), where

A is a cell containing matrices HF,j , B is a cell containing matrices HG,j and

gamma is the decay rate of the Lyapunov function) or a parameter-dependent

Lyapunov function (K = PDLF(A,B,gamma)). The controller synthesis that

is based on a parameter-dependent LF is implemented in the Matlab toolbox in

PDLF.m, i.e. Xj +XT
j − Yj XT

j H
T
F,j −

[
Z̄ 0

]T
HT
G,j

HF,jXj −HG,j

[
Z̄ 0

]
(1− γ)Yl

 > 0, (10)

where HF,j and HG,j are the sets of vertices that are contained in HS , and the

state feedback K = Z̄X−1
1 . If a controller synthesis is desired that is based on a

common quadratic LF, we set Yj = Yl = Y . This is implemented in CQLF.m.

5.2.3 Apply Available Controller

Using the control law uk = −Kxk, the vertices of the closed-loop overapproxi-

mated system is given by

HCL,j = HF,j − [K 0]HG,j , (11)

for all j = 1, 2, ..., 22ν

5.2.4 Stability Analysis in the Matlab Toolbox

With the set of vertices (11), the stability of the overapproximated closed-loop

NCS model can be analysed. Because dropouts are not considered, no dropout-

dependent LMIs can be constructed and the following set of LMIs is obtained

P > εI,

HTCL,jPHCL,j − (1− γ)P < 0, (12)

where 0 < ε ≤ 1 is a small scalar that avoids numerical problems in Matlab,

0 ≤ γ < 1 ensures the Lyapunov function to decrease with rate 1−γ and HCL,j
is the set of vertices (11) for all j = 1, 2, . . . , 22ν . Note that, in this thesis we

only considered dropout-dependent LFs and we did not consider dependencies of

delay and sampling interval. The LMIs from (12) are implemented in the Matlab

toolbox in the file [P, LMIs] = LMI common(Dt,epsilon,gamma) (where

P is the Lyapunov matrix, the cell LMIs contains all solved LMIs and the cell Dt

contains all vertices of the overapproximation), solved by the SeDuMi (Yalmip)

10

LMI solver and verified if they satisfy the matrix inequality constraints. If they

do, the overapproximated closed-loop NCS model (and consequently the original

NCS) is stable; if they do not, no conclusions can be drawn about the stability

of the NCS.

5.2.5 Stability Analysis With Dropouts

So far, we discussed NCSs that do not incorporate packet dropouts in this

chapter. As a consequence, a general model (1) is used to describe NCSs and

this model can only be analysed on stability using common quadratic Lyapunov

functions (discarding the dependence on the overapproximation vertices).

From here, we consider an NCS model that incorporates dropouts as well

as time-varying delays and time-varying sampling intervals. Two modeling ap-

proaches are implemented, namely modeling dropouts as a prolongation of the

sampling intervals and the explicit dropout modeling using hybrid automata.

With this extension of the NCS model with dropouts, the only difference with

Section 5.3 (no dropouts) is the implementation of the stability analysis in the

Matlab toolbox. This is due to the fact that in case of dropouts, the dimen-

sion of the set of vertices is depending on the maximum number of subsequent

dropouts δ̄, i.e.

HCL,i,g = HF,i,g −
[
K 0

]
HG,i,g, (13)

for the dropout variable i = 0, 1, . . . , δ̄ and the number of vertices g = 1, 2, . . . , 22ν

(in case of modeling dropouts as prolongation of the sampling intervals) or

i = 0, 1, with g0 = 0, 1, . . . , 22ν for i = 0 and g1 = 0, 1, . . . , 2ν for i = 1 (in case

of modeling dropouts explicitly using hybrid automata). Using this, dropout-

dependent LFs can be constructed to analyze the stability of the NCS model.

