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Abstract

This is the HYSDEL user guide. HYSDEL allows to model a class of hybrid systems described
by interconnections of linear dynamic systems, automata, if-then-else and propositional logic
rules. For this class of systems we present general techniques for transforming an abstract
representation into a set of constrained linear difference equations involving integer and
continuous variables. The resulting model can be immediately used for optimization, to
solve, e.g., optimal control problems or as an intermediate step to obtain other popular
representations such as piecewise affine systems.
The developer’s manual [39] completes the present document with the details on the

implementation of HYSDEL and is included in the source distribution.
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Preface

What are hybrid models

Mathematical models reproduce the behavior of physical phenomena. By considering the
process at different levels of detail, different models of the same process are usually available
in applied sciences. Models should not be too simple, otherwise they do not capture enough
details of the process, but also not too complicated in order to formulate and efficiently solve
interesting analysis and synthesis problems.
In the last years, several computer scientists and control theorists have investigated models

describing the interaction between continuous dynamics described by differential or difference
equations, and logical components described by finite state machines, if-then-else rules,
propositional and temporal logic [3]. Such heterogeneous models, denoted as hybrid models,
switch among many operating modes, where each mode is associated with a different dynamic
law, and mode transitions are triggered by events, like states crossing pre-specified thresholds.
The practical relevance of hybrid models is twofold. The increasing profitability of logic

controllers embedded in a continuous environment is demanding for adequate modeling,
analysis and design tools, for instance in the automotive industry [5]. Moreover, many
physical phenomena admit a natural hybrid description, like circuits integrating relays or
diodes, biomolecular networks [1], and TCP/IP networks in [34].
Hybrid models are needed to address a number of problems, like definition and computation

of trajectories, stability and safety analysis, control, state estimation, etc. The definition of
trajectories is usually associated with a simulator, a tool able to compute the time evolution
of the variables of the system. This may seem straightforward at first, however many hybrid
formalisms introduce extra behaviors like Zeno effects [37], that complicate the definition of
trajectories. Although simulation allows to probe the model, it certainly does not permit
to assess structural properties of the model. In fact any analysis based on simulation is
likely to miss the subtle phenomena that a model may generate, especially in the case of
hybrid models. Tools like reachability analysis and piecewise quadratic Lyapunov stability
are becoming a standard in analysis of hybrid systems. Reachability analysis (or safety
analysis or formal verification) aims at detecting if a hybrid model will eventually reach
an unsafe state configuration or satisfy a temporal logic formula [21]. Reachability analysis
relies on a reach set computation algorithm, which is strongly related to the mathematical
model of the system [48]. Piecewise quadratic Lyapunov stability [38], is a deductive way
to prove the stability of an equilibrium point of a subclass of hybrid systems (piecewise
linear systems), the computational burden is usually low, at the price of a convex relaxation
of the problem which leads to conservative results. While for pure linear systems it exists
a complete theory for the identification of unknown system parameters, the extension to
general hybrid systems is still under investigation. Controlling a model (and therefore a
process) means to choose the input such that the output tracks some desired reference. The
control (or scheduling) problem can be tackled in several ways, according to the model type
and control objective. Most of the control approaches are based on optimal control ideas
(see e.g. [19]). The dual problem of control is state estimation, which amounts to compute
the value of unmeasurable state variables based on the measurements of output variables.
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The main applicative relevance of state estimation is for control, when direct measurements
of the state vector are not possible, and for monitoring and fault detection problems.

Several classes of hybrid systems have been proposed in the literature, each class is usually
tailored to solve a particular problem. Timed automata and hybrid automata have proved
to be a successful modeling framework for formal verification, and have been widely used
in the literature. The starting point for both models is a finite state machine equipped
with continuous dynamics. In the theory of timed automata [4], the dynamic part is the
continuous-time flow ẋ = 1. Efficient computational tools complete the theory of timed
automata and allow to perform verification [17,23] and scheduling [6] of such models. Timed
automata were extended to linear hybrid automata [2], where the dynamics is modeled by the
differential inclusion a ≤ ẋ ≤ b. Specific tools allow to verify such models against safety and
liveness requirements. Linear hybrid automata were further extended to hybrid automata
where the continuous dynamics is governed by differential equations. Tools exist to model
and analyze those systems, either directly [22,47] or by approximating the model with timed
automata or linear hybrid automata [51].

