miqp.m:
A Matlab function for solving Mixed Integer Quadratic Programs
Version 1.02
User Guide

Alberto Bemporad, Domenico Mignone
Institut fiir Automatik, ETH - Swiss Federal Institute of Technology
ETHZ - ETL, CH 8092 Ziirich, Switzerland
tel.+41-1-632 6679 fax +41-1-632 1211
{bemporad,mignone}@aut.ee.ethz.ch
http://control.ethz.ch

October 6, 2000

Abstract

This manual describes migp.m, a Matlab function for solving mixed integer quadratic
programs and mixed integer linear programs. The solver is implemented using a branch and
bound technique and allows the user to specify various options, like tree exploring strategies,
branching variable selection rules, and many more.

1 Purpose
The matlab function migp.m solves the following mixed integer quadratic program (MIQP):

min 0.52"Hx + fTz

subject tlo Ax <b
Acqgx = beg
vp <@ < Vyp
x € R% x {0,1}"
T(ivartype) € {0, 1}

The length of the optimization vector x is n = n. + ngq. The variables indexed by iyartype,
which is a subset of {1,...,n.+ng4}, are constrained to be binary. The matrix H € R"*™ is
positive semidefinite. The special case where H = 0 is called mixed integer linear program
(MILP) and it can also be handled by migp.m. The matrix A € R™*" and the vector
b € R™ define linear inequality constraints on the optimization variables. Linear equality
constraints are given by A., € R™ %" and beq € R™ Bounds on z can be specified by the
vectors v, € R, v, € R™.

2 Contents of the Package

The package is available from the Automatic Control Laboratory of ETH Ziirich, Switzerland,
or directly from the URL:
http://control.ee.ethz.ch/ hybrid/miqp/

The following files are distributed:

migp.pdf: This user guide
migp.m: The matlab function
gphess.m: Auxiliary file to use with the NAG foundation toolbox solver eO4naf .m

test.m: A simple test problem reported in Section 6

3 Requirements

3.1 Matlab Version

The function migp.m runs with Matlab Version 5.2 or higher

3.2 The QP and LP Solvers

The function migp . m requires the availability of solvers for linear programs (LP) and quadratic
programs (QP). The solvers listed in Table 1 are currently sopported by migp.m.

QP solvers input parameter
quadprog.m | QP solver from Matlab’s optimization toolbox | 'quadprog’
qp.m Old version of quadprog.m qp’

e04naf.m QP solver from NAG foundation toolbox ‘qpnag’

LP solvers input parameter
linprog.m LP solver from matlab’s optimization toolbox | ’linprog’

lp.m Old version of linprog.m Ip’

e04mbf.m LP solver from NAG foundation toolbox ‘Ipnag’

Table 1: QP and LP solvers supported by migp.m. The column “input parameter” denotes the
code to be specified for choosing the corresponding solver, see the usage of Options in Section
4.3

Using eO4naf .m requires also a Matlab m-function performing the simple matrix-vector
product H - x. A simple implementation of such a function gphess.m, which is distributed
with migp.m.

If one or more solvers for LP and QP are not available on the user’s platform, it is
recommended to force the use of the available solvers by setting the parameter Options
appropriately, as explained in Section 4.3.

4 Input Parameters

The header of miqp.m is:
[xmin,fmin,flag,Extendedflag]=miqp(H,f,A,b,Aeq,beq,vartype,lb,ub,x0,0ptions)

4.1 Mandatory Arguments

The input arguments listed in Table 2 are mandatory when calling miqp.m:

4.2 Optional Arguments

The input arguments listed in Table 3 are optional when calling miqp.m. If the input
arguments are not specified, have values lying out of the allowed range, or they are
passed as empty arguments ([]), the default values are assumed.

