
TRUETIME 2.0 beta—Reference
Manual

Anton Cervin
Dan Henriksson
Martin Ohlin

Department of Automatic Control
Lund University

June 2010

Contents

1. Introduction . 7

2. Getting Started . 7

2.1 Software Requirements . 7

2.2 Installation . 7

2.3 Compilation . 8

3. Using the Simulator . 9

4. Writing Code Functions . 9

4.1 Writing a Matlab Code Function 9

4.2 Writing a C++ Code Function 10
4.3 Calling Simulink Block Diagrams 10

5. Initialization . 12

5.1 Writing a Matlab Initialization Script 12

5.2 Writing a C++ Initialization Script 13
6. Compilation . 13

7. The TrueTime Kernel . 15

7.1 Dynamic Voltage Scaling . 15

8. The TrueTime Network . 16

8.1 CSMA/CD (Ethernet) . 17
8.2 CSMA/AMP (CAN) . 17
8.3 Round Robin (Token Bus) . 17
8.4 FDMA . 18

8.5 TDMA (TTP) . 18
8.6 Switched Ethernet . 18

8.7 FlexRay . 19

8.8 PROFINET IO . 19

9. The TrueTime Wireless Network 21

9.1 802.11b/g (WLAN) . 22
9.2 802.15.4 (ZigBee) . 23
9.3 Calculation of Error Probabilities 24

9.4 User-Defined Path-Loss Function 25

10. The TrueTime Battery . 27

11. The TrueTime Standalone Network Blocks 27

3

12. Examples . 27

12.1 PID-control of a DC-servo . 28

12.2 Task Scheduling and Control 31

12.3 Networked Control System . 32

12.4 Wireless Control System with Automatic Gain Control 33

12.5 Wireless Ad-hoc Routing Using AODV 34

12.6 Mote Soccer . 36

13. Kernel Implementation Details 36

13.1 Kernel Data Structures . 37

13.2 Task Model . 39

13.3 The Kernel Function . 40

13.4 Timing . 41

14. TrueTime Command Reference 42

ttAbortSimulation (TH) . 47

ttAnalogIn (TH) . 48

ttAnalogOut (TH) . 49

ttAttachCBS (I) . 50

ttAttachDLHandler (I) . 51

ttAttachHook (C++ only) (I) . 52

ttAttachNetworkHandler (I) . 53

ttAttachTriggerHandler (I) . 54

ttAttachWCETHandler (I) . 55

ttCallBlockSystem (TH) . 56

ttCreateCBS (I) . 57

ttCreateEvent (I) . 58

ttCreateHandler (I) . 59

ttCreateJob (TH) . 60

ttCreateLog (I) . 61

ttCreateMailbox (I) . 63

ttCreateMonitor (I) . 64

ttCreatePeriodicTask (I) . 65

ttCreatePeriodicTimer (ITH) . 66

ttCreateSemaphore (I) . 67

4

ttCreateTask (I) . 68

ttCreateTimer (ITH) . 69

ttCurrentTime (ITH) . 70

ttDiscardUnsentMessages (IT) 71

ttEnterMonitor (T) . 72

ttExitMonitor (T) . 73

ttFetch (T) . 74

ttGetData (TH) . 75

ttGetMsg (TH) . 76

ttGetInitArg (C++ only) (I) . 77

ttGetInvoker (H) . 78

ttGetX (ITH) . 79

ttGive (TH) . 81

ttInitKernel (I) . 82

ttKillJob (TH) . 83

ttLogNow (TH) . 84

ttLogStart (TH) . 85

ttLogStop (TH) . 86

ttLogValue (TH) . 87

ttNonPreemptible (I) . 88

ttNoSchedule (I) . 89

ttNotify (TH) . 90

ttNotifyAll (TH) . 91

ttPost (T) . 92

ttRemoveTimer (TH) . 93

ttRetrieve (T) . 94

ttSendMsg (TH) . 95

ttSetCBSParameters (ITH) . 96

ttSetData (TH) . 97

ttSetKernelParameter (ITH) . 98

ttSetNetworkParameter (ITH) 99

ttSetNextSegment (TH) . 100

ttSetX (ITH) . 101

5

ttSleep (T) . 103

ttSleepUntil (T) . 104

ttTake (T) . 105

ttTryFetch (TH) . 106

ttTryPost (TH) . 107

ttWait (T) . 108

15. References . 109

6

1. Introduction

This manual describes the use of the Matlab/Simulink-based [The Mathworks,
2001] simulator TRUETIME, which facilitates co-simulation of controller task ex-
ecution in real-time kernels, network transmissions, and continuous plant dy-
namics. The simulator is presented in [Henriksson et al., 2003; Cervin et al.,
2003; Henriksson et al., 2002; Andersson et al., 2005], but be aware that several
differences from these papers exist.

The manual describes the fundamental steps in the creation of a TRUETIME sim-
ulation. This include how to write the code that is executed during simulation,
how to configure the kernel and network blocks, and what compilation that must
be performed to get an executable simulation. The code functions for the tasks
and the initialization commands may be written either as C++ functions or as
Matlab M-files, and both cases are described.

Several tutorial examples are provided, treating standard and networked PID-
control, scheduling, overrun handling, synchronization, control over wireless net-
works, mote coordination, wireless ad-hoc routing using AODV, mobile robot soc-
cer, and more.

The manual also describes some of the internal workings of TRUETIME, including
the task model, implementation details, and timing details. The network blocks
and the radio model used for the wireless simulations are also presented in
some detail. A TRUETIME command reference with detailed explanations of all
functionality provided by the simulator is given at the end of the manual.

For questions and bug reports, please direct these issues to

truetime@control.lth.se

2. Getting Started

2.1 Software Requirements

TRUETIME requires Matlab 6.1 (R12.1) or later with Simulink 4.1 or later.

A C++ compiler is required to run TRUETIME in the C++ version. For the Matlab
version, pre-compiled files are provided in the archive that is downloaded from
the TRUETIME web site. The following compilers are known to work:

• Visual Studio C++ for Windows

• gcc, g++ for Linux

2.2 Installation

Download and extract the compressed archive (truetime-2.0.zip), available at
the TRUETIME home page. Extracting the file creates the directory truetime-2.0,
which will be referred to as $DIR in the sequel.

In order to run TRUETIME, the environment variable TTKERNEL must be defined to
point the directory with the TRUETIME kernel files, $DIR/kernel. In later versions
of Matlab, this can be done using e.g. the command

7

Figure 1 The TRUETIME 2.0 beta block library.

setenv(’TTKERNEL’, ’C:\MyFiles\truetime-2.0\kernel’)

In older versions of Matlab, the setenv command is not available, so the envi-
ronment variable must be defined in the operating system:

• Unix/Linux: export TTKERNEL=$DIR/kernel

• Windows: use Control Panel / System / Advanced / Environment Variables

Then add the following lines to your Matlab startup script. This will set up all
necessary paths to the TRUETIME kernel files.

addpath([getenv(’TTKERNEL’)])

addpath([getenv(’TTKERNEL’) ’/matlab/help’])

addpath([getenv(’TTKERNEL’) ’/matlab’])

Starting Matlab and issuing the command

>> truetime

from the Matlab prompt will now open the TRUETIME block library, see Figure 1.

2.3 Compilation

Since the TRUETIME archive contains pre-compiled files, no compilation is required
to run TRUETIME with the M-file API.

However, TRUETIME also supports simulations written in C++ code, which then
must be compiled. In this case, you first need to configure your C++ compiler in
Matlab. This can be done by issuing the command

>> mex -setup

8

In the setup, make sure that you change from the Matlab default compiler to a
proper C++ compiler. For more detailed instructions on how to compile individual
simulations, see Section 6 in this manual.

3. Using the Simulator

The TRUETIME blocks are connected with ordinary Simulink blocks to form a real-
time control system, see Figure 2. Before a simulation can be run, however, it
is necessary to initialize kernel blocks and network blocks, and to create tasks,
interrupt handlers, timers, events, monitors, etc for the simulation.

As mentioned above, the initialization code and the code that is executed during
simulation may be written either as Matlab M-files or as C++ code (for increased
simulation speed). How the code functions are defined and what must be provided
during initialization will be described below. It will also be described how the
code is compiled to executable Matlab code.

Figure 2 A TRUETIME Kernel block connected to a continuous plant.

4. Writing Code Functions

The execution of tasks and interrupt handlers is defined by code functions. A
code function is further divided into code segments according to the execution
model shown in Figure 3. All execution of user code is done in the beginning of
each code segment. The execution time of each segment should be returned by
the code function.

4.1 Writing a Matlab Code Function

The syntax of a Matlab code function implementing a simple P-controller is given
by Listing 1.

The variable segment determines which segment that should be executed, and
data is a user-defined data structure that has been associated with the task when
it was created (see ttCreateTask and ttCreatePeriodicTask in the command
reference). The data is updated and returned by the code function. The code
function also returns the execution time of the executed segment.

9

1 2 3

Simulated execution time

Execution of user code

Figure 3 The execution of user code is modeled by a sequence of segments executed in
order by the kernel.

In this example, the execution time of the first segment is 2 ms. This means
that the delay from input to output for this task will be at least 2 ms. However,
preemption from higher priority tasks may cause the delay to be longer. The
second segment returns a negative execution time. This is used to indicate end
of execution, i.e. that there are no more segments to execute.

ttAnalogIn and ttAnalogOut are real-time primitives used to read and write
signals to the environment. Detailed descriptions of these functions can be found
in the command reference at the end of this manual.

4.2 Writing a C++ Code Function

Writing a code function in C++ follows a similar pattern as the code function
described in Listing 1. The corresponding C++ syntax for the P-controller code
function is given in Listing ??. We here assume the existence of a data structure
Task_Data that contains the control signal u and the controller gain, K .

4.3 Calling Simulink Block Diagrams

In both the C++ and m-file cases, it is possible to call Simulink block diagrams
from within the code functions. This is a convenient way to implement controllers.
Listing 2 shows an example where the discrete PI-controller in Figure 4 is used
in a code function. See the command reference at the end of this manual for
further explanation of the command ttCallBlockSystem.

Listing 1 Example of a P-controller code function written in Matlab code.

function [exectime,data] = ctrl_code(segment, data)

switch segment

case 1

y = ttAnalogIn(1);

data.u = -data.K * y;

exectime = data.exectime;

case 2

ttAnalogOut(1, data.u)

exectime = -1;

end

10

Figure 4 Controllers represented using ordinary discrete Simulink blocks may be called
from within the code functions. The only requirement is that the blocks are discrete with
the sample time set to one.

Listing 2 Simulink block diagrams are called from within code function using the TRUE-
TIME function ttCallBlockSystem.

function [exectime, data] = PIcode(segment, data)

switch segment,

case 1,

inp(1) = ttAnalogIn(1);

inp(2) = ttAnalogIn(2);

outp = ttCallBlockSystem(2, inp, ’PI_Controller’);

data.u = outp(1);

exectime = outp(2);

case 2,

ttAnalogOut(1, data.u);

exectime = -1; % finished

end

11

5. Initialization

Initialization of a TRUETIME kernel block involves specifying the number of inputs
and outputs of the block, defining the scheduling policy, and creating tasks,
interrupt handlers, events, monitors, etc for the simulation. This is done in an
initialization script for each kernel block. The initialization script can (in the
Matlab case) also take an optional parameter to limit the number of similar
code functions. The other TRUETIME kernel block parameters are described in
Section 7.

In the examples given below, the initialization script is called example_init, both
in the Matlab and C++ cases. The optional parameter is called argument when
it is used.

5.1 Writing a Matlab Initialization Script

The initialization code in Listing 3 shows the minimum of initialization needed
for a TRUETIME simulation. The kernel is initialized by providing the number of
inputs and outputs and the scheduling policy using the function ttInitKernel.
A periodic task is created by the function ttCreatePeriodicTask. The period of
the task is given by the init argument of the TRUETIME Kernel block dialogue.
(Note that the init argument may be an arbitrary Matlab struct.) This task uses
the code function Pcontroller that was defined in Listing 1. See the command
reference for further explanation of the functions.

In the Matlab case, you may experience that nothing changes in the simulations,
although changes are being made to the code functions or the initialization script.
If that is the case, type the following at the Matlab prompt

>> clear functions

To force Matlab to reload all functions at the start of each simulation, issue the
command (assuming that the model is named mymodel)

>> set_param(’mymodel’, ’InitFcn’, ’clear functions’)

Listing 3 Example of a TRUETIME initialization script in the Matlab version. The kernel
is initialized using the function ttInitKernel, and a periodic task is created that uses
the P-controller code function from Listing 1. The period of the controller is passed to the
initialization script as a parameter.

function simple_init

ttInitKernel(’prioFP’)

data.K = 2; % controller proportional gain

data.exectime = 0.1; % control task execution time

starttime = 0.0; % control task start time

period = 0.5; % control task period

ttCreatePeriodicTask(’ctrl_task’, starttime, period, ’ctrl_code’, data)

12

Listing 4 Template for writing initialization scripts in C++. The final script is actually a
complete Simulink S-function, since the included file, ttkernel.cpp, contains the Simulink
callback functions that implement the kernel.

#define S_FUNCTION_NAME filename

#include "ttkernel.cpp"

// insert your code functions here

void init() {

// perform the initialization

}

void cleanup() {

// free dynamic memory allocated in this script

}

5.2 Writing a C++ Initialization Script

An initialization script in C++must follow a certain format given by the template
in Listing 4. The included file ttkernel.cpp contains the Simulink callback func-
tions that implement the TRUETIME kernel, meaning that the initialization script
is actually a complete Matlab S-function. filename should be the name of the
source file, e.g. if the source file is called example_init.cpp, S_FUNCTION_NAME

should be defined to example_init.

The init()-function is called at the start of simulation (from the Simulink call-
back function mdlInitializeSizes), and it is here all initialization should be
performed. The initial argument supplied in the TRUETIME Kernel block dialogue
can be retrieved using the function ttGetInitArg. Any dynamic memory allo-
cated from the init()-function can be deallocated from the cleanup()-function,
which is called at the end of simulation. A pointer to aritrary user data can be
stored using ttSetUserData and later retrieved using ttGetUserData.

The C++ version of the Matlab initialization script of Listing 3 is given in List-
ing 5.

6. Compilation

Compilation requires that a proper C++ compiler has been configured in Matlab
as described in Section 2.3. If needed, the TRUETIME kernel may be re-compiled
by issuing the command

>> make_truetime

from the Matlab prompt. This script compiles the kernel and network S-functions
and the MEX-files for the TRUETIME primitives.

In the C++ case, the initialization script (example_init.cpp in the example
from the previous section) must be compiled to produce a Matlab MEX-file for
the simulation. This is done by the command

13

Listing 5 Example of a TRUETIME initialization script in the C++ version. Corresponds
to the Matlab version from Listing 3.