In this paper we will focus on discrete hybrid automata (DHA). DHA result from the
connection of a finite state machine (FSM), which provides the discrete part of the hybrid
system, with a switched affine system (SAS), which provides the continuous part of the hy-
brid dynamics. The interaction between the two is based on two connecting elements: The
event generator (EG) and the mode selector (MS). The EG extracts logic signals from the
continuous part. Those logic events and other exogenous logic inputs trigger the switch of
the state of the FSM. The MS combines all the logic variables (states, inputs, and events)
to choose the mode (=continous dynamics) of the SAS. Continuous dynamics and reset
maps are expressed as linear affine difference equations. DHA models are a mathematical
abstraction of the features provided by other computational oriented and domain specific
hybrid frameworks: Mixed logical dynamical (MLD) models [12], piecewise affine (PWA)
systems [49], linear complementarity (LC) systems [20, 31, 32, 46, 52], extended linear com-
plementarity (ELC) systems [24, 33], and max-min-plus-scaling (MMPS) systems [25, 33].
In particular, as shown first in [50] and then, with different arguments, in [8, 33] all those
modeling frameworks are equivalent and it is possible represent the same system with models
of each class.

DHA are formulated in discrete time. Despite the fact that the effects of sampling can
be neglected in most applications, subtle phenomena such as Zeno behaviors do not appear
in discrete time. Although it is possible to consider hybrid automata in continuous-time,
computation is efficiently tractable only for discrete time models1. As anticipated DHA
generalize many computational oriented models for hybrid systems and therefore represent
the starting point for solving complex analysis and synthesis problems for hybrid systems.

In particular the MLD and PWA frameworks allow to recast reachability/observability
analysis, optimal control, and receding horizon estimation as mixed-integer linear/quadratic
optimization problems. Reachability analysis algorithms were developed in [14] for MLD
and PWA hybrid systems, extended in [15] for stability and performance analysis of hybrid
control systems, and in [16] to perform parametric verification. In [10] the authors presented
a novel approach for solving scheduling problems using combined reachability analysis and
quadratic optimization for MLD and PWA models. For feedback control, in [12] the authors
propose a model predictive control scheme which is able to stabilize MLD systems on desired
reference trajectories while fulfilling operating constraints, and possibly take into account
previous qualitative knowledge in the form of heuristic rules. Similarly, the dual problem of

1Many tools for continuous-time hybrid models perform internally a time discretization of the model in
order to execute the computations.
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state estimation admits a receding horizon solution scheme [11].
In [31,52] (linear) complementarity systems in continuous time have been studied. Appli-

cations include constrained mechanical systems, electrical networks with ideal diodes or other
dynamical systems with piecewise linear relations, variable structure systems, constrained
optimal control problems, projected dynamical systems and so on [31, Ch. 2]. Issues related
to modeling, well-posedness (existence and uniqueness of solution trajectories), simulation
and discretization have been of particular interest.
Finally, we mention that identification techniques for piecewise affine systems were recently

developed [13, 28, 40], that allow to derive models (or parts of models) from input/output
data.
In this manual we present a theoretical framework for DHA systems. We will go through

the steps needed for modeling a system as DHA. We will first detail the process of translating
propositional logic involving Boolean variables and linear threshold events over continuous
variables into mixed-integer linear inequalities, generalizing several results available in the
literature [12, 44, 53], in order to get an equivalent MLD form of a DHA system, which is
later used to obtain the equivalent PWA, LC, ELC, and MMPS system. We will present
the tool HYSDEL (=HYbrid Systems DEscription Language), that allows describing the
hybrid dynamics in a textual form, and a related compiler which provides different model
representations of the given hybrid dynamics.
The latest version of the HYSDEL compiler is available at http://control.ethz.ch/

~hybrid/hysdel. Applications of HYSDEL can be found at http://control.ethz.ch/
~hybrid/.
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1 Discrete Hybrid Automata

Discrete hybrid automata (DHA) are the interconnection of a finite state machine and a
switched linear dynamic system through a mode selector and an event generator (see Fig-
ure 1.1).
In the following we will use the fact that any discrete variable α ∈ {α1, . . . , αj}, admits

a Boolean encoding a ∈ {0, 1}d(j). From now on we will refer to either the variable or its
encoding with the same name.