H, f | parameters of the cost function
A, b | parameters defining the inequality constraints

Table 2: Mandatory input arguments of migp.m

argument | meaning default

Aeq Equality constraints [

beq Equality constraints []

vartype | Vector defining binary variables | |]

1b Lower bounds on x —0

ub Upper bounds on x 400

x0 Initial condition 0

Options | further options see Section 4.3

Table 3: Optional input arguments of migp.m

4.3 The Optional Argument Options

The input argument Options is used to define several features of the branch and
bound procedure. Options is a structure in Matlab format. To specify an option,
the corresponding field must be defined and its value must be set to an admissible
value listed in Tables 4 and 5.

Example: The field solver is used to specify the QP/LP solver, to be used in
migp.m. The list of supported solvers is given in Table 4. To set the solver to
quadprog.m, the syntax is:

options = [1;
options.solver = ’quadprog’;

[xmin,fmin,flag,Eflag] = miqp(H,f,A,b,Aeq,beq,vartype,1lb,ub,x0,0ptions)

Any fields other than those listed in Tables 4 and 5 are ignored. If options.field
is a valid field, but its value lies outside the domain specified for each field, the default
value is taken, and a warning message is produced. Default values are also assumed,
if Options is not defined, or if Options does not have the corresponding fields.

Some fields of the structure Options are explained next:

method: Specifies the tree exploring strategy. The values depth and breadth specify
standard depth first and breadth first strategies. The value best specifies the
best first strategy: the binary tree is explored, such that those problems are
solved first, that have the lowest cost in the father problem. With the option
bestdepth the cost of the father problem is normalized with the depth of the
node in the tree.

branchrule: Specifies the node section strategy. If branchrule= first, the first
free variable among the relaxed binary variables is chosen. If branchrule= max
or min, the relaxed variable is chosen, where the fractional part is nearer or
further away from the next binary variable.

order: During the branch and bound procedure the subproblems are separated by
setting the branching variable to zero for one relaxed problem and to one for
the other. The problems are then pushed onto the stack. The parameter order

field in Options | meaning of field possible values meaning of values
solver solver to be used p’
'linprog’
'Ipnag’
‘qp’ see Table 1
‘quadprog’ (def.)
‘gpnag’
method tree exploring "depth’ (def.) depth first search
strategy "breadth’ breadth first search
"best’ best first search
"bestdepth’ normalized best first search
branchrule branching rule, "first’(def.) first free variable
node selection ‘max’ maximum fractional part
‘min’ minimum fractional part
order prioritized problem | 0 (def.) last binary var. set to 0
1 last binary var. set to 1
verbose amount of messages | 0 (def.) quiet
1 medium number of messages
2 high number of messages

Table 4: Optional input arguments of migp.m, part 1, “def.” denotes the default value. Note

7

that all values in quotation marks ’.” must be entered as strings in Matlab format.

field in Options | meaning of field possible values
maxqp Maximum number of LPs or QPs allowed to be solved. positive integer
(def. = o0)
inftol Large number to be considered as infinity in constraints. | positive real
This is only used with the solvers from the NAG toolbox. | (def. = 108)
matrixtol Tolerance for recognizing that the MIQP is an MILP, by | nonnegative real
testing, whether max(svd(H)) < matrixtol. (def. = 1079)
postol Tolerance for recognizing H > 0, by testing on the nonnegative real
relaxed QP, whether cond(H) < postol. (def. = 0)
integtol Tolerance to recognize integers nonnegative real
(def. = 10~*
maxQPiter Maximum number of iterations within each QP or LP. positive integer
(def. = 1000)

Table 5: Optional input arguments of miqp.m, part 2, “def.” denotes the default value

specifies which problem is put onto the stack as second, i.e. is solved first. If
order = 0, the problem where the branching variable has been set to zero is
solved first.

maxqgp: The computations are stopped, as soon as the number of relaxed QPs or
LPs has reached maxqp. The currently best feasible solution is returned as the
optimum and the optimizer. If no feasible solution has been found up to the
instant, when maxQPiter programs are solved, the problem is reported to be
infeasible. Reaching this limit is also reported in the output parameter flag
mentioned in Section 5. This option can be used to get suboptimal solutions
within a short computation time.