If we use the explicit dropout modeling approach in combination with a

PDLF based stability analysis, the following LMIs are used:

Pl > εI,

HTCL,0,g0P0HCL,0,g0 − (1− γ)Pl < 0, (14)

HTCL,1,g1Pj+1HCL,1,g1 − (1− γ)Pj < 0,

for j = 0, 1, . . . , δ̄ − 1 and l = 0, 1, . . . , δ̄, where the input deltaBar = δ̄ and the

input Dt is a cell containing all vertices HCL,i,g of the overapproximated NCS

model, which are implemented in [P, LMIs]=LMI(Dt,deltaBar,epsilon).

If we use the dropout as prolongation of the sampling intervals modeling

approach in combination with a PDLF based stability analysis, the following

LMIs are used:

Pi > εI,

HTCL,i,gPjHCL,i,g − (1− γ)Pi < 0, (15)

11

for all i, j ∈ {0, 1, . . . , δ̄} and g = 1, 2, . . . , 22ν , which are implemented in

[P,LMIs] = LMI dependent(Dt,deltaBar,epsilon).

If all conditions in (14) or (15) are satisfied, the analyzed NCS is said to be

asymptotically stable. If not, no conclusions about the stability of the NCS can

be drawn. More details can be found in [3], [6], [4].

5.3 GNB Implementation

We consider controlling the following plant

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t)

by using a continuous-time dynamic control law

ẋc(t) = Acxc(t) +Bcu(t),

y(t) = Ccxc(t) +Dcu(t)

or a discrete-time dynamic control law

xck+1 = Acxck +Bcuk,

y = Ccxck +Dcuk

subject to

• time-varying transmission intervals hk ∈ [h, h],

• time-varying delays (small) τ ∈ [τ , τ],

• communication constraints σk ∈ {1, ..., N}

• varying dropouts δk ≤ δ̄.

The closed-loop NCS can be expressed as a switched discrete-time system

x̄k+1 =

[
Ahk+EhkBDC EhkBD−Ehk−τkBΓσk

C(I−Ahk−EhkBDC) I−D−1Γσk+C(Ehk−τkBΓσk−EhkBD)

]
︸ ︷︷ ︸

=:Ãσk,hk,τk

x̄k, (16)

where the matrices are defined in [2]. This model will be overapproximated

by the GNB overapproximation method and stability will be assessed via LMI

conditions.

12

5.3.1 Overapproximation

The closed-loop model (16) will be expressed as a polytopic system with norm-

bounded additive uncertainty, i.e.,

x̄k+1 =
(∑L

l=1 α
l
kÂσk,l + B̂l∆kĈσk

)
x̄k. (17)

where Âσk,l is Ãσk,hk,τk evaluated at M points and the l-th gridpoint is (hl, τl)

and B̂∆kĈσk is defined such that{
Ãj,h,τ | h ∈ [h, h], τ ∈ [τ , τ]

}
⊆
{∑M

l=1 α
l
(
Âj,l + B̂l∆Ĉj

)
|α ∈ Ω,∆ ∈∆

}
.

(18)

The grid points are chosen via an iterative algorithm which minimizes the er-

ror between (16) and (17). The function CreateGridPoints.m creates an

initial set of gridpoints. The function GNB.m calculates the norm-bounded

uncertainty resulting from a set of gridpoints. More details concerning the over-

approximation can be found in [2].

5.3.2 Stability Analysis

Stability is guaranteed if there exists symmetric matrices P` andR`,j for ` = 1, ..., N

and j = 1, ...,M such that[
Ā>
σ`,j

P`+1Āσ`,j − P` + C̄>
σ`

R`,jC̄σ` Ā>
σ`,j

P`+1B̄j

B̄>
j P`+1Āσ`,j B̄>

j P`+1B̄j −R`,j

]
≺ 0. (19)

for ` = 1, ..., N and j = 1, ...,M . Creating the overapproximated system and

performing stability analysis is done in the main function dncs GNB.m. More

details concerning stability analysis can be found in [2].