1.1 Switched Affine System (SAS)

A switched affine system is a collection of linear affine systems:

x′r(k) = Ai(k)xr(k) +Bi(k)ur(k) + fi(k) (1.1a)

yr(k) = Ci(k)xr(k) +Di(k)ur(k) + gi(k), (1.1b)

where k ∈ Z+ is the time indicator, ′ denotes the successor operator (x′r(k) = xr(k + 1)),
xr ∈ Xr ⊆ Rnr is the continuous state vector, ur ∈ Ur ⊆ Rmr is the exogenous continuous
input vector, yr ∈ Yr ⊆ Rpr is the continuous output vector, {Ai, Bi, fi, Ci, Di, gi}i∈I is a
collection of matrices of suitable dimensions, and the mode i(k) ∈ I is an input signal that
chooses the linear state update dynamics. We denote by ]I = s the number of elements in
I. A SAS of the form (1.1) preserves the value of the state when a switch occurs, however it
is possible to implement reset maps on a SAS, as we will show later in this section. A SAS
can be rewritten as the combination of linear terms and if-then-else rules: the state-update
Equation (1.1a) is equivalent to

z1(k) =

{

A1xr(k) +B1ur(k) + f1, if (i(k) = 1),
0, otherwise,

(1.2a)

...

zs(k) =

{

Asxr(k) +Bsur(k) + fs if (i(k) = s),
0 otherwise,

(1.2b)

x′r(k) =
s
∑

i=1

zi(k) (1.2c)

where zi(k) ∈ Rnr , i = 1, . . . , s, and (1.1b) admits a similar transformation.

1.2 Event Generator (EG)

An event generator is a mathematical object that generates a logic signal according to the
satisfaction of a linear affine constraint:

δe(k) = fH(xr(k), ur(k), k), (1.3)

1



HYSDEL 2.0.5 1 Discrete Hybrid Automata

Figure 1.1: A discrete hybrid automaton (DHA) is the connection of a finite state machine (FSM)
and a switched affine system (SAS), through a mode selector (MS) and an event gen-

erator (EG). The output signals are omitted for clarity

where fH : Rnr × Rmr × Z≥0 → D ⊆ {0, 1}ne is a vector of descriptive functions of a linear
hyperplane, and Z≥0 , {0, 1, . . .} is the set of nonnegative integers. In particular, time events
are modeled as: [δie(k) = 1] ↔ [kTs ≥ t0], where Ts is the sampling time, while threshold
events are modeled as: [δie(k) = 1] ↔ [aTxr(k) + bTur(k) ≤ c], where the superscript i
denotes the i-th component of a vector.

1.3 Finite State Machine (FSM)

A finite state machine1 (or automaton) is a discrete dynamic process that evolves according
to a logic state update function:

x′b(k) = fB(xb(k), ub(k), δe(k)), (1.4a)

where xb ∈ Xb ⊆ {0, 1}nb is the Boolean state, ub ∈ Ub ⊆ {0, 1}mb is the exogenous Boolean
input, δe(k) is the endogenous input coming from the EG, and fB : Xb × Ub × D → Xb is
a deterministic logic function. A FSM can be conveniently represented using an oriented
graph. A FSM may also have an associated Boolean output

yb(k) = gB(xb(k), ub(k), δe(k)), (1.4b)

where yb ∈ Yb ⊆ {0, 1}pb .

Example 1 Figure 1.2 shows a finite state machine where ub = [ub1 ub2]
T is the input vector, and

δ = [δ1 . . . δ4]
T ia a vector of signals coming from the event generator. The state transition function

1In this paper we will only refer to synchronous finite state machines, where the transitions may happen
only at sampling times. The adjective synchronous will be omitted for brevity.

2
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Red

Green Blue

±4

ub2

±2

±1

ub ^ ±31

Figure 1.2: Example of finite state machine

is:

x
′
b(k) =























Red if ((xb(k) = Green) ∧ d4) ∨ ((xb(k) = Red) ∧ ¬ub2 ∧ ¬δ1),
Green if ((xb(k) = Red) ∧ ub2) ∨ ((xb(k) = Blue) ∧ δ2)∨

((xb(k) = Green) ∧ ¬δ4 ∧ ¬(ub1 ∧ δ3)),
Blue if ((xb(k) = Red) ∧ δ1) ∨ ((xb(k) = Green) ∧ (ub1 ∧ δ3))∨

((xb(k) = Blue) ∧ ¬δ2)).