#define S_FUNCTION_NAME simple_init

#include "ttkernel.cpp"

// Data structure used for the task data

class CtrlData {

public:

double u;

double K;

double exectime;

};

// Code function for the P-controller

double ctrl_code(int segment, void* data) {

CtrlData *d = (CtrlData*)data;

double y;

switch (segment) {

case 1:

y = ttAnalogIn(1);

d->u = - d->K * y;

return d->exectime;

case 2:

ttAnalogOut(1, d->u);

return FINISHED;

}

}

// Kernel init function

void init() {

// Allocate memory for the task

CtrlData *data = new CtrlData;

// Store a pointer to the task data so that it can be cleaned up

ttSetUserData(data);

data->K = 2.0;

data->exectime = 0.1;

ttInitKernel(prioFP);

ttCreatePeriodicTask("ctrl_task", 0.0, 0.5, ctrl_code, data);

}

// Kernel cleanup function

void cleanup() {

delete (CtrlData *)ttGetUserData();

}

14

Figure 5 The dialog of the TRUETIME kernel block.

>> ttmex example_init.cpp

The initialization file needs to be recompiled each time changes are made to the
code functions or to the initialization functions.

Note: The ttmex command is the same as the ordinary mex command but includes
the path to the kernel files (ttkernel.cpp) automatically.

7. The TrueTime Kernel

The kernel block is configured through the block mask dialog, see Figure 5, with
the following parameters (some parameters can also be set at run-time with the
command ttSetKernelParameter):

Init function The name of the initialization script, see Section 5.

Init function argument an optional argument to the initialization script. This
can be any Matlab struct.

Battery Enable this check box if the kernel should depend on a power source.

Clock drift The time drift, 0.01 if the local time should run 1% faster than the
nominal time (the actual simulation time).

Clock offset A constant time offset from the nominal time.

7.1 Dynamic Voltage Scaling

With the use of ttSetKernelParameter, the current execution speed of the kernel
can be set and also the current power consumption. This makes it possible to
simulate Dynamic Voltage Scaling. This functionality can be useful together with
the battery block, see Section 11.

15

Figure 6 The dialog of the TRUETIME network block.

8. The TrueTime Network

The TRUETIME network block simulates medium access and packet transmission
in a local area network. When a node tries to transmit a message (using the
primitive ttSendMsg), a triggering signal is sent to the network block on the cor-
responding input channel. When the simulated transmission of the message is
finished, the network block sends a new triggering signal on the output channel
corresponding to the receiving node. The transmitted message is put in a buffer
at the receiving computer node. A message contains information about the send-
ing and the receiving computer node, arbitrary user data (typically measurement
signals or control signals), the length of the message, and optional real-time at-
tributes such as a priority or a deadline.

Six simple models of networks are supported: CSMA/CD (e.g. Ethernet), CSMA/
AMP (e.g. CAN), Round Robin (e.g. Token Bus), FDMA, TDMA (e.g. TTP), and
Switched Ethernet. The propagation delay is ignored, since it is typically very
small in a local area network. Only packet-level simulation is supported—it is as-
sumed that higher protocol levels in the kernel nodes have divided long messages
into packets, etc.

The network block is configured through the block mask dialog, see Figure 6.
Using the command ttSetNetworkParameter, see Section 14, it is also possible to
change some parameters on a per node basis. The following network parameters
are common to all models:

Network number The number of the network block. The networks must be
numbered from 1 and upwards. Wired and wireless networks are not al-
lowed to use the same number.

Number of nodes The number of nodes that are connected to the network.
This number will determine the size of the Snd, Rcv and Schedule input

16

and outputs of the block.

Data rate (bits/s) The speed of the network.

Minimum frame size (bits) A message or frame shorter than this will be
padded to give the minimum length. Denotes the minimum frame size,
including any overhead introduced by the protocol. E.g., the minimum Eth-
ernet frame size, including a 14-byte header and a 4-byte CRC, is 512 bits.

Pre-processing delay (s) The time a message is delayed by the network in-
terface on the sending end. This can be used to model, e.g., a slow serial
connection between the computer and the network interface.

Post-processing delay (s) The time a message is delayed by the network in-
terface on the receiving end.

Loss probability (0–1) The probability that a network message is lost during
transmission. Lost messages will consume network bandwidth, but will
never arrive at the destination.

8.1 CSMA/CD (Ethernet)

CSMA/CD stands for Carrier Sense Multiple Access with Collision Detection. If
the network is busy, the sender will wait until it occurs to be free. A collision
will occur if a message is transmitted within 1 microsecond of another (this
corresponds to the propagation delay in a 200 m cable; the actual number is not
very important since collisions are only likely to occur when two or more nodes
are waiting for the cable to be idle). When a collision occurs, the sender will back
off for a time defined by

tbackoff = minimum frame size / data rate$ R

where R = rand(0, 2K − 1) (discrete uniform distribution) and K is the number
of collisions in a row (but maximum 10—there is no upper limit on the number of
retransmissions, however). Note that for CSMA/CD, minimum frame size cannot
be 0.

After waiting, the node will attempt to retransmit. In an example where two
nodes are waiting for a third node to finish its transmission, they will first
collide with probability 1, then with probability 1/2 (K = 1), then 1/4 (K = 2),
and so on.

8.2 CSMA/AMP (CAN)

CSMA/AMP stands for Carrier Sense Multiple Access with Arbitration on Mes-
sage Priority. If the network is busy, the sender will wait until it occurs to be
free. If a collision occurs (again, if two transmissions are being started within
1 microsecond), the message with the highest priority (the lowest priority num-
ber) will continue to be transmitted. If two messages with the same priority
seek transmission simultaneously, an arbitrary choice is made as to which is
transmitted first. (In real CAN applications, all sending nodes have a unique
identifier, which serves as the message priority.)

8.3 Round Robin (Token Bus)

The nodes in the network take turns (from lowest to highest node number) to
transmit one frame each. Between turns, the network is idle for a time

tidle = minimum frame size / date rate,

17

representing the time to pass a token to the next node.

8.4 FDMA

FDMA stands for Frequency Division Multiple Access. The transmissions of the
different nodes are completely independent and no collisions can occur. In this
mode, there is an extra attribute

Bandwidth allocations A vector of shares for the sender nodes which must
sum to at most one.

The actual bit rate of a sender is computed as (allocated bandwidth $ data rate).

8.5 TDMA (TTP)

TDMA stands for Time Division Multiple Access. Works similar to FDMA, except
that each node has 100 % of the bandwidth but only in its scheduled slots. If a
full frame cannot be transmitted in a slot, the transmission will continue in the
next scheduled slot, without any extra penalty. Note that overhead is added to
each frame just as in the other protocols. The extra attributes are

Slot size (bits) The size of a sending slot. The slot time is hence given by

tslot = slot size / data rate.

Schedule A vector of sender node ID’s (1 . . . nbrOfNodes) specifying a cyclic
send schedule. A zero is also an allowed node ID, meaning that no-one is
allowed to transmit in that time slot.

8.6 Switched Ethernet

In Switched Ethernet, each node in the network has its own, full-duplex con-
nection to a central switch. Compared to an ordinary Ethernet, there will never
be any collisions on the network segments in a Switched Ethernet. The switch
stores the received messages in a buffer and then forwards them to the correct
destination nodes. This common scheme is known as store and forward.

If many messages in the switch are destined for the same node, they are trans-
mitted in FIFO order. There can be either one queue that holds all the messages
in the switch, or one queue for each output segment. In case of heavy traffic and
long message queues, the switch may run out of memory. The following options
are associated with the Switched Ethernet:

Total switch memory (bits) This is the total amount of memory available for
storing messages in the switch. An amount of memory equal to the length
of the message is allocated when the message has been fully received in
the switch. The same memory is deallocated when the complete message
has reached its final destination node.

Switch buffer type This setting describes how the memory is allocated in the
switch. Common buffermeans that all messages are stored in a single FIFO
queue and share the same memory area. Symmetric output buffers means
that the memory is divided into n equal parts, one for each output segment
connected to the switch. When one output queue runs out of memory, no
more messages can be stored in that particular queue.

18

Switch overflow behavior This option describes what happens when the
switch has run out of memory. When the complete message has been re-
ceived in the switch, it is deleted. Retransmit means that the switch then
informs the sending node that it should try to retransmit the message.
Drop means that no notification is given—the message is simply deleted.

8.7 FlexRay

In FlexRay the transmission cycle consists of three consecutive segments. The
first, static, segment works similar to the TDMA protocol. The nodes take turns
to transmit data according to a schedule. A node can only transmit when it is
scheduled to do so. If the node has nothing to transmit, the network is idle until
it is time to change node according to the schedule.

The second, dynamic, segment is divided into a number of small mini-slots with
a corresponding schedule. In each mini-slot the scheduled node may start to
transmit but only if the transmission is finished before the end of the dynamic
segment. The transmission can, unlike in the static segment, continue to trans-
mit when the mini-slot is over. If the scheduled node was nothing to transmit, the
network will be idle the time it takes to transmit a frame the size of a mini-slot.
Note that a message can be to large to ever be transmitted and thus blocks the
sending node for transmitting messages in the dynamic segment.

The third, idle, segment where the network can’t transmit anything. This seg-
ment is used to simulate both the symbol window and the network idle time in
FlexRay.

The FlexRay protocol has the following extra parameters:

Slotsize [bits] Size of a slot for the static segment.
Static schedule Transmission schedule for the static segment.

Dynamic schedule Transmission schedule for the dynamic segment.

Mini slot size [bits] Size of a mini-slot for the dynamic segment.
Network idle time [bits] Size of the idle segment

The static segment is length(Static schedule)*Slotsize seconds long and the dy-
namic segment will similarly be length(Dynamic schedule)*Minislotsize seconds
long. The network will then be idle for networkIdle/dataRate seconds. Addition-
ally, both senders have an extra field where it is specified wheter the message
should be transmitted in the static or in the dynamic segment.

8.8 PROFINET IO

The PROFINET IO send cycle consists of three intervals, synchroniztion, RT
Class 3 and RT Class 1/NRT. RT Class 2 is not supported in this implementation.

Synchronization During the synchronization interval no node can send or re-
ceive messages. The duration of the synchronization interval is Synchronization length

Datarate

seconds.

RT Class 3 / IRT Following the synchronization interval is the RT Class 3 /
IRT (Isochronous Real Time) interval. The transmissions during the are
determined by the IRT schedule. The schedule is represented as a matrix

19

with 5 columns and as many rows as messages to be sent during an IRT-
interval. The first column specifies the ID of the message that should be
transmitted. The message ID should be an integer larger than zero. The
second and third column specifies from which node the message should be
sent from and sent to respectively. The fourth column specifies the time,
in seconds, when the message should be sent relative the start of the IRT
interval. The fifth column specifies how long time it takes to propagate the
message from sender to receiver.

The latest incoming message in each node is saved and is retransmitted in
each the IRT interval.

Broadcasting is not supported in the IRT interval.

RT Class 1/NRT The third and final interval is the RT Class 1 / NRT (Non
Real Time) interval. The length of the interval is determined by the user
by setting the NRT length [bits] parameter. In the field labeled Node
connection graph, the user has to specify how the different nodes are con-
nected. The Node connection graph should be represented as a square
matrix with the same number of rows and column as there are nodes in
the network. Each element (x, y) in the matrix represents to which node a
message, currently in node x, should be transmitted to on its way to node y.
This way all messages will be transmitted in a deterministic fashion even if
there exists multiple possible paths from the sending to the receiving node
in the network.

Each node is considered to have 4 ports and can thus be connected to 4 or
less other nodes. An incoming message is considered to be a NRT message
if it’s ID is equal to zero.

If a message is being transmitted to a node that has an empty switch queue
the message will cut-through this node. This means that only the address
bits will be read before the node with the empty switch start to transmit
the message. The address is considered being composed of the first 114 bits.

PROFINET IO offers the possibility to sort queues by priority instead of FIFO.
This protocol shares two parameter fields with Switched Ethernet; Total switch
memory and Switch overflow behavior.

20

Figure 7 The dialog of the TRUETIME wireless network block.

9. The TrueTime Wireless Network

The usage of the wireless network block is similar to and works in the same way
as the wired one. To also take the path-loss of the radio signals into account,
it has x and y inputs to specify the true location of the nodes. Two network
protocols are supported at this moment: IEEE 802.11b/g (WLAN) and IEEE
802.15.4 (ZigBee). Some more technical details about the wireless network can
be found in [Ohlin, 2006]. The radio model used includes support for:

• Ad-hoc wireless networks.

• Isotropic antenna.

• Inability to send and receive messages at the same time.

• Path loss of radio signals modeled as 1da where d is the distance in meters
and a is a parameter chosen to model the environment.

• Interference from other terminals.

The wireless network block is configured through the block mask dialog, see
Figure 7. Some parameters can also be set on a per node basis with the command
ttSetNetworkParameter. The following parameters are common to all models:

Network type Determines the MAC protocol to be used. Can be either 802.11b/g
(WLAN) or 802.15.4 (ZigBee).

21

Network number The number of the network block. The networks must be
numbered from 1 and upwards. Wired and wireless networks are not al-
lowed to use the same number.

Number of nodes The number of nodes that are connected to the network.
This number will determine the size of the Snd, Rcv and Schedule input
and outputs of the block.

Data rate (bits/s) The speed of the network.

Minimum frame size (bits) A message or frame shorter than this will be
padded to give the minimum length. Denotes the minimum frame size,
including any overhead introduced by the protocol. E.g., most network pro-
tocols have a fixed number of header and tail bits, so the frame must be at
least sizeo f (header) + sizeo f (tail) long.

Transmit power Determines how strong the radio signal will be, and thereby
how long it will reach.

Receiver signal threshold If the received energy is above this threshold, then
the medium is accounted as busy.

Path-loss exponent The path loss of the radio signal is modeled as 1
da
where

d is the distance in meters and a is a suitably chosen parameter to model
the environment. Typically chosen in the interval 2-4.

ACK timeout The time a sending node will wait for an ACK message before
concluding that the message was lost and retransmit it.

Retry limit The maximum number of times a node will try to retransmit a
message before giving up.

Error coding threshold A number in the interval [0, 1] which defines the per-
centage of block errors in a message that the coding can handle. For exam-
ple, certain coding schemes can fully reconstruct a message if it has less
than 3% block errors. The number of block errors are calculated using the
signal-to-noise ratio, where the noise is all other ongoing transmissions.

9.1 802.11b/g (WLAN)

IEEE 802.11b/g is used in many laptops and mobile devices of today. The protocol
is based on CSMA/CA with some modifications.

In the simulation, a package transmission is modeled like this: The node that
wants to transmit a packet checks to see if the medium is idle. The transmission
may proceed, if the medium is found to be idle, and has stayed so for 50 µs. If,
on the other hand, the medium is found to be busy, a random back-off time is
chosen and decremented in the same way as when colliding (described later in
this section). When a node starts to transmit, its relative position to all other
nodes in the same network is calculated, and the signal level in all those nodes
are calculated according to the path-loss formula 1

da
.