13

6 Hybrid NCS Approach

6.1 How to use the Hybrid NCS Function

There is one main function which provide the data to plot tradeoff curves be-

tween varying delays and varying transmission intervals of the NCS including

the given the effects mentioned in the Overview Section. This function is called

with the following command

[Hmati,Tmad] = ncsObj.findNcsStablilityTradeoff(Sy,Su)

where

Sy [y1 y2 .. yN], yi is 1 if the i-th output is sampled and sent over the network,

yi is 0 if the i-th output is continuously known by controller

Su [u1 u2 .. uM], ui is 1 if the i-th input is sampled and sent over the network,

ui is 0 if the i-th input is continuously known by controller

[1 1 .. 1], required for state feedback

Unlike the DLPV approach, this function outputs the data needed to plot the

stability region for τk ∈ [0 τmax] and hk ∈ [hmin hmax] where τk ≤ hk for all

k. A stability region comparison between the RR protocol and TOD protocol

can be easily done with this function.

To see commented code in an example run ‘doc example hncs’ in the MAT-

LAB command window.

6.2 Hybrid Implementation

We consider controlling the following plant

ẋp = Apxp +Bpû,

y = Cpxp

by using the linear dynamic controller given by

ẋc = Acxc +Bcŷ,

u = Ccxc +Dcŷ

subject to

• time-varying transmission intervals hk ∈ [h, h],

• time-varying delays (small) τk ∈ [τ , τ],

14

• communication constraints σk ∈ {1, ..., N}

We can model this system as a hybrid system in the following form

ξ̇ = F (ξ), ξ ∈ C

ξ+ = G(ξ), ξ ∈ D

where the continuous system experiences abrupt jumps when a transmission

event occurs [hmin,hmax] and an update event occurs [tmin,tmax].

Stability of this system can be proven directly on the hybrid model. We

consider using a Lyapunov function candidate of the form

U(ξ) = V (x) + φ(τ)W (ξ)

where V (x) is a Lyapunov function of the closed loop system without any net-

work effects, φ is a differentiable function of only the state τ which determines

when the system experiences jumps and W (ξ) is a Lyapunov function for the

protocol being used. Since we have a hybrid model, this Lyapunov function

needs to have a negative derivative during flows ξ ∈ C and decreasing when the

system experiences a jump ξ ∈ D, i.e.

d
dξU(ξ)F (ξ) < 0 ξ ∈ C

U(G(ξ))− U(ξ) < 0 ξ ∈ D

Then by varying the initial conditions of the function φ, the tradeoff plot is

constructed. More details can be found in [1].

15

References

[1] W.P.M.H. Heemels, A.R. Teel, N. van de Wouw, and D. Nešić. Networked

Control Systems With Communication Constraints: Tradeoffs Between

Transmission Intervals, Delays and Performance. IEEE Transactions on Au-

tomatic Control, 55(8):1781-1796, August 2010.

[2] M.C.F. Donkers, W.P.M.H. Heemels, N. van de Wouw, and L. Hetel. Stabil-

ity Analysis of Networked Control Systems using a Switched Linear Systems

Approach. IEEE Transactions on Automatic Control, to appear.

[3] M.B.G. Cloosterman, N. van de Wouw, W.P.M.H. Heemels, and H. Nijmei-

jer. Stability of Networked Control Systems With Uncertain Time-Varying

Delays. IEEE Transactions on Automatic Control, 57(7):1575-1580, July

2009.

[4] M.B.G. Cloosterman, L. Hetel, N. van de Wouw, W.P.M.H. Heemels, J.

Daafouz and H. Nijmeijer. Controller synthesis for networked control sys-

tems. Automatica, 46(10):1584-1594, 2010.

[5] W.P.M.H. Heemels, N. van de Wouw, R.H. Gielen, M.C.F. Donkers, L. Hetel,

S. Olaru, M. Lazar, J. Daafouz, and S. Niculescu. Comparison of overapprox-

imation methods for stability analysis of networked control systems. HSCC

’10: Proceedings of the 13th ACM international conference on Hybrid sys-

tems: computation and control, pages 181-190, New York, NY, USA, 2010.

ACM.

[6] J.J.C. van Schendel, M.C.F. Donkers, W.P.M.H. Heemels, and N. van de

Wouw. On dropout modelling for stability analysis of networked control

systems. Proceedings of the American Control Conference, pages 555-561,

July 2010.

16