(1.5)

By associating a Boolean vector xb = [
xb1
xb2 ] to each state (Red = [ 00 ], Green = [ 01 ], and Blue = [ 10 ]),

one can rewrite (1.5) as:

x
′
b1 = ¬((¬xb1 ∧ xb2 ∧ d4) ∨ (¬xb1 ∧ ¬xb2 ∧ ¬ub2 ∧ ¬δ1))

∨¬((¬xb1 ∧ ¬xb2 ∧ ub2) ∨ (xb1 ∧ ¬xb2 ∧ δ2) ∨ (¬xb1 ∧ xb2 ∧ ¬δ4 ∧ ¬(ub1 ∧ δ3)))

∨((¬xb1 ∧ ¬xb2 ∧ δ1) ∨ (¬xb1 ∧ xb2 ∧ (ub1 ∧ δ3)) ∨ (xb1 ∧ ¬xb2 ∧ ¬δ2)),

x
′
b2 = ¬((¬xb1 ∧ xb2 ∧ d4) ∨ (¬xb1 ∧ ¬xb2 ∧ ¬ub2 ∧ ¬δ1))

∨((¬xb1 ∧ ¬xb2 ∧ ub2) ∨ (xb1 ∧ ¬xb2 ∧ δ2) ∨ (¬xb1 ∧ xb2 ∧ ¬δ4 ∧ ¬(ub1 ∧ δ3)))

∨¬((¬xb1 ∧ ¬xb2 ∧ δ1) ∨ (¬xb1 ∧ xb2 ∧ (ub1 ∧ δ3)) ∨ (xb1 ∧ ¬xb2 ∧ ¬δ2)),

where the time index, k, has been omitted for brevity.

1.4 Mode Selector (MS)

The logic state xb(k), the Boolean inputs ub(k), and the events δe(k) select the dynamic
mode i(k) of the SAS through a Boolean function fM : Xb ×Ub ×D → I, which is therefore
called mode selector. The output of this function

i(k) = fM(xb(k), ub(k), δe(k)) (1.6)

is called active mode. We say that a mode switch occurs at step k if i(k) 6= i(k − 1). Note
that contrarily to continuous time hybrid models, where switches can occur at any time, in
our discrete-time setting a mode switch can only occur at sampling instants.

1.5 Reset Maps

In correspondence with a mode switch i(k) = j, i(k − 1) = h 6= j, h, j ∈ I, instead of
evolving x′r(k) = Ajxr(k) +Bjur(k) + fj it is possible to associate a reset of the continuous
state vector

x′r(k) = φ−→
hj
(xr(k), ur(k)) = A−→

hj
xr(k) +B−→hjur(k) + f−→hj (1.7)

3



HYSDEL 2.0.5 1 Discrete Hybrid Automata

the function φ−→
hj
is called reset map. The reset can be considered as a special dynamics

that only acts for one sampling step. Figure 1.3(a) shows how a reset affects the state
evolution: At time k = 5 the system is in mode i(5) = 1, at time k = 6 the state xr(6) =
A1xr(5) + B1ur(5) + f1 enters the region xr ≥ 0. This generates an event δe(6) through
the EG, which in turn causes the MS to change the system dynamics to i(6) = 2. The
mode switch 1→ 2 resets xr(7) = A−→

12
xr(6) + B−→12ur(6) + f−→12. If the state xr(7) after reset

belongs again to the region where the mode 2 is active, i(7) = 2, the successor state is
xr(8) = A2xr(7)+B2ur(7)+f2. It might even happen that xr(7) belongs to another region,
say a region where mode 3 is active, i(7) = 3: In this case, since i(6) 6= i(7), a further reset
2→ 3 is applied, xr(8) = A−→

23
xr(7) +B−→23ur(7) + f−→23.

Proposition 1 A DHA Σa with reset conditions can be rewritten as a DHA Σ without reset
conditions.