The signal is assumed to be possible to detect if the signal level in the receiving
node is larger than the receiver signal threshold. If this is the case, then the
signal-to-noise ratio (SNR) is calculated and used to find the block error rate
(BLER). Note that all other transmissions add to the background noise when
calculating the SNR. The BLER, together with the size of the message, is used
to calculate the number of bit errors in the message and if the percentage of

22

bit errors is lower than the error coding threshold, then it is assumed that
the channel coding scheme is able to fully reconstruct the message. If there are
(already) ongoing transmissions from other nodes to the receiving node and their
respective SNRs are lower than the new one, then all those messages are marked
as collided. Also, if there are other ongoing transmissions which the currently
sending node reaches with its transmission, then those messages may be marked
as collided as well.

Note that a sending node does not know if its message is colliding, therefore
ACK messages are sent on the MAC protocol layer. From the perspective of the
sending node, lost messages and message collisions are the same, i.e., no ACK
is received. If no ACK is received during ACK timeout, the message is retrans-
mitted after waiting a random back-off time within a contention window. The
contention window size is doubled for every retransmission of a certain message.
The back-off timer is stopped if the medium is busy, or if it has not been idle for
at least 50 µs. There are only Retry limit number of retransmissions before the
sender gives up on the message and it is not retransmitted anymore.

9.2 802.15.4 (ZigBee)

ZigBee is a protocol designed with sensor and simple control networks in mind. It
has a rather low bandwidth, but also a really low power consumption. Although
it is based on CSMA/CA as 802.11b/g, it is much simpler and the protocols are
not the same.

The packet transmission model in ZigBee is similar to WLAN, but the MAC
procedure differ and is modeled as:

1. Initialize:
NB=0
BE=macMinBE

2. Delay for a random number of backoff periods in the interval [0, 2BE − 1]
3. Is the medium idle?

if yes: send
else: goto 4

4. Update the backoff counters:
NB=NB+1
BE=min(BE+1, aMaxBE)

5. Is NB>macMaxCSMABackoffs?
if yes: drop the packet
else: goto 2

The variable names are taken from the standard to make comparisons easier. A
small explanation of their names is provided below.

NB Number of backoffs.

BE Backoff exponent.

macMinBE The minimum value of the backoff exponent in the CSMA/CA al-
gorithm. The default value is 3.

23

aMaxBE The maximum value of the backoff exponent in the CSMA/CA algo-
rithm. The default value is 5.

macMaxCSMABackoffs The maximum number of backoffs the CSMA/CA al-
gorithm will attempt before declaring a channel access failure. The default
value is 4.

9.3 Calculation of Error Probabilities

During the calculation of error probabilities, it is for simplicity assumed that
BPSK1 is always used in the transmissions. This is of course an approximation,
but it relates well to reality.

Assume that a symbol is sent, in our case this is a bit, i.e., a 0 or a 1. Additive
white Gaussian noise gives a probability density function for the received symbol,
that for some signal-to-noise ratio may look like Figure 8. A threshold is then
used to decide if the received symbol is a 0 or a 1. The decision threshold is
marked as a line in the middle of the figure. The darker area to the left of the
threshold gives the probability of a symbol error. A higher signal to noise ratio
translates the curve to the right, making the probability of error smaller.

The above standard procedure should ideally be performed for every bit in the
message. The total number of calculated bit errors should then be compared
to the error coding threshold. This is, however, not done, because it would be
very computationally expensive. Instead, the maximum noise level during the
transmission is saved, and used to calculate the worst case SNR. By assuming
that bit errors in a message are uncorrelated, it is deduced that the number
of bit errors, X , belongs to a binomial distribution X ∈ Bin(n, p), where n
is the number of bits in the message, and p is the probability that a certain
bit is erroneous. If the value of n is large, the binomial distribution can be
approximated with a normal distribution, using the central limit theorem. This
gives that X ∈ N(np,√npq) where q = 1− p. What we are really interested in
is the probability that bn, where b is the error coding threshold, is larger than
the total number of bit errors in a message. This probability is calculated using

P(X ≤ bn) =

Φ(bn− np√
npq

) if bn− np > 0

1− Φ(pbn− npp√
npq

) if bn− np ≤ 0

where Φ is the standard normal cumulative distribution function.

Example Assume that a message consists of 100 bits, i.e., n = 100. The prob-
ability that a certain bit is erroneous has been calculated to 0.1 using the above
method, i.e., p = 0.1 and q = 1 − p = 0.9. The error coding threshold has been
set to 5%, i.e., b = 0.05. Then the probability that we can decode the complete
message is

P(X ≤ bn) = 1− Φ(pbn− npp√
npq

) = 1− Φ(5√
9
) (0.0478

1Binary Phase Shift Keying (BPSK) is a means of transmitting symbols by altering the phase
of a reference signal. It uses two phases separated by 180○ and is hence binary.

24

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 8 Probability density function for a received symbol when using binary phase
shift keying and additive white Gaussian noise. The line in the middle is the decision
threshold. The area to the left of the threshold gives the probability of an erroneous
decision. The area to the right gives the probability of a correct decision.

9.4 User-Defined Path-Loss Function

The default path-loss function (or propagation model) used in the TrueTime
wireless simulations is

Preceiver =
1
da
Psender

where P is the power, d is the distance in meters, and a is a parameter that can
be chosen to model different environments. This model is often used in simula-
tions, but in some cases it can be advantageous to use other models. TrueTime
has the possibility to register a user-defined path-loss function. The function is
written as a Matlab function (M-file or MEX-function) and can therefore take
advantage of all the built-in functions available in Matlab. In particular, this
includes the possibility to use persistent variables, i.e., variables which are re-
tained in memory between calls to the function. The function can, for example,
be used to model a Rayleigh2 fading or the blocking of radio signals to and from
certain points in the environment. At the moment, nodes in the TrueTime frame-
work only have x and y coordinates, but if a direction was to be introduced this
function could also be used to model directive effects in the antenna behaviour.

The Matlab function takes the following arguments

• Transmission power

• Name of the sending node

• x and y coordinates of the sending node

• Name of the receiving node

• x and y coordinates of the receiving node

• Current simulation time
2In a Rayleigh fading, the relative speed of two nodes and the number of multiple paths that

the signal takes from the sender to the receiver is taken into account. See Figure 9 for an example.

25

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

db

sample

Rayleigh fading

Figure 9 Example of a Rayleigh fading using a radio frequency of 2.4 MHz. Nodes mov-
ing with a relative speed of 6 km/h, 1 second sampling interval and 10 random phasers.

and returns the signal power in the receiving node.

A small example showing the structure of how a Rayleigh fading could be imple-
mented can be seen in Listing 6.

To increase simulation speed, it is recommended to implement the Matlab func-
tion as a C MEX-function.

Listing 6 Example of path-loss function modeling Rayleigh fading.

function power = rayleigh(transmitPower, node1, x1, y1, node2, x2, y2, time)

% Calculate the exponential pathloss

distance = sqrt((x1 - x2)^2 + (y1 - y2)^2);

power = transmitPower/(distance+1)^3.5;

% Kalman filter to get the relative velocity of the two nodes

velocity = kalman_velocity(node1, x1, y1, node2, x2, y2, time);

% Calculate the rayleigh fading

factor = calculate_rayleigh(node1, node2, velocity, time);

% Add the rayleigh fading to the exponential path loss

power = power * factor;

26

10. The TrueTime Battery

The battery block has one parameter, the initial power, which can be set using
the configuration mask. To use the battery, enable the check box in the kernel
configuration mask and connect the output of the battery to the E input of the
kernel block. Connect every power drain such as the P output of the kernel block,
ordinary Simulink models, and the wireless network block to the P input of the
battery. The battery uses a simple integrator model, so it can be both charged
and recharged.

Note that the kernel will not execute any code if it is configured to use batteries
and the input P to the kernel block is zero. See the example in Section 12.4 below
for more details on the use of TRUETIME batteries.

11. The TrueTime Standalone Network Blocks

The standalone network blocks, named TrueTime Send and TrueTime Receive,
as seen in Figure 1, can be used to send messages using the network blocks
without using kernel blocks. This makes it possible to create TrueTime network
simulations without having to initialize kernels, create and install interrupt han-
dlers, etc. It is in other words possible to create a whole network simulation in
Simulink without any M-files at all. It is also possible to mix these blocks with
kernel blocks, so that some stations use the standalone network blocks, while
others use the standard ttSend and ttGetMsg primitives from within a code
function executing in a kernel block.

The standalone network blocks are configured through the block mask dialogs,
seen in Figure 10. The parameters are the same that are used in the True-
Time Send and TrueTime Receive primitives. The TrueTime Send block has
a Simulink trigger input port, which can be configured to trigger on raising,
falling or either flanks. The ttGetMsg block has an optional trigger output port.
The value of the trigger output switches back and forth between 0 and 1 as mes-
sages are received. This port can be used to trigger something that should be
executed after a new message has been received.

12. Examples

The directory $DIR/examples contains ten examples:

simple Several different ways of implementing a simple periodic con-
troller are demonstrated. Both M-file and C++ implementa-
tions are provided.

threeservos Illustrates task scheduling and control, where three periodic
control tasks execute on the same CPU. Both M-file and C++
implementations are provided.

networked Demonstrates networked control involving four computer
nodes and the wired network block. Both M-file and C++
implementations are provided, as well as an implementation
using the stand-alone network interface blocks.

27

wireless Demonstrates wireless networked control with transmission
power control to minimize the energy consumption. M-file
implementation only.

AODV Illustrates how higher-layer communication protocols such
as AODV routing can be implemented in TRUETIME. M-file
implementation only.

soccer A larger example showing simulation and animation of ten
mobile robots playing soccer. M-file implementation only.

RUNES_demo A very large example with mobile robot navigation through a
sensor network using ultrasound trilateration. C++ imple-
mentation only.

The first three examples are provided in both Matlab and C++ versions. However,
the descriptions below will only treat the Matlab case. For detailed instructions
on how to compile the examples, see the README-files in the corresponding
example directories.

12.1 PID-control of a DC-servo

Introduction The first example considers simple PID control of a DC-servo
process, and is intended to give a basic introduction to the TRUETIME simulation
environment. The process is controlled by a controller task implemented in a
TRUETIME kernel block. Four different implementations of the controller task are
provided to show different ways to implement periodic activities. The files are
found in the directory $DIR/examples/simple/matlab.

Process and Controller The DC-servo is described by the continuous-time
transfer function

G(s) = 1000
s(s+ 1) (1)

The PID-controller is implemented according to the following equations

P(k) = K ⋅ (β r(k) − y(k))

I(k+ 1) = I(k) + Kh
Ti
(r(k) − y(k))

D(k) = adD(k− 1) + bd(y(k− 1) − y(k))
u(k) = P(k) + I(k) + D(k)

(2)

where ad = Td
Nh+Td and bd =

NKTd
Nh+Td , see [Åström and Hägglund, 1995]. The

controller parameters were chosen to give the system a closed-loop bandwidth of
ω c = 20 rad/s and a relative damping of ζ = 0.7.

Simulation Files The initialization script (servo_init.m) is given in an ab-
breviated version in Listing 7. As seen in the initialization script, it is possible to
choose between four different implementations of the periodic control task. They
are specified by the init function parameter in the kernel block dialog.

28

Figure 10 The dialog of the TrueTime Send block to the left, and the dialog of the
TrueTime Receive block to the right.

• Implementation 1: Uses the TRUETIME built-in support for periodic tasks,
and the code function is given in the file pidcode1.m.

• Implementation 2: Also uses the TRUETIME built-in support for periodic
tasks, but the computation of the control signal in each sample is done
by calling a Simulink block diagram. The code function is given in the file
pidcode2.m. Since all the controller parameters and states are contained in
the Simulink block, the task data (data2) only consist of the control signal,
u.

• Implementation 3: Implements the periodic task by using the TRUETIME
primitive ttSleepUntil. The code function is given in the file pidcode3.m.

• Implementation 4: Implements the periodic task by using a periodic timer.
The associated interrupt handler samples the process and triggers task
jobs. The handler and controller task communicate using a mailbox. The
code functions for the handler and controller are given in the files sampler

code.m and pidcode4.m, respectively.

Simulations The Simulink model is called servo.mdl and is given in Fig-
ure 11. Open the Simulink model and try the following

• Run a simulation and verify that the controller behaves as expected. No-
tice the computational delay of 2 ms in the control signal. Compare with
the code function, pidcode1.m. Study the schedule plot (high=running,
medium=ready, low=idle).

29

• Try changing the execution time of the first segment of the code function,
to simulate the effect of different input-output delays.

• Change the sampling period and study the resulting control performance.

• A PID-controller is implemented in the Simulink block controller.mdl.
Change the init function parameter of the kernel block from 1 to 2, so
that implementation 2 is used instead of 1. Study the corresponding code
function, pidcode2.m. This code function is using the Simulink block to
compute the control signal in each sample.

• Change to implementation 3 and run a simulation. Study the code function,

Listing 7 The initialization script for the PID-control example.

function servo_init(mode)

ttInitKernel(2, 1, ’prioFP’); % nbrOfInputs, nbrOfOutputs, fixed priority

period = 0.006;

deadline = period;

offset = 0.0;

prio = 1;

data.K = 0.96;

... % more task data

switch mode,

case 1,

% IMPLEMENTATION 1: using the built-in support for periodic tasks

%

ttCreatePeriodicTask(’pid_task’,offset,period,prio,’pidcode1’,data);

case 2,

% IMPLEMENTATION 2: calling Simulink block within code function

%

data2.u = 0;

ttCreatePeriodicTask(’pid_task’,offset,period,prio,’pidcode2’,data2);

case 3,

% IMPLEMENTATION 3: sleepUntil and loop back

data.t = 0;

ttCreateTask(’pid_task’,deadline,prio,’pidcode3’,data);

ttCreateJob(’pid_task’);

case 4,

% IMPLEMENTATION 4: sampling in timer handler, triggers task job

hdl_data.yChan = 2;

ttCreateInterruptHandler(’timer_handler’,prio,’samplercode’,hdl_data);

ttCreatePeriodicTimer(’timer’,offset,period,’timer_handler’);

ttCreateMailbox(’Samples’,10);

ttCreateTask(’pid_task’,deadline,prio,’pidcode4’,data);

end

30

Figure 11 The TRUETIME model of the DC-servo system.

pidcode3.m.

• Change to implementation 4 and run a simulation. Study the code func-
tions, samplercode.m and pidcode4.m. Notice the inclusion of the handler
in the schedule plot.

12.2 Task Scheduling and Control

Introduction This example extends the simple PID control example from the
previous section to the case of three PID-tasks running concurrently on the same
CPU controlling three different DC-servo systems. The effect of the scheduling
policy on the global control performance is demonstrated. The files are found in
the directory $DIR/examples/threeservos/matlab.

Simulations Open the Simulink model threeservos.mdl and try the following

• Make sure that rate-monotonic scheduling is specified by the function
ttInitKernel in the initialization script (threeservos_init.m) and simu-
late the system. Study the computer schedule and the control performance.
Task 1 will miss all its deadlines and the corresponding control loop is
unstable.