inftol: Using a solver from the NAG foundation toolbox, it is possible to specify
a bound inftol. All numbers exceeding this value in magnitude are then
considered as infinity.

matrixtol: Tolerance for recognizing that the MIQP is actually an MILP. This
option is only used, if options.solver is undefined. In this case a check on
the matrix H is made and the solver is automatically chosen as ’linprog’ if the
maximum singular value of H is less than matrixtol. Otherwise the default
QP solver is chosen. If options.solver is defined, matrixtol is ignored.

postol: Tolerance for recognizing, whether H is positive definite or only positive
semidefinite. If any relaxed QP has

cond(H) < options.postol

and options.verbose > 1 then a warning message is produced. To avoid
the computation of the condition number for each relaxed QP, leave this field
undefined. As a default, this parameter is left undefined, i.e. no check is
performed. If the parameter is defined, but its value is not a nonnegative real,
the value is set to 1076.

integtol: A variable is recognized as 0 or 1, if it lies closer than this threshold to
either 0 or 1. This parameter has a significant influence on the branch and
bound procedure. It should not be chosen smaller, than the expected absolute
precision of the QP or LP solver.

maxQPiter: The QP and LP solvers supported by migp.m allow to specify the maxi-
mum number of steps that are allowed to be done within the QP and LP solver.
This value can be be specified with options.maxQPiter.

5 Output Parameters

The output parameters have the following interpretations:
xmin: Minimizer of the MIQP
fmin: Minimum value of the cost function
flag: characterization of solution according to the following list
1: optimum found
5: feasible, but not integer feasible
7: infeasible, since relaxed problem is infeasible

11: integer feasible, however the limit maxqp of QPs has been reached, i.e. the
solution might be suboptimal

15: feasible, but not integer feasible, however the limit maxqp of QPs has been
reached, i.e. the search might not have lasted long enough

-1: the solution is unbounded
Extendedflag Structure in with following fields
Qpiter: total number of QPs (LPs) solved
time: time elapsed for running the function
optQP: number of QP (LP) at which the optimum was found

6 Function Call

A typical example of usage of migp.m is given next.

zeros(4,4); % MILP
b=1[2, -3, -2, -3]7;
C=1[-1 -1 -1 -1;

10 5 3 4;

-10 00];
d=1[-2 10 0]’;

=]
]

vlb = [-1e10 0 0 0];
vub = [1le10 1 1 1];
ivar = [2 3 4];

x0 = zeros(size(Q,1),1);

options = [];
options.integtol = le-6;
options.solver ’qpnag’;

[xsol,fsol,flag,Eflag]l=miqp(Q,b,C,d, [], [],ivar,vlb,vub,x0,options)
This produces the solution

xsol = [0 1 0 1];
fsol = -6;

7 Conditions of Use

This library is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this library; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

8

9

Notes

e The bounds on the optimization variable 1b and ub are set automatically to 0

and 1 for the binary variables, i.e. the specification

Ulb(ivartype) = [0, - ,0]

vub(ivartype) = [1, RN 1]

are added by miqgp.m, if they sould be missing.

If, for some reason, a problem has to be solved, where one or more binary vari-
ables are set to 0 or 1 a priori, this can be specified by setting the corresponding
entries of 1b and ub both to 0 or to 1 respectively.

For some solvers a number of messages about infeasibility of the problem are
reported on the screen. These messages are due to the infeasibility of the
relaxed problems during branch and bound and are normally not referred to the
infeasibility of the overall problem. For the feasibility of the problem, please
check the output parameter flag.

Contacts

We are glad to hear any kind of feedback, suggestions and correction about miqgp.m.
Please contact us at the address mentioned on the first page of this document.

10 Acknowledgements

We would like to thank Fabio Danilo Torrisi for the extremely useful comments
and suggestions during several stages of the development of the solver. We would
also thank Giancarlo Ferrari-Trecate, Francesco Borrelli, Dario Castagnoli and Eric
Kerrigan for having tested the solver.