Proof. Let the superscript a denote the variables of Σa. Let xb(k) = [x
a
b(k);x

a
b(k− 1); δae(k−

1);ua
b(k − 1)], where ; denotes the concatenation of column vectors, δe(k) = δae(k), ub(k) =

ua
b(k), xr(k) = xa

r(k), ur(k) = ua
r(k), yr(k) = ya

r(k), yb(k) = ya
b (k), and define the FSM

x′b(k) = fB(xb(k), ub(k), δe(k)) =

[

fa
B(xa

b(k),ub(k),δe(k))

xa
b(k)

δe(k)
ub(k)

]

.

The SAS dynamics of Σ is defined as in (1.1) with i(k) ∈ {1, 2, . . . , sa, sa+1, . . . , sa+r}, where
sa is the number of modes of Σa, and r ≤ sa(sa−1) is the number of reset maps (we assume
that when the mode switch h→ j of Σ0 does not have an associated reset map f

a
−→
hj
, then fa

−→
hj

defaults to the j-th state update map). The MS of Σ should internally compute j = ia(k),
h = ia(k − 1), compare them, and then choose either the j-th dynamics (if j = h, or j 6= h
and fa

−→
hj
is not specified) or the reset dynamics f a

−→
hj
. Since ia(k) = fa

M(x
a(k), ua

b(k), δ
a
e(k)),

ia(k− 1) = fa
M(x

a(k− 1), ua
b(k− 1), δae(k− 1)), it follows that the mode i(k) is a function of

xb(k), ub(k), δe(k). 2

In some circumstances, it is desirable to predict the mode switch and to anticipate the
reset by one sampling step, i.e., to reset the state before the guardline is actually crossed.
Assume that the event δe(k) triggering the mode switch does not depend on the continuous
input ur(k), and that the logic input ub(k) does not affect the mode selector. In this
case, i′(k) = fM(x

′
b(k), fH(x

′
r(k), k)) only depends on quantities available at step k, and a

mode switch i′(k) 6= i(k) can be predicted already at step k. In this case, we can apply the
corresponding reset directly for x′r(k) = A−→

hj
xr(k)+B−→hjur(k)+f−→hj where h = i(k), j = i′(k).

This kind of resets will be referred to as predicted resets, in order to distinguish them from
the resets described before, that we will call a-posteriori resets.
Consider Figure 1.3(b). At time k = 5 the state xr(5) and the input ur(5) are such that

A1xr(5) + B1xr(5) + f1 ≥ 0 which would generate an event δe at the next time step. As
a consequence of the predicted mode switch, the state is reset according to the reset map
f−→
12
(x, u), i.e., x(6) = A−→

12
x(5) +B−→

12
x(5) + f−→

12
.

Proposition 2 Assume that the event δe(k) does not depend on the continuous input ur(k),
and that the mode i(k) does not depend on the logic input ub(k). Then a DHA Σ

a with
predicted resets can be rewritten as a DHA Σ without resets.

Proof. Let again the superscript a denote the variables of Σa. By hypothesis, predicted
resets imply that δae(k + 1) only depends on k and x

a
r(k + 1), which is a function of x

a
r(k),

4
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xr(7) = A¡!
12
xr(6) + B¡!

12
ur(6) + f¡!

12

xr(6) = A1xr(5) + B1ur(5) + f1

(a) A posteriori resets (b) Predictive resets

Figure 1.3: Reset maps

ua
r(k), i

a(k). Define the EG for system Σ as δe(k) = [δ
a
e(k); δ

a
e(k+1)], and let xb(k) = xa

b(k),
ub(k) = ua

b(k), xr(k) = xa
r(k), ur(k) = ua

r(k), yr(k) = ya
r(k), yb(k) = ya

b (k). Let the FSM
for system Σ be equal to the FSM of Σa, and define the SAS dynamics of Σ as in the
proof of Proposition 1. The MS of Σ should internally compute j = ia(k + 1), h = ia(k),
compare them, and then choose either the j-th dynamics (if j = h, or j 6= h and f a

−→
hj

is not specified) or the reset dynamics f a
−→
hj
. Since ia(k) = fa

M(x
a
b(k), δ

a
e(k)), i

a(k + 1) =

fa
M(f

a
B(x

a
b(k), u

a
b(k), δ

a
e(k)), δ

a
e(k + 1)), it follows that the mode i(k) of the SAS dynamics of

system Σ is a function of xb(k), ub(k), δe(k). 2

Example 2 Let us consider a DHA with two modes:

SAS: x′r(k) =

{

xr(k) + ur(k)− 1, if i(k) = 1,
2xr(k), if i(k) = 2,

EG: δe(k) = [xr(k) ≥ 0],

MS: i(k) =

{

1, if δe(k) = 0,
2, if δe(k) = 1.