• Change the scheduling policy to earliest-deadline-first (change ’prioRM’ to
’prioEDF’) and run a new simulation. Again study the computer schedule

31

Figure 12 The TRUETIME model of the networked control system.

and the control performance. After an initial transient all tasks will miss
their deadlines, but still the overall control performance is satisfactory.

12.3 Networked Control System

Introduction This example simulates networked control of the DC-servo of
Equation (1). The example contains four computer nodes, each represented by a
TRUETIME kernel block. A time-driven sensor node samples the process periodi-
cally and sends the samples over the network to the controller node. The control
task in this node calculates the control signal and sends the result to the ac-
tuator node, where it is subsequently actuated. The simulation also involves an
interfering node sending disturbing traffic over the network, and a disturbing
high-priority task executing in the controller node. The files are found in the
directory $DIR/examples/networked/matlab.

Simulations The Simulink model is called networked.mdl and is given in
Figure 12. Open the Simulink model and try the following

• Study the initialization scripts and code functions for the different nodes.
The event-driven nodes contain interrupt handlers, which are activated as
messages arrive over the network. The handler then triggers the task that
will read and process the message.

• Run a first simulation without disturbing traffic and without interference
in the controller node. This is obtained by setting the variable BWshare in
the code function of the interfering node (interfcode.m) to zero, and by
commenting out the creation of the task ’dummy’ in controller_init. In
this case we will get a constant round-trip delay and satisfactory control

32

performance. Study the network schedule (high=sending, medium=waiting,
low=idle) and the resulting control performance.

• Switch on the disturbing node and the interfering task in the controller
node. Set the variable BWshare to the percentage of the network bandwidth
to be used by the disturbing node. Again study the network schedule and the
resulting control performance. Experiment with different network protocols
and different scheduling policies in the controller node.

12.4 Wireless Control System with Automatic Gain Control

Introduction This example shows networked control of a DC-servo described
by Equation (1) using communication over a wireless network. The example also
shows how to simulate power consumption and how to use the battery block.
The model contains two computer nodes located 20 m apart, each represented
by a TRUETIME kernel and battery block. A time-driven sensor/actuator node
samples the process periodically and sends the samples over the network to the
controller node. The control task in this node calculates the control signal and
sends the result back to the sensor/actuator node, where it is actuated. The
wireless communication link is at the same time subject to a simple power control
scheme. Power control tasks running in both the sensor/actuator node and in the
controller node periodically send out ping messages to the other node to test the
channel transmission. If a reply is received, the channel is assumed to be good
and the transmission power is lowered. If on the other hand no reply is received,
then the transmission power is considerably increased until it saturates or a reply
is received again. The files are found in the directory $DIR/examples/wireless.

Simulations Open the model wireless.mdl to run the simulation.

• Run a first simulation without modifying anything. Look at the plots show-
ing the battery levels in the two nodes. Note that the power control scheme
is not activated until 2 seconds have elapsed. Also note how the measured
values at some times deviate more than usual from the reference values.
This deviation is caused by the fact that it is possible to lose several con-
secutive sensor value readings when using the simple power control that is
implemented in the nodes.

• Switch off the power control scheme in the controller node. This is done
by commenting out the creation of the task power_controller_task in
controller_init. Run the simulation again and now note that the power
drain is constant in the controller node. This causes the battery to run out
of energy and the control is lost.

• Experiment with different network parameters and protocols and see how
it affects the control behaviour. In this example, the kernel block is set
to consume 10 mW. This can easily be changed by using the command
ttSetKernelParameter. This command can also be used to set the CPU
scaling factor to enable Dynamic Voltage Scaling.

33

12.5 Wireless Ad-hoc Routing Using AODV

Introduction The TRUETIME wireless network simulates communication in
an ad-hoc network, i.e., no centralized access point or infrastructure exists to
coordinate the traffic across the network. In such networks it is necessary to
implement decentralized functionality to be able to route the traffic over the
network. This example describes a TRUETIME implementation of one such ad-hoc
wireless routing protocol.

AODV [Perkins and Royer, 1999] stands for Ad-hoc On-Demand Distance Vector
routing and contrary to most routing mechanisms, it does not rely on periodic
transmission of routing messages between the nodes. Instead, routes are created
on-demand, i.e., only when actually needed to send traffic between a source and a
destination node. This leads to a substantial decrease in the amount of network
bandwidth consumed to establish routes. Below follows a brief description of
the functionality of AODV. For a complete definition of the AODV protocol, see
[Perkins and Royer, 2003].

AODV uses three basic types of control messages in order to build and invalidate
routes: route request (RREQ), route reply (RREP), and route error (RERR) mes-
sages. These control messages contain source and destination sequence numbers,
which are used to ensure fresh and loop-free routes.

A node that requires a route to a destination node initiates route discovery by
broadcasting an RREQ message to its neighbors. A node receiving an RREQ
starts by updating its routing information backwards towards the source. If the
same RREQ has not been received before, the node then checks its routing table
for a route to the destination. If a route exists with a sequence number greater
than or equal to that contained in the RREQ, an RREP message is sent back
towards the source. Otherwise, the node rebroadcasts the RREQ. When an RREP
has propagated back to the original source node, the established route may be
used to send data. Periodic hello messages are used to maintain local connectiviy
information between neighboring nodes. A node that detects a link break will
check its routing table to find all routes which use the broken link as the next
hop. In order to propagate the information about the broken link, an RERR
message is then sent to each node that constitute a previous hop on any of these
routes.

The files for this tutorial example are found in the directory $DIR/examples/AODV.
All nodes are initialized using the same initialization script, node_init.m. Two
TRUETIME tasks are created in each node to handle AODV send and receive ac-
tions, respectively. The AODV send task is activated from the application code
as a data message should be sent to another node in the network. The AODV
receive task handles incoming AODV control messages and forwarding of data
messages. Communication between the application layer and the AODV layer is
handled using TRUETIME mailboxes.

The AODV send task (AODVsendcode.m) operates according to the following code:

IF (data message received from application)

check the routing table for a route to the destination;

IF (a valid route exists)

forward data message to next hop on route;

update expiry time of route entry;

34

ELSE

initiate route discovery by broadcasting RREQ message;

buffer data message until route has been established;

END

ELSE IF (notified of established new route)

send all buffered data messages to destination

END

The AODV receive task (AODVrcvcode.m) performs the following:

IF (receiving data message)

update expiry timer for reverse route entry to source;

IF (this node is the destination)

Pass data message to application;

ELSE

forward data message to next hop on route;

update expiry timer of route entry;

END

ELSE

SWITCH message_type

CASE RREQ:

IF (first time this RREQ is received)

enter RREQ in cache;

create or update route entry to source;

check the routing table for a route to the destination;

IF (a route exists)

send RREP message back towards source;

ELSE

update and rebroadcast the RREQ;

END

END

CASE RREP:

check the routing table for a route to the destination;

IF (no route exists)

create route entry to destination;

ELSE IF (route entry exists but should be updated)

update route entry to destination;

END

IF (this node is the original source)

notify the AODV send task about the new route;

ELSE IF (route to destination was created or updated)

update reverse route entry towards source;

propagate RREP to next hop towards source;

END

CASE RERR:

find and invalidate all affected route entries;

propagate the RERR to all previous hops on the routes;

END

END

Each node also contains a periodic task (hellocode.m), responsible for broad-
casting hello messages and determine local connectivity based on hello messages
received from neighboring nodes. Finally, each node has a task to handle timer
expiry of route entries (expcode.m).

35

Simulations Open the model AODV.mdl to run the simulation.

• The simulation example consists of seven nodes. Choose the option Update
Diagram in the Edit menu to bring up an animation window of the sim-
ulation. This will show the original positions of the seven nodes and their
respective signal reach.

• Run a simulation. In the simulation scenario, the left-most node (node 1)
sends data periodically to node 7 with period 0.5. The initial route that is
established is 1 → 3 → 5 → 7. At time t = 3, node 5 starts to move which
eventually leads to the route breaking. At time t = 10, node 6 repairs the
route by moving in between node 4 and 7. The printouts in the Matlab
command window describe the actions in the AODV layer in more detail.
Also study the global variable routing_table.

• Open and examine the file initsim.m. This file initializes the global vari-
ables used in the simulation, e.g., the routing table and the node positions.
By changing the variable verbose from 0 to 1 even more detailed AODV
information will be displayed when the simulation is run.

• The global variables sent and received show the data that is sent (by node
1) and received (by node 7) in the simulation. Examine the lengths of these
vectors to determine how many messages that where lost due to the delay
in detecting and propagating the information about the broken link back
to the source node. (Answer: The messages sent at times 8.0002, 8.5002,
and 9.0002 are lost.)

• The hello interval determines who fast the network will respond to broken
links (and also the bandwidth overhead). Try changing the AODV param-
eter HELLO_INTERVAL (both in initsim.m and node_init.m) to decrease the
number of lost data messages. In this case only two messages are lost.

12.6 Mote Soccer

This largely undocumented example features a slighly more complex simulation
set-up where ten mobile robots are playing soccer. The robots and the ball are
animated during the simulation, see Figure 13. The simulation files are found
in the directory $DIR/examples/soccer.

Each mobile robot (mote) is modeled using a kernel block and two integrators
representing the x and y coordinates of the robot. The ball is modeled as a forth-
order system (an integrator plus damping in each direction) implemented in
an S-function (ballmotion.m). This S-function also handles the player interac-
tion with the ball. The robots within each team communicate over the wireless
network. The goalkeeper is each team acts as the “master” and coordinates the
players.

The mask of the network block is programmed to dynamically change the con-
tents of the underlying subsystem (study the initialization commands). This is
a very conventient feature when working with a large number of network nodes.

13. Kernel Implementation Details

This section will give a brief description of the implementation of the TRUETIME
kernel. The main data structures will be described as well as the kernel imple-

36

Figure 13 Mote soccer.

mentation. It will also be described how the event-based kernel simulation is
achieved in Simulink, using the zero-crossing detection mechanism.

13.1 Kernel Data Structures

The main data structure of the TRUETIME kernel is a C++ class called RTsys,
see $DIR/kernel/ttkernel.h. An instance (rtsys) of this class is created in the
initialization step of the kernel S-function. The rtsys object is stored in the
UserData field of the kernel block between simulation steps. Among others, the
RTsys class contains the following attributes:

class RTsys {

public:

double time; // Current time in simulation

double* inputs; // Vector of input port values

double* outputs; // Vector of output port values

Task* running; // Currently running task

List* readyQ; // usertasks and handlers ready for execution, prio-sorted

List* timeQ; // usertasks and timers waiting for release, time-sorted

List* taskList; // A list containing all created tasks

List* handlerList;

List* monitorList;

List* eventList;

37

double (*prioFcn)(Task*); // Priority function

};

The ready queue and time queue are sorted linked list. The elements in the time
queue (tasks and timers) are sorted according to release times and expiry times.
A timer in the time queue is actually represented by its corresponding han-
dler. The tasks in the ready queue are sorted according to the priority function
prioFcn, which is a function that returns a (possibly dynamic) priority num-
ber from a Task instance, see the description of ttInitKernel in the command
reference.

The Task class ($DIR/kernel/task.h) inherits from the node class of the linked
list ($DIR/kernel/linkedlist.h) and contains the following basic attributes:

class Task : public Node {

public:

char* name;

int segment; // the current segment of the code function

double execTime; // the remaining execution time of the current segment

void *data; // task data (C++ case)

char* dataMatlab; // name of global variable for task data (Matlab case)

double (*codeFcn)(int, void*); // Code function (C++ case)

char* codeFcnMatlab; // Name of m-file code function (Matlab case)

};

The exectime of the running task is updated each time the kernel executes, see
Listing 8. When it has reached zero, the next segment of the code function is
executed. The task data in the Matlab case is represented as a name of a unique
global variable. The code function of a task is represented either as a function
pointer in the C++ case or the name of a Matlab m-file.

User tasks and interrupt handlers are both subclasses to Task and contain
the attributes given below, among others. See $DIR/kernel/usertask.h and
$DIR/kernel/handler.h for complete descriptions.

class UserTask : public Task {

public:

double priority;

double wcExecTime;

double deadline;

double absDeadline;

double release; // task release time if in timeQ

double budget;

int state; // Task state (IDLE; WAITING; SLEEPING; READY; RUNNING)

double tempPrio; // temporarily raised prio value

List *pending; // list of pending jobs

InterruptHandler* deadlineORhandler; // deadline overrun handler

InterruptHandler* exectimeORhandler; // execution-time overrun handler

38

int nbrOfUserLogs; // Number of user-created log entries

Log* logs[NBRLOGS];

void (*arrival_hook)(UserTask*); // hooks

void (*release_hook)(UserTask*);

void (*start_hook)(UserTask*);

void (*suspend_hook)(UserTask*);

void (*resume_hook)(UserTask*);

void (*finish_hook)(UserTask*);

};

The kernel implements priority inheritance to avoid priority inversion. Therefore
each task has a dynamic priority value that may be raised while executing inside
a monitor. Pending jobs are stored in the job queue of the task sorted by release
time. See $DIR/kernel/log.h for the contents of the Log class.

class InterruptHandler : public Task {

public:

double priority;

int type; // {UNUSED, OVERRUN, TIMER, NETWORK, EXTERNAL}

UserTask *usertask; // if overrun handler to task

Timer* timer; // if associated with timer interrupt

Network* network; // if associated with network receive interrupt

Trigger* trigger; // if associated with external interrupt

int pending; // list of pending invocations, if new external

// interrupt occurs before the old is served

};

See the corresponding header files in $DIR/kernel for the specifications of the
classes Timer, Network, and Trigger.

13.2 Task Model

TRUETIME user tasks may be periodic or aperiodic. Aperiodic tasks are triggered
by the creation of task jobs, using the command ttCreateJob. All pending jobs
are inserted in a job queue of the task sorted by release time. For periodic task
(created by the command ttCreatePeriodicTask), an internal timer is set up to
periodically create jobs for the task.

Apart from its code function, each task is characterized by a number of attributes.
The static attributes of a task include

• a relative deadline

• a priority

• a worst-case execution time

• a period (if the task is periodic)

39

These attributes are kept constant throughout the simulation, unless explicitly
changed by the user (see ttSetX in the command reference).
In addition to these attributes, each task job has dynamic attributes associated
with it. These attributes are updated by the kernel as the simulation progresses,
and include

• an absolute deadline

• a release time

• an execution time budget (by default equal to the worst-case execution time
at the start of each task job)

• the remaining execution time

These attributes (except the remaining execution time) may also be changed by
the user during simulation. Depending on the scheduling policy, the change of an
attribute may lead to a context switch. E.g., if the absolute deadline is changed
and earliest-deadline-first scheduling is simulated.