In order to add the predictive reset map f−→
12
(xr, ur) = 2 to the model, we first consider the set

P = {xr, ur : a1xr + b1ur + f1 ≥ 0} of all the state/input pairs that will trigger the event δe in
one step and add an event δf = a1xr + b1ur + f1 ≥ 0 in the EG. If the current mode is i = 1 and
the pair (xr, ur) triggers the event δf then the state should be updated according to the reset map.
Summing up, we can write the following DHA:

SAS: x′r(k) =







xr(k) + ur(k)− 1, if i(k) = 1,
2xr(k), if i(k) = 2,
2, if i(k) = 3,

EG:

{

δe(k) = [xr(k) ≥ 0],
δf (k) = [xr(k) + ur(k)− 1 ≥ 0],

MS: i(k) =















1, if
[

δe(k)
δf (k)

]

= [ 00 ] ,

2, if δe(k) = 1,

3, if
[

δe(k)
δf (k)

]

= [ 01 ]

(1.8)

which admits a PWA (3.1) representation (Figure 1.4) that clearly shows that the reset condition
is another dynamical mode.
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Figure 1.4: Equivalent PWA system

1.6 DHA Trajectories

For a given initial condition
[

xr(0)
xb(0)

]

∈ Xr × Xb, and input
[

ur(k)
ub(k)

]

∈ Ur × Ub, k ∈ Z≥0, the

state trajectory x(k), k ∈ Z≥0, of the system is recursively computed as follows:

1. Initialization: x(0) =
[

xr(0)
xb(0)

]

;

2. Recursion:

a) δe(k) = fH(xr(k), ur(k), k);

b) i(k) = fM(xb(k), ub(k), δe(k));

c) yr(k) = Ci(k)xr(k) +Di(k)ur(k) + gi(k);

d) yb(k) = gB(xb(k), ub(k), δe(k));

e) x′r(k) = Ai(k)xr(k) +Bi(k)ur(k) + fi(k);

f) x′b(k) = fB(xb(k), ub(k), δe(k)).

Definition 1 A DHA is well-posed on Xr×Xb, Ur×Ub, Yr×Yb, if for all initial conditions
x(0) =

[

xr(0)
xb(0)

]

∈ Xr ×Xb, and for all inputs u(k) =
[

ur(k)
ub(k)

]

∈ Ur × Ub, for all k ∈ Z≥0, the

state trajectory x(k) ∈ Xr ×Xb and output trajectory y(k) =
[

yr(k)
yb(k)

]

∈ Yr ×Yb are uniquely
defined.

Definition 1 will be used for other types of hybrid models that we will introduce later. In
general a hybrid model may not be well-posed, either because the trajectories stop after a
finite time (for instance, the state vector leaves the set Xr × Xb) or because of bifurcations
(the successor x′r(k), x

′
b(k) may be multiply defined). In general a DHA can be “not well-

posed” only if its trajectories are not defined after finite time. This means that DHA can
not bifurcate.
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2 HYSDEL Models

We designed a modeling language to describe DHA models, called HYbrid System DEscrip-
tion Language (HYSDEL). In this section we will detail the language capabilities and we
will show how DHA systems can be modeled within HYSDEL. As we will explain better
in the next section, the HYSDEL description is an abstract modeling step. The associated
HYSDEL compiler then translates the description into several computational models, in
particular into MLD and PWA form.

2.1 HYSDEL List

A HYSDEL list is composed by two parts INTERFACE and IMPLEMENTATION. The dec-
laration of an empty system is as follows:
SYSTEM name {
/* C-style comments */

INTERFACE {

}

IMPLEMENTATION {

}

}

HYSDEL has a syntax based on C-language, it allows C-style comments (/* ... */) and
uses the curly braces (“{” and “}”) delimiters. All the sections start with the section name
in capital letters followed by the content of the section enclosed in curly braces. In the
informal description of the grammar that follows, we use courier font to specify keywords
and language constructs (or terminals tokens), slanted roman font to denote user defined
content (or intermediate lexical tokens). We denote by the subscript opt optional parts and
by + a declaration that can be repeated one or more times. We will omit the definitions of
some tokens, if intuitive. A formal description of the grammar is reported in [39] and the
file hys.y of the source distribution contains the bison description of the grammar.

2.1.1 INTERFACE Section

The INTERFACE section contains the declarations, divided into subsections called STATE,
INPUT, OUTPUT and PARAMETER, the order in which those sections are declared is not
relevant. The first three declarations are referred to as variable declaration, while the last
is a parameter declaration. A real variable declaration has the general form: REAL name
[min, max]opt; where the optional declaration [min, max] contains the bounds of the
variable. The type specifier REAL can be replaced with the keyword BOOL if the variable is
Boolean, in such a case the bound declaration is forbidden and defaults to [0, 1]. Two or
more variable declarations can share the type specifier by using a “,” in the declaration:
BOOL name1, name2+;.
There are three kinds of parameter declarations:

Boolean parameters: BOOL parname = value where value; can be either TRUE or FALSE;
any further occurrence of the parameter is then replaced with the corresponding value.
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Operator HYSDEL representation
· *

/ /

+ +

− -

ab a ^ b

eb = exp(b) exp(b)√
a sqrt(a)

log a log(a)

cos(a) cos(a)

sin(a) sin(a)

Table 2.1: List of operators supported on
parameter declarations

Operator HYSDEL representation
∧ & or &&
∨ | or ||
⇒ ->

⇐ <-

⇔ <->

¬ ~ or !

Table 2.2: List of operators supported on
Boolean expressions

Real numeric parameters: REAL parname = number;, any further occurrence of the param-
eter is then replaced with the corresponding value.

Real symbolic parameters: REAL parname;, the parameter is handled symbolicaly.

Any parameter can be defined in terms of other parameters declared before using the opera-
tors and functions in Table 2.1, and can be used thereinafter as it was a number. HYSDEL
predefines two real parameters pi = π and the tolerance MLD_epsilon = 10−6 used for the
relations (3.10c). Both the parameters can be redefined to different values.
Currently HYSDEL supports only scalar data types, there is no support for vectors and

matrices.
Before describing in detail the IMPLEMENTATION section, we recall some definitions.

Boolean-expr, affine-expr, linear-expr

A Boolean-expr is the combination of Boolean variables and the operators reported in Ta-
ble 2.2.
An affine-expr is linear affine combination of real variables

a0 + a1x1 + a2x2 + . . .+ anxn, (2.1)

where ai is a function of parameters, and xi are real (state, input, output, and auxiliary)
variables. If a0 = 0 then (2.1) is a linear-expr.

2.1.2 IMPLEMENTATION Section

The second part, IMPLEMENTATION, is composed of specialized sections describing the
relations among the variables. The IMPLEMENTATION section starts with an optional AUX
section which contains the declarations of the internal signals of the DHA system, called also
auxiliary variables. The declaration follows the general syntax of the variable declaration.

OUTPUT Section

The OUTPUT section allows specifying static linear and logic relations for the output vector
y = [ yryb ].
The general syntax is:
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OUTPUT{output-item+}

and each output-item is one of the following:

var = affine-expr ;
var = Boolean-expr ;

AD Section

The HYSDEL section AD allows to define Boolean variables from continuous ones, and is
based exactly on the same semantics of the event generator (EG) described earlier.
The general syntax is:

AD{ad-item+}

and each ad-item is one of the following:

var = affine-expr <= real-number ;
var = affine-expr >= real-number ;

and the syntax (used by the former version of the HYSDEL compiler)

var = affine-expr <= 0 [min, max, epsilon];

is still accepted but not recommended because of the error prone specification of the bounds
[min, max, epsilon] on affine-expr1. The variable epsilon is the tolerance used for the
translation in MLD form according to (3.10c), if omitted, the value of MLD_epsilon is used.
HYSDEL does not provide explicit access to the time instance, however this limitation

can be easily overcome by adding a continuous state variable t such that t′ = t+ Ts, where
Ts is the sampling time. Examples include level indicator variables, operational alarms, etc.