In accordance with [Bollella et al., 2000] it is possible to associate two interrupt
handlers with each task: a deadline overrun handler (triggered if the task misses
its deadline) and an execution time overrun handler (triggered if the task exe-
cutes longer than its worst-case execution time). These handlers can be used to
experiment with dynamic compensation schemes, handling missed deadlines or
prolonged computations. Overrun handlers are attached to tasks with the com-
mands ttAttachDLHandler and ttAttachWCETHandler. See the tutorial example
in Section ?? for an example on how to use overrun handlers.

Furthermore, to facilitate arbitrary dynamic scheduling mechanisms, it is possi-
ble to attach small pieces of code (hooks) to each task. These hooks are executed
at different stages during the simulation, as shown in Figure 14. Usually the
arrival and release of a task job coincide. The exception is when a job is created
while previous jobs have yet to finish. In that case, the arrival hook is executed
immediately (at the call of ttCreateJob) and the release hook is called when the
job is subsequently released from the job queue.

The hooks can, e.g., be used to monitor different scheduling schemes and keep
track of context switches and deadline overruns. By default, the hooks implement
logging, simulation of context switching, and contain code to trigger the worst-
case execution time and deadline overrun handlers possibly associated with the
different tasks. For the default hook implementation, see $DIR/kernel/default

hooks.cpp.

13.3 The Kernel Function

The functionality of the TRUETIME kernel is implemented by the function
runKernel located in $DIR/kernel/ttkernel.cpp. This function manipulates the
basic data structures of the kernel, such as the ready queue and the time queue,
and is called by the Simulink call-back functions at appropriate times during
the simulation. See Section 13.4 for timing implementation details.

It is also from this function that the code functions for tasks and interrupt
handlers are called. The kernel keeps track of the current segment and updates

40

τ

t

Arrival, Release
hooks

Start
hook

Suspend
hook

Resume
hook

Finish
hook

Figure 14 Scheduling hooks.

it when the time associated with the previous segment has elapsed. The hooks
mentioned above are also called from this function.

A simple model for how the kernel works is given by the pseudo code in Listing 8.
This code focuses on user tasks. See $DIR/kernel/ttkernel.cpp for the complete
implementation.

13.4 Timing

The TRUETIME blocks are event-driven and support external interrupt handling.
Therefore, the blocks have a continuous sample time. Discrete (i.e., piecewise
constant) outputs are obtained by specifying FIXED_IN_MINOR_STEP_OFFSET:

static void mdlInitializeSampleTimes(SimStruct *S) {

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOffsetTime(S, 0, FIXED_IN_MINOR_STEP_OFFSET);

}

The timing of the block is implemented using a zero-crossing function. As we
saw above, the next time the kernel should wake up (e.g., because a task is to
be released from the time queue or a task has finished its execution) is denoted
nextHit. If there is no known wake-up time, this variable is set to infinity. The
basic structure of the zero-crossing function is

static void mdlZeroCrossings(SimStruct *S) {

Store all inputs;

if (any interrupt input has changed value) {

nextHit = ssGetT(S);

}

ssGetNonsampledZCs(S)[0] = nextHit - ssGetT(S);

}

This will ensure that mdlOutputs executes every time an internal or external
event has occurred. Since several kernel and network blocks may be connected in
a circular fashion, direct feedthrough is not allowed. We exploit the fact that, when
an input changes as a step, mdlOutputs is called, followed by mdlZeroCrossings.
Since direct feedthrough is not allowed, the inputs may only be checked for
changes in mdlZeroCrossings. There, the zero-crossing function is changed so
that the next major step occurs at the current time. This scheme will introduce
a small timing error (< 10−15 s).

41

The kernel function (runKernel()) is only called from mdlOutputs since this is
where the outputs (D/A, schedule, network) can be changed. The timing imple-
mentation implies that zero-crossing detection must be turned on (this is default,
and can be changed under Simulation Parameters/Advanced).

14. TrueTime Command Reference

The available TRUETIME commands are summarized in Tables 2–4, and the rest of
the manual contains detailed descriptions of their functionality. The commands
are categorized according to their intended use (I; initialization script, T; task
code function, and H; interrupt handler code function). Note that the set and get
primitives are collected under the headings ttSetX and ttGetX, respectively.

By typing help command, where command is the name of a TRUETIME function, in
the Matlab command window, the syntax of the various TRUETIME functions will
be displayed.

42

Listing 8 Pseudo code for the TRUETIME kernel function.

double runKernel(void) {

timeElapsed = rtsys->time - rtsys->prevHit; // time since last invocation

rtsys->prevHit = rtsys->time; // update previous invocation time

nextHit = 0.0;

while (nextHit == 0.0) {

// Count down execution time for current task

// and check if it has finished its execution

if (there exists a running task) {

task->execTime -= timeElapsed;

if (task->execTime == 0.0) {

task->segment++;

task->execTime = task->codeFcn(task->segment, task->data);

if (task->execTime < 0.0) {

// Negative execution time = task finished

task->execTime = 0.0;

task->segment = 0;

Remove task from readyQ;

task->finish_hook(task);

if (job queue is non-empty)

Release next job and execute release-hook ;

}

}

} // end: counting down execution time of running task

// Check time queue for possible releases (user tasks or timers)

for (each task) {

if ((release time - rtsys->time) == 0.0) {

Move task to ready queue

}

} // end: checking timeQ for releases

// Determine task with highest priority and make it running task

newrunning = rtsys->readyQ->getFirst();

oldrunning = rtsys->running;

if (oldrunning is being suspended) {

oldrunning->suspend_hook(oldrunning);

}

if (newrunning is being resumed or started) {

if (newrunning->segment == 0) {

newrunning->start_hook(newrunning);

} else {

newrunning->resume_hook(newrunning);

}

} // end: task dispatching

// Determine next invocation of kernel function

time1 = remaining execution time of current task;

time2 = next release time of a task from the time queue

nextHit = min(time1, time2);

} // end: loop while nextHit == 0.0

return nextHit;

}

43

Table 2 Commands used to create and initialize TRUETIME objects, and to control the
simulation.

Command Description

ttInitKernel Initialize the kernel, specifying the scheduling policy.
ttGetInitArg (C++ only) Retrieve the init argument from the block dialogue.
ttCreateTask Create an aperiodic task.
ttCreatePeriodicTask Create a periodic task.
ttCreateLog Create a log structure and specify data to log.
ttCreateHandler Create an interrupt handler.
ttCreateMonitor Create a monitor (mutex) for protection of shared data.
ttCreateEvent Create an event (condition variable).
ttCreateMailbox Create a mailbox for inter-task communication.
ttCreateSempahore Create a counting semaphore.
ttCreateCBS Create a soft or hard constant bandwidth server.
ttNoSchedule Switch off the schedule plot for a specific task or

interrupt handler.
ttNonPreemptible Make a task non-preemptible.
ttAttachTriggerHandler Attach an interrupt handler to an external trigger.
ttAttachNetworkHandler Attach an interrupt handler to a network interface.
ttAttachDLHandler Attach a deadline overrun handler to a task.
ttAttachWCETHandler Attach a worst-case execution time overrun interrupt

handler to a task.
ttAttachHook (C++ only) Attach a kernel scheduling hook to a task.
ttAttachCBS Attach a task to a constant bandwidth server.
ttAbortSimulation Abort the simulation.

44

Table 3 Commands used to set and get task or kernel attributes.

Command Description

ttSetPeriod Set the period of a periodic task.
ttSetDeadline Set the relative deadline of a task.
ttSetPriority Set the priority of a task.
ttSetWCET Set the worst-case execution (maximum budget) time of a

task.
ttSetData Update the local memory data structure of a task.
ttSetAbsDeadline Set the absolute deadline of the current job.
ttSetBudget Set the execution time budget of the current job.
ttSetUserData Set arbitrary kernel user data (C++ only).
ttGetPeriod Get the period of a periodic task.
ttGetDeadline Get the relative deadline of a task.
ttGetPriority Get the priority of a task.
ttGetWCET Get the worst-case execution time of a task.
ttGetData Retrieve the local memory data structure of a task.
ttGetRelease Get the release time of the current job.
ttGetAbsDeadline Get the absolute deadline the current job.
ttGetBudget Get the execution-time budget of the current job.
ttSetUserData Set the kernel user data (C++ only).
ttGetUserData Get the kernel user data (C++ only).
ttSetCBSParameters Set the parameters of a constant bandwidth server.

45

Table 4 Real-time primitives.

Command Description

ttCreateJob Create a job of a task.
ttKillJob Kill the running (ready) job of a task, if any.
ttEnterMonitor Enter a monitor (blocking).
ttExitMonitor Exit a monitor.
ttWait Wait for an event (blocking).
ttNotify Notify the highest-priority task waiting for an event.
ttNotifyAll Notify all tasks waiting for an event.
ttLogStart Start a timing measurement for a log.
ttLogStop Stop a timing measurement and save in the log.
ttLogNow Log the current time.
ttLogValue Log a scalar value.
ttTryPost Post a message to a mailbox (non-blocking).
ttTryFetch Fetch a message from a mailbox (non-blocking).
ttPost Post a message to a mailbox (blocking).
ttFetch Fetch a message from a mailbox (blocking).
ttRetrieve Read the actual message fetched from a mailbox.
ttTake Take a semaphore.
ttGive Give a semaphore.
ttCreateTimer Create a one-shot timer and associate an interrupt

handler with the timer.
ttCreatePeriodicTimer Create a periodic timer and associate an interrupt

handler with the timer.
ttRemoveTimer Remove a specific timer.
ttCurrentTime Get and/or set the current time in the simulation on a

per node basis.
ttSleepUntil Sleep until a certain point in time.
ttSleep Sleep for a certain amount of time.
ttAnalogIn Read a value from an analog input channel.
ttAnalogOut Write a value to an analog output channel.
ttSetNextSegment Set the next segment to be executed in the code

function (to implement loops and branches).
ttGetInvoker Get the name of the external trigger, network interface,

or overrun timer that triggered running handler.
ttCallBlockSystem Call a Simulink block diagram from within a code

function.
ttSendMsg Send a message over a TRUETIME network

(non-blocking).
ttGetMsg Get a message that has been received over a TRUETIME

network (non-blocking).
ttDiscardUnsentMessages Delete any unsent messages.
ttSetNetworkParameter Set a specific network parameter on a per node basis.
ttSetKernelParameter Set a specific kernel parameter on a per node basis.

46

ttAbortSimulation (TH)

Purpose

Stop the current simulation, raising an error.

Matlab syntax

ttAbortSimulation

C++ syntax

ttAbortSimulation()

Description

This function is used to abort a simulation before the simulation stop-time has
been reached. For instance, after a certain condition has occurred, it may be
pointless to continue the simulation.

If you run repeated simulations in a script, since this primitive generates an
error, it may be useful to start the simulation from within a try statement:

for i=1:10

try

sim(’mymodel’)

catch

end

end

47

ttAnalogIn (TH)

Purpose

Read a value from an analog input channel.

Matlab syntax

value = ttAnalogIn(inpChan)

C++ syntax

double ttAnalogIn(int inpChan)

Arguments

inpChan The input channel to read from.

Description

This function is used to read an analog input from the environment. The input
channel must be between 1 and the number of analog inputs specified in the
kernel block dialogue.

See Also

ttAnalogOut

48

ttAnalogOut (TH)

Purpose

Write a value to an analog output channel. The value is held between updates.

Matlab syntax

ttAnalogOut(outpChan, value)

C++ syntax

void ttAnalogOut(int outpChan, double value)

Arguments

outpChan The output channel to write to.
value The value to write.

Description

This function is used to write an analog output to the environment. The output
channel must be between 1 and the number of analog outputs specified in the
kernel block dialogue.

See Also

ttAnalogIn

49

ttAttachCBS (I)

Purpose

Attach a task to a constant bandwidth server (CBS).

Matlab syntax

ttAttachCBS(taskname, CBSname)

C++ syntax

void ttAttachCBS(char *taskname, char *CBSname)

Arguments

taskname The name of the task.
CBSname The name of the constant bandwidth server.

Description

This function is used to associate a task with a constant bandwidth server. Many
tasks may be associated with the same CBS. Note the CBSs can only be created
under EDF scheduling. A task attached to a CBS inherits the absolute deadline
of the CBS when the priority of the task is computed.

See Also

ttCreateCBS, ttCreateTask, ttCreatePeriodicTask, ttInitKernel

50

ttAttachDLHandler (I)

Purpose

Attach a deadline overrun handler to a task.

Matlab syntax

ttAttachDLHandler(taskname, handlername)

C++ syntax

void ttAttachDLHandler(char* taskname, char* handlername)

Arguments

taskname Name of a task.
handlername Name of an interrupt handler.

Description

This function is used to attach a deadline overrun handler to a task. The inter-
rupt handler is activated every time the task executes past its absolute deadline.

See Also

ttCreateHandler, ttSetDeadline, ttAttachWCETHandler

51

ttAttachHook (C++ only) (I)

Purpose

Attach a kernel scheduling hook to a task.

C++ syntax

void ttAttachHook(char* taskname, int ID, void (*hook)(UserTask*))

Arguments

taskname Name of a task.
ID An identifier for when the hook should be called during

simulation. Possible values are ARRIVAL, RELEASE, START,
SUSPEND, RESUME, and FINISH.

hook The hook function to be attached.

Description

This function is used to attach a run-time hook to a specific task. The hook
identifier determines at which times during the simulation the hook will be
called. It is possible to attach hooks that are called when a task job arrives,
when the task is released, when the task starts to execute, when the task is
suspended, when the task resumes after being suspended, and when the task
finishes execution. Usually the arrival and release of a task job coincide. The
exception is when a job is created while previous jobs have yet to finish. In
that case, the arrival hook is executed immediately (at the call of ttCreateJob)
but the job is queued. The release hook is called when the job is subsequently
released from the job queue.

The input to the hook function is a pointer to a UserTask object. UserTask inherits
from the superclass Task. See $DIR/kernel/usertask.h and $DIR/kernel/task.h

for the definitions. The kernel uses hooks internally to implement logging, trig-
gering of task overrun handlers, and simulation of context switching. These
hooks are contained in the file $DIR/kernel/defaulthooks.cpp and should be
included in the user-defined hooks (see the example below).

Example

The example below shows a custom finish hook that estimates the execution time
of the task using a first-order filter:

void myFinishHook(UserTask* task) {

// Compute execution time (the initial budget of a task job is the WCET)

double exectime = task->wcExecTime - task->budget;

// Update estimate

double lambda = 0.5;

task->data->Chat = lambda*task->data->Chat + (1.0-lambda)*exectime;

// Execute default finish hook

default_finish(task);

}

52

ttAttachNetworkHandler (I)

Purpose

Attach an interrupt handler to a network interface.

Matlab syntax

ttAttachNetworkHandler(handlername)

ttAttachNetworkHandler(network, handlername)

C++ syntax

void ttAttachNetworkHandler(char *handlername)

void ttAttachNetworkHandler(int network, char *handlername)

Arguments

handlername The name of the interrupt handler that should be invoked
when a message arrives over the network.

network The number of the TrueTime network block. The default
network number is 1.

Description

This function is used to associate an interrupt handler with a network interface.
The handler will be invoked every time a message arrives over the network. If
you want to use polling, no network handler is needed.

See Also

ttCreateHandler

53

ttAttachTriggerHandler (I)

Purpose

Attach a handler to an external trigger input channel.

Matlab syntax

ttAttachTriggerHandler(triggerNbr, handlername)

C++ syntax

void ttAttachTriggerHandler(int triggerNbr, char *handlername)

Arguments

triggerNbr Number of the external trigger interrupt channel.
handlername Name of the interrupt handler to be associated with the

external interrupt.

Description

This function is used to associate an interrupt handler with an external trigger
channel. The interrupt handler is activated when the signal connected to the
trigger port changes value.

See Also

ttCreateHandler

54

ttAttachWCETHandler (I)

Purpose

Attach an execution-time overrun handler to a task.

Matlab syntax

ttAttachWCETHandler(taskname, handlername)

C++ syntax

void ttAttachWCETHandler(char* taskname, char* handlername)

Arguments

taskname Name of a task.
handlername Name of an interrupt handler.

Description

This function is used to attach a worst-case execution-time overrun handler to
a task. The interrupt handler is activated if the task executes longer than its
specified worst-case execution time.

See Also

ttCreateHandler, ttSetWCET, ttAttachDLHandler

55

ttCallBlockSystem (TH)

Purpose

Call a Simulink block diagram from within a code function.

Matlab syntax

outp = ttCallBlockSystem(nbroutp, inp, blockname)

C++ syntax

void ttCallBlockSystem(int nbroutp, double *outp, int nbrinp,

double *inp, char *blockname)

Arguments

nbrinp Number of inputs to the block diagram.
nbroutp Number of outputs from the block diagram.
inp Vector of input values.
outp Vector of output values.
blockname The name of the Simulink block diagram.

Description

This function is used to call a Simulink block diagram from within a code func-
tion. At each call, a one-second simulation of the block is performed, using the
old states as initial values. The states of the block diagram are stored inter-
nally by the kernel between calls. Consequently, the block diagrams may only
contain discrete blocks and the sampling times should be set to one. The inputs
and outputs are defined by Simulink inports and outports, see the figure below.

Note: Avoid using the “Discrete-Time Integrator” and “Discrete Derivative” Simu-
link blocks, which seem to implement something else than the transfer functions
that are displayed on the blocks. For the “Discrete Derivative” block it is also not
possible to specify the sample rate, which makes in incompatible with TRUETIME.

Example

Here follows an example using the Simulink diagram in the figure below:

function [exectime, data] = PIcontroller(segment, data)

switch segment,

case 1,

inp(1) = ttAnalogIn(1);

inp(2) = ttAnalogIn(2);

outp = ttCallBlockSystem(2,

inp, ’PI_Controller’);

data.u = outp(1);

exectime = outp(2);

case 2,

ttAnalogOut(1, data.u);

exectime = -1;

end

56

ttCreateCBS (I)

Purpose

Create a soft or hard constant bandwidth server (CBS).

Matlab syntax

ttCreateCBS(name, Qs, Ts)

ttCreateCBS(name, Qs, Ts, type)

C++ syntax

void ttCreateCBS(char *name, double Qs, double Ts)

void ttCreateCBS(char *name, double Qs, double Ts, int type)

Arguments

name The name of the CBS.
Qs The execution budget per server period.
Ts The server period.

Optional Arguments

type The server type: 0 = Soft CBS (default), 1 = Hard CBS.

Description

This function is used to create a constant bandwidth server (CBS), to be used
under EDF scheduling. Any number of tasks may be attached to a CBS. The
tasks in the CBS inherit the absolute deadline of the CBS. If the tasks consume
more than the execution budget in a server period, the deadline of the CBS is
postponed by one period. In the case of Hard CBS, all tasks associated with the
CBS are also put to sleep until the next server period.

See Also

ttAttachCBS, ttInitKernel

Reference

Abeni, L. and Buttazzo, G. (1998): “Integrating multimedia applications in hard
real-time systems.” In Proc. 19th IEEE Real-time Systems Symposium.

57

ttCreateEvent (I)

Purpose

Create a TRUETIME event (condition variable).

Matlab syntax

ttCreateEvent(eventname)

ttCreateEvent(eventname, monitorname)

C++ syntax

void ttCreateEvent(char *eventname)

void ttCreateEvent(char *eventname, char *monitorname)

Arguments

eventname Name of the event. Must be a unique, non-empty string.
monitorname Name of an already created monitor to which the event is to

be associated.

Description

This function is used to create an event in the TRUETIME kernel. Events may be
free, or associated with a monitor.

See Also

ttWait, ttNotify, ttNotifyAll

58

ttCreateHandler (I)

Purpose

Create a TRUETIME interrupt handler.

Matlab syntax

ttCreateHandler(name, priority, codeFcn)

ttCreateHandler(name, priority, codeFcn, data)

C++ syntax

void ttCreateHandler(char *name, double priority,

double (*codeFcn)(int, void*))

void ttCreateHandler(char *name, double priority,

double (*codeFcn)(int, void*), void* data)

Arguments

name Name of the handler. Must be a unique, non-empty string.
priority Priority of the handler. This should be a non-negative value,

where a small number represents a high priority.
codeFcn The code function of the handler, where codeFcn is a string

(name of an m-file) in the Matlab case and a function pointer in
the C++ case.

data An arbitrary data structure representing the local memory of the
handler.

Description

This function is used to create a handler that will be executed in response to
interrupts. Interrupt handlers may be associated with timers, network interfaces,
external interrupt channels, or attached to tasks as overrun handlers. A handler
may be associated with many interrupt sources.

See Also

ttCreateTimer, ttCreatePeriodicTimer, ttAttachTriggerHandler,
ttAttachNetworkHandler, ttAttachDLHandler, ttAttachWCETHandler

59

ttCreateJob (TH)

Purpose

Create a job of a task.

Matlab syntax

ttCreateJob(taskname)

ttCreateJob(taskname, time)

C++ syntax

void ttCreateJob(char *taskname)

void ttCreateJob(char *taskname, double time)

Arguments

taskname Name of a task.
taskname The time at which the job should be created (default=now).

Description

This function is used to create jobs of tasks. If there already is a job active
for the task, the job is queued and served as soon as possible. ttCreateJob is
called to activate aperiodic tasks, i.e., tasks created using ttCreateTask. A call
to ttCreateJob will trigger the arrival hook of the task. If there are no active
jobs the release hook will be called as well. Otherwise, the release hook will be
called when the job is later activated from the job queue.

See Also

ttCreateTask, ttKillJob

60

ttCreateLog (I)

Purpose

Create a user-defined or task-related log.

Matlab syntax

ttCreateLog(logname, variable, size)

ttCreateLog(taskname, logtype, variable, size)

C++ syntax

void ttCreateLog(char* logname, char* variable, int size)

void ttCreateLog(char* taskname, int logtype, char* variable, int size)

Arguments

logname The name of the user-defined log. Values can later be written
using ttLogStart, ttLogStop, ttLogNow, or ttLogValue.

variable The name of the variable in Matlab workspace to which the log
will be written after the simulation.

size The maximum number of elements in the log.
taskname Name of the task for which the log is created.
logtype The task log type (see below).

Description

This function is used to create logs for individual tasks. Five pre-defined log
types exist to log response time, release latency, start latency, execution time,
and context switch instances. These are obtained by setting the variable logtype

to any of the constants one to four, respectively. It is also possible to create
five additional log structures for each task (by specifying log type number six).
These user-controlled logs are written to from the code functions using the prim-
itives ttLogStart, ttLogStop, ttLogNow, and ttLogValue. After the simulation
the logged attributes can be found in Matlab workspace, having the name spec-
ified by variable.

The task log types are

1 Response time log
2 Release latency log (time between arrival and release of each job)
3 Start latency log (time between arrival and start of execution for each
job)

4 Execution time log

Example

Logging of response time and input-output latency

% In initialization script

% Automatic log of response time (type 1)

ttCreateLog(’ctrl_task’, 1, ’Responsetime’, 100);

61

% User log #1 (type 6) for logging of I/O latency

ttCreateLog(’ctrl_task’, 6, ’IOlatency’, 100);

% Code function

function [exectime, data] = ctrl(seg, data)

switch seg,

case 1,

ttLogStart(1); % start I/O logging in user log #1

y = ttAnalogIn(1); % Input

data.u = calculateOutput(y);

exectime = 0.003;

case 2,

ttLogStop(1); % stop and write log entry in user log #1

ttAnalogOut(1, data.u); % Output

exectime = -1;

end

See Also

ttLogNow, ttLogStart, ttLogStop

62

ttCreateMailbox (I)

Purpose

Create a TRUETIME mailbox for inter-task communication.

Matlab syntax

ttCreateMailbox(mailboxname)

ttCreateMailbox(mailboxname, maxsize)

C++ syntax

void ttCreateMailbox(char *mailboxname)

void ttCreateMailbox(char *mailboxname, int maxsize)

Arguments

mailboxname Name of the mailbox. Must be a unique, non-empty string.
maxsize The size of the buffer associated with the mailbox (default is

INT_MAX)

Description

This function is used to create a mailbox for communication between tasks. The
TRUETIMEmailbox implements asynchronous message passing with indirect nam-
ing. A buffer is used to store incoming messages, and the maximum size of this
buffer may be specified by maxsize.

See Also

ttTryPost, ttTryFetch, ttPost, ttFetch, ttRetrieve

63

ttCreateMonitor (I)

Purpose

Create a TRUETIME monitor.

Matlab syntax

ttCreateMonitor(name, display)

C++ syntax

void ttCreateMonitor(char *name, bool display)

Arguments

name Name of the monitor. Must be a unique, non-empty string.
display To indicate if the monitor should be included in the monitor graph

generated by the simulation.

Description

This function is used to create a monitor for task synchronization. Condition
variables for the monitor can be created using ttCreateEvent. The kernel block
has a monitor output that will display a graph showing when the various tasks
have access to the monitors.

See Also

ttEnterMonitor, ttExitMonitor, ttCreateEvent, ttWait, ttNotify, ttNotifyAll

64

ttCreatePeriodicTask (I)

Purpose

Create a periodic TRUETIME task.

Matlab syntax

ttCreatePeriodicTask(name, starttime, period, codeFcn)

ttCreatePeriodicTask(name, starttime, period, codeFcn, data)

C++ syntax

void ttCreatePeriodicTask(char* name, double starttime, double period,

double (*codeFcn)(int, void*))

void ttCreatePeriodicTask(char* name, double starttime, double period,

double (*codeFcn)(int, void*), void* data)

Arguments

name Name of the task. Must be a unique, non-empty string.
starttime Release time for the first job of the periodic task.
period Period of the task.
codeFcn The code function of the task, where codeFcn is a string (name

of an m-file) in the Matlab case and a function pointer in the
C++ case.

data An arbitrary data structure representing the local memory of
the task.

Description

This function is used to create a periodic task to run in the TRUETIME kernel.
The periodicity is implemented internally by the kernel using a periodic timer.
See the simple PID-control example in $DIR/examples/simple for other ways to
implement periodic activities. The deadline and worst-case execution time of the
task are by default set equal to the task period. This may be changed by a suitable
set-function.

See Also

ttCreateTask, ttSetX

65

ttCreatePeriodicTimer (ITH)

Purpose

Create a periodic timer and associate an interrupt handler with the timer.

Matlab syntax

ttCreatePeriodicTimer(timername, period, handlername)

ttCreatePeriodicTimer(timername, offset, period, handlername)

C++ syntax

void ttCreatePeriodicTimer(char *timername, double period, char *handlername)

void ttCreatePeriodicTimer(char *timername, double offset, double period,

char *handlername)

Arguments

timername Name of the timer. Must be unique, non-empty string.
offset The time for the first expiry of the timer (default = 0).
period The period of the timer.
handlername Name of interrupt handler associated with the timer.

Description

This function is used to create a periodic timer. Each time the timer expires the
associated interrupt handler is activated and scheduled for execution.

See Also

ttCreateInterruptHandler, ttCreateTimer, ttRemoveTimer

66

ttCreateSemaphore (I)

Purpose

Create a simple, counting TRUETIME semaphore.

Matlab syntax

ttCreateSemaphore(name, initval)

ttCreateSemaphore(name, initval, maxval)

C++ syntax

void ttCreateSemaphore(char *name, int initval)

void ttCreateSemaphore(char *name, int initval, int maxval)

Arguments

name Name of the semaphore. Must be a unique, non-empty string.
initval The initial value of the semaphore. Must be an integer.
maxval The maximum value of the semaphore. Must be an integer. The

default maximum value is INT_MAX.

Description

This function is used to create a simple, counting semaphore. Semaphores can be
used to synchronize tasks, for instance, to synchronize a producer and a consumer
task. Note that a semaphore does not have the concept of a current owner task
and hence should not be used to achieve mutual exclusion.

The ttGive command has no effect if the current value of the semaphore is equal
to maxval. To create a binary semaphore, set maxval to 1.

Compared to TRUETIME monitors, TRUETIME sempahores do not produce any out-
put graphs. Also, they do not support any priority inheritance protocol, but rather
implement a simple FIFO waiting queue.

DO NOT use semaphores to protect critical regions! For that purpose you should
use monitors!

See Also

ttTake, ttGive

67

ttCreateTask (I)

Purpose

Create an aperiodic TRUETIME task.

Matlab syntax

ttCreateTask(name, deadline, codeFcn)

ttCreateTask(name, deadline, codeFcn, data)

C++ syntax

void ttCreateTask(char* name, double deadline,

double (*codeFcn)(int, void*))

void ttCreateTask(char *name, double deadline,

double (*codeFcn)(int, void*), void* data)

Arguments

name Name of the task. Must be a unique, non-empty string.
deadline Relative deadline of the task.
codeFcn The code function of the task, where codeFcn is a string (name of

an m-file) in the Matlab case and a function pointer in the C++
case.

data An arbitrary data structure representing the local memory of the
task.

Description

This function is used to create a task to run in the TRUETIME kernel. The worst-
case execution time of the task is by default set equal to the task deadline. This
may be changed by a suitable set-function.

See Also

ttCreatePeriodicTask, ttCreateJob, ttSetX

68

ttCreateTimer (ITH)

Purpose

Create a one-shot timer and associate an interrupt handler with the timer.

Matlab syntax

ttCreateTimer(timername, time, handlername)

C++ syntax

void ttCreateTimer(char *timername, double time, char *handlername)

Arguments

timername Name of the timer. Must be unique, non-empty string.
time The time when the timer is set to expire.
handlername Name of interrupt handler associated with the timer.

Description

This function is used to create a one-shot timer. When the timer expires the
associated interrupt handler is activated and scheduled for execution.

See Also

ttCreateInterruptHandler, ttCreatePeriodicTimer, ttRemoveTimer

69

ttCurrentTime (ITH)

Purpose

Get and/or set the current time in the simulation on a per node basis.

Matlab syntax

time = ttCurrentTime

time = ttCurrentTime(newTime)

C++ syntax

double ttCurrentTime()

double ttCurrentTime(double newTime)

Arguments

newTime Sets the current time to this time.

Description

This function returns the current time in the simulation, in seconds. When the
function is used to set the current time, the old current time is returned.

70

ttDiscardUnsentMessages (IT)

Purpose

Delete unsent messages in the network queue.

Matlab syntax

nbr = ttDiscardUnsentMessages

nbr = ttDiscardUnsentMessages(network)

C++ syntax

int ttDiscardUnsentMessages()

int ttDiscardUnsentMessages(int network)

Arguments

network The network interface from which messages should be deleted
(default is 1).

Description

This function can be used to delete any unsent messages waiting in the network
interface output queue. A message that has already started to be sent is not
affected. The function returns the total number of deleted messages.

71

ttEnterMonitor (T)

Purpose

Enter a monitor, blocking if the monitor is not free.

Matlab syntax

ttEnterMonitor(monitorname)

C++ syntax

void ttEnterMonitor(char *monitorname)

Arguments

monitorname Name of a monitor.

Description

This function is used to attempt to enter a monitor. If the attempt fails, the task
will be removed from the ready queue and inserted in the waiting queue of the
monitor (the waiting queue is sorted using the priority function in the same way
as the ready queue). This will also trigger the suspend hook of the task.
When the task currently holding the monitor exits, the first task in the waiting
queue will be moved to the ready queue and is now holding the monitor. Execution
will then resume in the segment after the call to ttEnterMonitor. To ensure that
no further instructions are executed in the case that ttEnterMonitor fails, it
needs to be called from its own segment (since all code of a TRUETIME segment is
executed at once before scheduling decisions are made). See the example below.
To avoid priority inversion, standard priority inheritance is used if a task tries
to enter a monitor currently held by a lower priority task.

Example

function [exectime, data] = ctrl(seg, data)

switch seg,

case 1,

ttEnterMonitor(’mutex’);

exectime = 0;

case 2,

if some_condition_not_fulfilled

ttWait(’condvar’);

ttSetNextSegment(2);

exectime = 0;

else

criticalOperation;

exectime = 0.005;

end

case 3,

ttExitMonitor(’mutex’);

exectime = -1;

end

See Also

ttCreateMonitor, ttExitMonitor, ttCreateEvent, ttWait, ttNotify, ttNotifyAll

72

ttExitMonitor (T)

Purpose

Exit a monitor.

Matlab syntax

ttExitMonitor(monitorname)

C++ syntax

void ttExitMonitor(char *monitorname)

Arguments

monitorname Name of a monitor.

Description

This function is used to exit a monitor. The function can only be called by the
task currently holding the monitor. The call will cause the first task in the
waiting queue of the monitor to be moved to the ready queue. To ensure that
no further instructions are executed in the case that a context switch should
occur when the monitor is released, ttExitMonitor needs to be called from its
own segment (since all code of a TRUETIME segment is executed at once before
scheduling decisions are made).

Example

See ttEnterMonitor.

See Also

ttCreateMonitor, ttEnterMonitor

73

ttFetch (T)

Purpose

Fetch a message from a mailbox, blocking if the mailbox is empty.

Matlab syntax

ttFetch(mailboxname)

C++ syntax

void ttFetch(char *mailboxname)

Arguments

mailboxname Name of a mailbox.

Description

This function is used to wait for a message at a mailbox. If the mailbox is empty,
the task will be blocked until a message has arrived. Tasks waiting to fetch from
a mailbox are sorted in FIFO order.

Note that this function does not read the actual message – that is done using
ttRetrieve. (This somewhat akward solution is due to the segment structure of
TRUETIME.)

Example

function [exectime, data] = ctrl(seg, data)

switch seg,

case 1,

ttFetch(’mailbox’); % wait for a message

exectime = 0;

case 2,

msg = ttRetrieve(’mailbox’); % read the actual message

doStuff;

exectime = 0.005;

case 3,

exectime = -1;

end

See Also

ttCreateMailbox, ttTryPost, ttTryFetch, ttPost, ttRetrieve

74

ttGetData (TH)

Purpose

Retrieve the local memory data structure associated with a specific task.

Matlab syntax

data = ttGetData(taskname)

C++ syntax

void *ttGetData(char *taskname)

Arguments

taskname Name of a task.

Description

This function is used to retrieve the data structure of a specific task. The data
structure represents local memory of the task and is normally updated in the
code function of the task. Using this function in combination with ttSetData it
is possible to modify the data also outside the code function.

See Also

ttSetData, ttCreateTask, ttCreatePeriodicTask

75

ttGetMsg (TH)

Purpose

Get a message that has been received over a network. This function is used both
for wired and wireless networks.

Matlab syntax

[msg, signalPower] = ttGetMsg

[msg, signalPower] = ttGetMsg(network)

C++ syntax

void *ttGetMsg()

void *ttGetMsg(int network)

void *ttGetMsg(int network, double *signalPower)

Arguments

network The network interface from which the message should be
received. The default network number is 1.

signalPower The value of the received signal power corresponding to this
message. Only used in the wireless network.

Description

This function is used to retrieve a message that has been received over the
network. Typically, you have been notified that a message exists in the network
interface input queue by an interrupt, but it is also possible to poll for new
messages. If no message exists, the function will return NULL (C++) or an
empty matrix (Matlab).

Example

% Task that waits for and reads messages

function [exectime, data] = receiver(seg, data)

switch seg,

case 1,

ttWait(’message’);

exectime = 0;

case 2,

msg = ttGetMsg;

disp(’I got a message!’);

exectime = 0.001;

case 3,

ttSetNextSegment(1); % loop back and wait for new message

exectime = 0;

end

% Interrupt handler that is called by the network interface

function [exectime, data] = msgRcvhandler(seg, data)

ttNotifyAll(’message’);

exectime = -1;

See Also

ttAttachNetworkHandler, ttSendMsg

76

ttGetInitArg (C++ only) (I)

Purpose

Retrieve a pointer to the init argument of the TRUETIME block.

C++ syntax

mxArray *ttGetInitArg()

77

ttGetInvoker (H)

Purpose

Get the name of the interrupt source that invoked a handler.

Matlab syntax

invoker = ttGetInvoker

C++ syntax

char *ttGetInvoker()

Description

This function returns the name of the external trigger, network interface, or
overrun timer that triggered running handler.

78

ttGetX (ITH)

Purpose

Get a specific task attribute.

Matlab syntax

value = ttGetX

value = ttGetX(taskname)

C++ syntax

double ttGetX()

double ttGetX(char *taskname)

Arguments

taskname Name of a task.

Description

These functions are used to retrieve values of task attributes. There exist func-
tions for the following attributes (with the true function name in parenthesis):

• arrival time (ttGetArrival)

• release time (ttGetRelease)

• relative deadline (ttGetDeadline)

• absolute deadline (ttGetAbsDeadline)

• priority (ttGetPriority)

• period (ttGetPeriod)

• worst-case execution time (ttGetWCET)

• execution time budget (ttGetBudget)

Use the ttGetX functions to retrieve the current attributes of a task. All the
functions exist in overloaded versions as shown by the syntax above. If the ar-
gument taskname is not specified, the call will affect the currently running task.
Below follow some special notes on the individual functions:

ttGetArrival: Returns the time when the current task job was created. An error
will occur if the task has no running job.

ttGetRelease: Returns the time when the current task job was released. An error
will occur if the task has no running job.

ttGetDeadline: Returns the relative deadline of the task.

ttGetAbsDeadline: Returns the absolute deadline of the current task job. An error
will occur if the task has no running job.

ttGetPriority: Returns the assigned base priority of the task.

79

ttGetPeriod: Returns the period of a periodic task. An error will occur if the task
is not periodic.

ttGetWCET: Returns the worst-case execution time of a task.

ttGetBudget: Returns the remaining execution time budget of the current task
job. The execution time budget is decreased each time a new segment of the code
function is executed, as well as when the task is suspended by another task. The
execution time budget is reset to the worst-case execution time at the start of
each task job.

See Also

ttSetX

80

ttGive (TH)

Purpose

Give (signal) a semaphore.

Matlab syntax

ttGive(semname)

C++ syntax

void ttGive(char *semname)

Arguments

semname The name of the semaphore.

Description

This function is used to signal a semaphore. Its semantics can be described by
the following pseudo-code:

if (value < maxval) {

value++;

if (value <= 0) {

release the first task from the semaphore queue;

}

}

See Also

ttCreateSemaphore, ttTake

81

ttInitKernel (I)

Purpose

Initialize the TRUETIME kernel.

Matlab syntax

ttInitKernel(prioFcn)

ttInitKernel(prioFcn, contextSwitchOverhead)

C++ syntax

void ttInitKernel(double (*prioFcn)(UserTask*))

void ttInitKernel(double (*prioFcn)(UserTask*), double contextSwitchOverhead)

Arguments

prioFcn The scheduling policy used by the kernel.
contextSwitchOverhead The overhead time for a context switch. Optional

argument, taken as zero if not specified.

Description

This function performs necessary initializations of the kernel block and must
be called first of all in the initialization script. The priority function should be
one of the following in the Matlab case: ’prioFP’ (fixed-priority scheduling),
’prioDM’ (deadline-monotonic scheduling), or ’prioEDF’ (earliest-deadline-first
scheduling, with support for constant bandwidth servers). A task associated with
a CBS is scheduled according to the deadline of the CBS and not of the task.

In the C++ case, an arbitrary priority function can be supplied. There are pre-
defined priority functions called prioFP, prioDM, and prioEDF.

The schedule plot for the context switches can be turned off by a call to ttNoSchedule(’CShandler’).

Example

The pre-defined priority functions for deadline-monotonic scheduling and earliest-
deadline-first scheduling are given below. Note that a small return value corre-
sponds to a high priority.

/* Priority function for deadline-monotonic scheduling */

double prioDM(UserTask* t) {

return t->deadline;

}

/* Priority function for earliest-deadline-first scheduling,

with support for constant bandwidth servers */

double prioEDF(UserTask* t) {

if (t->cbs) {

// The task is associated with a CBS: inherit the deadline of the CBS

return t->cbs->ds;

} else {

// No CBS: return the absolute deadline of the task

return t->absDeadline;

}

}

82

ttKillJob (TH)

Purpose

Kill the current job of a task.

Matlab syntax

ttKillJob(taskname)

C++ syntax

void ttKillJob(char *taskname)

Arguments

taskname Name of a task.

Description

This function is used to kill the current active job of a task. The finish hook of
the task will be called as the job is killed. If there exist pending jobs for the task
that should be released, the first job in the queue will be scheduled for execution
and the release hook will be called.

See Also

ttCreateJob

83

ttLogNow (TH)

Purpose

Log the current time in a user-controlled log.

Matlab syntax

ttLogNow(logname)

C++ syntax

void ttLogNow(char *logname)

Arguments

logID The identifier of the user-controlled log.

Description

This function is used to write the current time in user-controlled logs, i.e., logs
that have been created using ttCreateLog and logtype = 6. logID should be a
number between one and five that identifies which log to write to. The logs are
numbered in order of creation.

See Also

ttCreateLog, ttLogStart, ttLogStop

84

ttLogStart (TH)

Purpose

Start a timing measurement in a user-controlled log.

Matlab syntax

ttLogStart(logID)

C++ syntax

void ttLogStart(int logID)

Arguments

logID The identifier of the user-controlled log.

Description

This function is used to start timing measurements in user-controlled logs, i.e.,
logs that have been created using ttCreateLog and logtype = 6. logID should
be a number between and one and five that identifies which log to write to. The
logs are numbered in order of creation. Note that nothing is written in the log
until a subsequent call to ttLogStop.

Example

See the example in the description of ttCreateLog that shows how to use ttLog-

Start and ttLogStop to log input-output latency in a code function.

See Also

ttCreateLog, ttLogStop, ttLogNow

85

ttLogStop (TH)

Purpose

Stop a timing measurement in a user-controlled log.

Matlab syntax

ttLogStop(logID)

C++ syntax

void ttLogStop(int logID)

Arguments

logID The identifier of the user-controlled log.

Description

This function is used to stop timing measurements in user-controlled logs, i.e.,
logs that have been created using ttCreateLog and logtype = 6. logID should
be a number between and one and five that identifies which log to write to.
The logs are numbered in order of creation. When this function is called, the
difference between the current time and the time of the associated ttLogStart

will be written in the log.

Example

See the example in the description of ttCreateLog that shows how to use ttLog-

Start and ttLogStop to log input-output latency in a code function.

See Also

ttCreateLog, ttLogStart, ttLogNow

86

ttLogValue (TH)

Purpose

Log a scalar value in a user-controlled log.

Matlab syntax

ttLogValue(logname, value)

C++ syntax

void ttLogValue(char *logname, double value)

Arguments

logname The identifier of the user-controlled log.
value The scalar value to log.

Description

This function is used to write the current time in user-controlled logs, i.e., logs
that have been created using ttCreateLog and logtype = 6. logID should be a
number between one and five that identifies which log to write to. The logs are
numbered in order of creation.

See Also

ttCreateLog, ttLogStart, ttLogStop

87

ttNonPreemptible (I)

Purpose

Make a user task or handler non-preemptible.

Matlab syntax

ttNonPreemptible(taskname)

C++ syntax

void ttNonPreemptible(char* taskname)

Arguments

taskname Name of a task.

Description

Tasks are by default preemptible. Use this function to specify that a task can
not be preempted by other tasks. Non-preemptible tasks may, however, still be
preempted by interrupts.

88

ttNoSchedule (I)

Purpose

Switch off the schedule plot for a specific task or interrupt handler.

Matlab syntax

ttNoSchedule(name)

C++ syntax

void ttNoSchedule(char* name)

Arguments

name Name of a task or interrupt handler.

Description

This function is used to switch off the schedule plot for a specific task or interrupt
handler. The schedule output is generated by default and this function must be
called to turn it off. This function can only be called from the initialization script.

The schedule plot for the context switches can be turned off by specifying the
name ’CShandler’.

89

ttNotify (TH)

Purpose

Notify the highest-priority task waiting for an event.

Matlab syntax

ttNotify(eventname)

C++ syntax

void ttNotify(char *eventname)

Arguments

eventname Name of an event.

Description

This function is used to notify the first task in the waiting queue associated with
an event. The waiting queue is sorted according to the priority function of the
kernel (in the same way as the ready queue). If the event is associated with a
monitor, ttNotify must be performed inside a ttEnterMonitor-ttExitMonitor

construct. The highest-priority waiting task will be moved to the waiting queue
of the associated monitor, or directly to the ready queue if it is a free event.

See Also

ttCreateEvent, ttWait, ttNotifyAll

90

ttNotifyAll (TH)

Purpose

Notify all tasks waiting for an event.

Matlab syntax

ttNotifyAll(eventname)

C++ syntax

void ttNotifyAll(char *eventname)

Arguments

eventname Name of an event.

Description

This function is used to notify all tasks waiting for an event. If the event is associ-
ated with a monitor, ttNotifyAll must be performed inside a ttEnterMonitor-

ttExitMonitor construct. The call will cause all tasks waiting for the event to
be moved to the waiting queue of the associated monitor, or directly to the ready
queue if it is a free event.

See Also

ttCreateEvent, ttWait, ttNotify

91

ttPost (T)

Purpose

Post a message to a mailbox, blocking if the mailbox is full.

Matlab syntax

ttPost(mailboxname, msg)

C++ syntax

void ttPost(char *mailboxname, void* msg)

Arguments

mailboxname Name of a mailbox.
msg An arbitrary data structure representing the contents of the

message to be posted.

Description

This function is used to post messages to a mailbox. If the mailbox is full, the
task will be blocked. Tasks waiting to post to a mailbox are sorted in FIFO order.

See Also

ttCreateMailbox, ttTryPost, ttTryFetch, ttFetch, ttRetrieve

92

ttRemoveTimer (TH)

Purpose

Remove a specific timer.

Matlab syntax

ttRemoveTimer(timername)

C++ syntax

void ttRemoveTimer(char *timername)

Arguments

timername Name of the timer to be removed.

Description

This function is used to remove timers. Both one-shot and periodic timers can
be removed by this function. Using this function on a periodic timer will remove
the timer completely, and not only the current job.

See Also

ttCreateTimer, ttCreatePeriodicTimer

93

ttRetrieve (T)

Purpose

Read a message that was fetched using ttFetch.

Matlab syntax

msg = ttRetrieve(mailboxname)

C++ syntax

void* ttRetrieve(char *mailboxname)

Arguments

mailboxname Name of a mailbox.

Description

This function may only be called if ttFetch was called in the previous segment.
It is used to read the fetched message. (This somewhat akward solution is due
to the fact that blocking primitives in TRUETIME cannot return any data.)

Example

function [exectime, data] = ctrl(seg, data)

switch seg,

case 1,

ttFetch(’mailbox’); % wait for a message

exectime = 0;

case 2,

msg = ttRetrieve(’mailbox’); % read the actual message

doStuff;

exectime = 0.005;

case 3,

exectime = -1;

end

See Also

ttTryPost, ttTryFetch, ttPost, ttFetch

94

ttSendMsg (TH)

Purpose

Send a message over a network.

Matlab syntax

ttSendMsg(receiver, data, length)

ttSendMsg(receiver, data, length, priority)

ttSendMsg([network receiver], data, length)

ttSendMsg([network receiver], data, length, priority)

C++ syntax

void ttSendMsg(int receiver, void *data, int length)

void ttSendMsg(int receiver, void *data, int length, int priority)

void ttSendMsg(int network, int receiver, void *data, int length)

void ttSendMsg(int network, int receiver, void *data, int length, int priority)

Arguments

network The network interface on which the message should be sent. The
default network number is 1.

receiver The number of the receiving node (a number between 1 and the
number of nodes). It is allowed to send messages to oneself.
Specify receiver number 0 to broadcast a message to all nodes in
the network.

data An arbitrary data structure representing the contents of the
message.

length The length of the message, in bits. Determines the time it will
take to transmit the message.

priority The priority of the message (relevant only for CSMA/AMP
networks). If not specified, the priority will be given by the
number of the sending node, i.e., messages sent from node 1 will
have the highest priority by default.

See Also

ttGetMsg

95

ttSetCBSParameters (ITH)

Purpose

Change the parameters of a constant bandwidth server (CBS).

Matlab syntax

ttSetCBSParameters(cbsname, Qs, Ts)

C++ syntax

void ttSetCBSParameters(char *cbsname, double Qs, double Ts)

Arguments

cbsname Name of a CBS.
Qs Server budget.
Ts Server period.

Description

See Also

ttCreateCBS

96

ttSetData (TH)

Purpose

Update the local memory data structure associated with a specific task.

Matlab syntax

ttSetData(taskname, data)

Arguments

taskname Name of a task.
data Updated data structure.

Description

This function is used to update the data structure of a specific task. The data
structure represents local memory of the task and is normally updated in the
code function of the task. Using this function in combination with ttGetData it
is possible to modify the data also outside the code function.

The ttSetData function only exists in Matlab syntax. No C++ version is needed,
since ttGetData gives a pointer to the task data structure.

See Also

ttGetData, ttCreateTask, ttCreatePeriodicTask

97

ttSetKernelParameter (ITH)

Purpose

Set a specific kernel parameter.

Matlab syntax

ttSetKernelParameter(parameter, value)

C++ syntax

void ttSetKernelParameter(char* parameter, double value)

Arguments

parameter The name of the parameter to be changed.
value The new value of the parameter.

Description

This function makes it possible to change kernel parameters on the fly. At the
moment the following parameters are supported:

• cpuscaling

• energyconsumption

The default parameter value is 1 for cpuscaling, and 0 for energyconsumption.
Setting the cpuscaling to 2 will make the kernel block execute everything twice
as fast as with 1. This makes it possible to experiment with different Dynamic
Voltage Scaling methods. At the same time the energy consumption can be set
to a realistic value and connected to a battery block.

98

ttSetNetworkParameter (ITH)

Purpose

Set a specific network parameter on a per node basis.

Matlab syntax

ttSetNetworkParameter(parameter, value)

ttSetNetworkParameter(networkNbr, parameter, value)

C++ syntax

void ttSetNetworkParameter(char* parameter, double value)

void ttSetNetworkParameter(int networkNbr, char* parameter, double value)

Arguments

parameter The name of the parameter to be changed.
value The new value of the parameter.
networkNbr The network interface on which the parameter should be

changed. The default network number is 1.

Description

This function makes it possible to change network parameters on a per node
basis. At the moment the following parameters are supported:

’transmitpower’ The transmitpower parameter is only valid when using the
wireless network and defaults to whatever is set in the block mask.

’predelay’ The time a message is delayed by the network interface on the send-
ing end. This can be used to model, e.g., a slow serial connection between
the computer and the network interface. The default value is zero.

’postdelay’ The time a message is delayed by the network interface on the
receiving end. The default value is zero.

99

ttSetNextSegment (TH)

Purpose

Set the next segment to be executed in the code function.

Matlab syntax

ttSetNextSegment(segment)

C++ syntax

void ttSetNextSegment(int segment)

Arguments

segment Number of the segment.

Description

This function is used to set the next segment to be executed, overriding the
normal execution order. This can be used to implement conditional branching
and loops (see, e.g., the description of ttWait). The segment number should be
between 1 and the number of segments defined in the code function.

100

ttSetX (ITH)

Purpose

Set a specific task attribute.

Matlab syntax

ttSetX(value)

ttSetX(value, taskname)

C++ syntax

void ttSetX(double value)

void ttSetX(double value, char *taskname)

Arguments

value Value to be set.
taskname Name of a task.

Description

These functions are used to manipulate task attributes. There exist functions
for the following attributes (with the true function name in parenthesis):

• relative deadline (ttSetDeadline)
• absolute deadline (ttSetAbsDeadline)
• priority (ttSetPriority)
• period (ttSetPeriod)
• worst-case execution time (ttSetWCET)
• execution time budget (ttSetBudget)

Use the ttSetX functions to change the default attributes defined by ttCreateTask

and ttCreatePeriodicTask. All these functions exist in overloaded versions as
shown by the syntax above. If the argument taskname is not specified, the call
will affect the currently running task. Below follow some special notes on the
individual functions:

ttSetDeadline: Changing the relative deadline of a task will only affect subse-
quent task jobs and not the absolute deadline of the currently running task job.
If deadline-monotonic scheduling is used, a call to this function may lead to a
context switch, or a re-ordering of the ready queue.

ttSetAbsDeadline: A call to this function will only affect the absolute deadline for
the current task job. If a deadline overrun handler is attached to the task, this
will be triggered based on the new absolute deadline. Using earliest-deadline-
first scheduling, a call to this function may cause a context switch, or a re-
ordering of the ready queue. An error will occur if the task has no running job.

ttSetPriority: Priority values for tasks should be non-negative. In the case of
fixed-priority scheduling a call to this function may lead to a context switch, or
a re-ordering of the ready queue.

101

ttSetPeriod: This function is only applicable to periodic tasks. Assuming a period
h1 before the call, task jobs are created at times h1, 2h1, 3h1, etc. If the call
is executed at time h1 + τ , new task jobs will be created at the times h1 + h2,
h1 + 2h2, h1 + 3h2, etc., where h2 is the new period of the task. Using rate-
monotonic scheduling, a call to this function may cause a context switch, or a
re-ordering of the ready queue. An error will occur if the task is not periodic.

ttSetWCET: Changes the worst-case execution time of the task. Each new task
job will get an execution time budget equal to the worst-case execution time
associated with task. A call to this function will not influence the execution time
budget of the currently running task job.

ttSetBudget: This call is used to dynamically change the execution time budget
of a running task job. When a task job is created, the execution time budget is
set to the worst-case execution time of the task. A call to this function will only
have effect if there is a worst-case execution time overrun handler attached to
the task. This handler is activated when the budget is exhausted, and will be
triggered based on the new execution time budget.

See Also

ttCreateTask, ttCreatePeriodicTask, ttGetX

102

ttSleep (T)

Purpose

Put the running task to sleep for a certain time.

Matlab syntax

ttSleep(duration)

C++ syntax

void ttSleep(double duration)

Arguments

duration The time that the task should sleep.

Description

This function is used to make the running task sleep for a specified amount of
time. This function is equivalent to ttSleepUntil(duration + ttCurrentTime()).
A call to this function will trigger execution of the suspend-hook of the task. When
the task wakes up, the resume-hook will be executed.

See Also

ttSleepUntil

103

ttSleepUntil (T)

Purpose

Put the running task to sleep until a certain point in time.

Matlab syntax

ttSleepUntil(time)

C++ syntax

void ttSleepUntil(double time)

Arguments

time The time when the task should wake up.

Description

This function is used to make the running task sleep until a specified point in
time. A call to this function will trigger execution of the suspend-hook of the
task.

See Also

ttSleep

104

ttTake (T)

Purpose

Take (wait for) a semaphore, blocking if the counter is zero or below.

Matlab syntax

ttTake(semname)

C++ syntax

void ttTake(char *semname)

Arguments

semname The name of the semaphore.

Description

This function is used to take a semaphore. Its semantics can be described by the
following pseudo-code:

value--;

if (value < 0) {

suspend the task and put it in the semaphore queue;

}

Example

function [exectime, data] = producer_code(seg, data)

switch seg,

case 1,

produce_data;

exectime = 0.020;

case 2,

ttTake(’sem’); % wait until the consumer task is ready

exectime = 0;

case 3,

send_data_to_consumer;

exectime = 0.005;

case 4,

exectime = -1;

end

See Also

ttCreateSemaphore, ttGive

105

ttTryFetch (TH)

Purpose

Fetch a message from a mailbox (non-blocking).

Matlab syntax

msg = ttTryFetch(mailboxname)

C++ syntax

void* ttTryFetch(char* mailboxname)

Arguments

mailboxname Name of a mailbox.

Description

This function is used to fetch messages from a mailbox. If successful, the function
returns the oldest message in the buffer of the mailbox. Otherwise, it returns
NULL (C++) or an empty matrix (Matlab).

See Also

ttCreateMailbox, ttTryPost, ttPost, ttFetch, ttRetrieve

106

ttTryPost (TH)

Purpose

Post a message to a mailbox (non-blocking).

Matlab syntax

ok = ttTryPost(mailboxname, msg)

C++ syntax

bool ttTryPost(char* mailboxname, void* msg)

Arguments

mailboxname Name of a mailbox.
msg An arbitrary data structure representing the contents of the

message to be posted.

Description

This function is used to post messages to a mailbox. If successful, the message is
put in the buffer of the mailbox, and the function returns true. Otherwise, the
function returns false.

See Also

ttCreateMailbox, ttTryFetch, ttPost, ttFetch, ttRetrieve

107

ttWait (T)

Purpose

Wait for an event (blocking).

Matlab syntax

ttWait(eventname)

C++ syntax

void ttWait(char *eventname)

Arguments

eventname Name of an event.

Description

This function is used to wait for an event. If the event is associated with a
monitor, the call must be performed inside a ttEnterMonitor-ttExitMonitor

construct. The call will cause the task to be moved from the ready queue to the
waiting queue of the event (the waiting queue is sorted using the priority function
in the same way as the ready queue). When the task is later notified, it will be
moved to the waiting queue of the associated monitor, or directly to the ready
queue if it is a free event. A call to this function will cause the suspend-hook of
the task to be executed.

Example

Example of an event-driven code function:

function [exectime, data] = ctrl(seg, data)

switch seg,

case 1,

ttWait(’Event1’);

exectime = 0.0;

case 2,

performCalculations;

exectime = 0.001;

case 3,

ttSetNextSegment(1); % loop and wait for new event

exectime = 0.0;

end

The event above may, e.g., be notified from an interrupt handler associated with
an external interrupt channel or the network receive channel of the kernel block.

See Also

ttEnterMonitor, ttCreateEvent, ttNotify, ttNotifyAll

108

15. References

Andersson, M., D. Henriksson, A. Cervin, and K.-E. Årzén (2005): “Simulation
of wireless networked control systems.” In Proceedings of the 44th IEEE
Conference on Decision and Control and European Control Conference ECC
2005. Seville, Spain.

Åström, K. J. and T. Hägglund (1995): PID Controllers: Theory, Design, and
Tuning. Instrument Society of America, Research Triangle Park, North
Carolina.

Bollella, G., B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and M. Turnbull
(2000): The Real-Time Specification for Java. Addison-Wesley.

Cervin, A., D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén (2003): “How does
control timing affect performance? Analysis and simulation of timing using
Jitterbug and TrueTime.” IEEE Control Systems Magazine, 23:3, pp. 16–30.

Henriksson, D., A. Cervin, and K.-E. Årzén (2002): “TrueTime: Simulation of
control loops under shared computer resources.” In Proceedings of the 15th
IFAC World Congress on Automatic Control. Barcelona, Spain.

Henriksson, D., A. Cervin, and K.-E. Årzén (2003): “TrueTime: Real-time control
system simulation with MATLAB/Simulink.” In Proceedings of the Nordic
MATLAB Conference. Copenhagen, Denmark.

Ohlin, M. (2006): “Feedback Linux scheduling and a simulation tool for wireless
control.” Licentiate Thesis ISRN LUTFD2/TFRT--3240--SE. Department of
Automatic Control, Lund University, Sweden.

Perkins, C. E. and E. M. Royer (1999): “Ad-hoc on-demand distance vector
routing.” In Proceedings of the 2nd IEEE Workshop on Mobile Computing
Systems and Applications, pp. 90–100. New Orleans, LA.

Perkins, C. E. and E. M. Royer (2003): “Ad-hoc on-demand distance vector
(AODV) routing.” Request for Comments: http://www.ietf.org/rfc/rfc3561.txt.

The Mathworks (2001): Simulink: A Program for Simulating Dynamic Systems
– User’s Guide. The MathWorks Inc., Natick, MA.

109