Example 3 In a water tank with inflow Q, the sensor δ provides the signal 1 if and only if the
liquid level h ≥ 0.5hmax.

SYSTEM tank {

INTERFACE {

PARAMETER {

REAL hmax = 1; }

INPUT {

REAL h [0, hmax]; }

OUTPUT {

BOOL y; }

} /* end interface */

IMPLEMENTATION {

AUX {

BOOL d; }

AD {

d = 0.5 * hmax <= h; }

OUTPUT {

y = d;}

} /* end implementation */

} /* end system */

This file is available in the distribution as l0001.hys.

1The old bounds declaration [max, min, epsilon] is still accepted but is deprecated and will raise a
warning.
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LOGIC Section

The section LOGIC allows to specify arbitrary functions of Boolean variables: In particular
the mode selector is a Boolean function and therefore it can be modeled in this section.

The general syntax is:

LOGIC{logic-item+}

and each logic-item is as follows:

var = Boolean-expr ;

Example 4 The passengers of a train can pull the handle of the emergency stop, generating the
binary signal ualarm = 1. Usually, this causes an emergency stop of the train, by setting the
emergency braking signal ubrake = 1. However, the brake should not be activated if fire is detected
while the train is in a tunnel. We define the indicator variables for fire as sfire = 1 and tunnel
transition as stunnel = 1. Then we can describe this system as:

ubrake = ualarm ∧ (¬stunnel ∨ ¬sfire) . (2.2)

SYSTEM train {

INTERFACE {

INPUT {

BOOL alarm, tunnel, fire; }

OUTPUT {

BOOL brake;}

} /* end interface */

IMPLEMENTATION {

AUX {

BOOL decision; }

LOGIC {

decision = alarm & (~tunnel | ~fire); }

OUTPUT {

brake = decision; }

} /* end implementation */

} /* end system */

This file is available in the distribution as l0003.hys.

DA Section

The HYSDEL section DA defines continuous variables according to if-then-else conditions
on Boolean variables. This section models part of the switched affine system (SAS), namely
the variables zi defined in (1.2a)–(1.2b).

The general syntax is:

DA{da-item+}

each da-item is one of the following:

var = { IF Boolean-expr THEN affine-expr [min, max, epsilon]opt};

var = { IF Boolean-expr THEN affine-expr [min, max, epsilon]opt

ELSE affine-expr [min, max, epsilon]opt};
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here, the variable epsilon is a placeholder and is introduced for symmetry with the AD
section2. If the ELSE part is omitted, is is assumed to be 0.

Example 5 The command signal u to an electric motor is passed through a nonlinear amplifier,
which has two modes of operation: high gain and low gain. In “low gain” the amplifier completely
rejects the noise d, while in “high gain” it only attenuates it. The Boolean input l = 1 selects
the low gain mode. The actual signal ucomp applied to the motor is ucomp = u if l = 1, otherwise
ucomp = 2.3u+ 0.4d.

SYSTEM motor {

INTERFACE {

OUTPUT {

REAL ucomp; }

INPUT {

REAL u [0, 10], d [0, 10];

BOOL l; }

} /* end interface */

IMPLEMENTATION {

AUX {

REAL unl;}

DA {

unl = { IF l THEN u ELSE 2.3*u + 0.4*d};}

OUTPUT {

ucomp = unl; }

} /* end implementation */

} /* end system */

This file is available in the distribution as l0002.hys.

CONTINUOUS Section

The CONTINUOUS section describes the linear dynamics, expressed as difference equations.
This section models the remaining Equation (1.2c) of the SAS.
The general syntax is:

CONTINUOUS{cont-item+}

and each cont-item has the form:

var = affine-expr ;

LINEAR Section

HYSDEL allows also to define a continuous variable as an affine function of continuous
variables in the LINEAR section.
The general syntax is:

LINEAR{lin-item+}

and each lin-item has the form:

var = affine-expr ;

2The old bounds declaration [max, min, epsilon] is still accepted but is deprecated and will raise a
warning.

11



HYSDEL 2.0.5 2 HYSDEL Models

closing stop opening

u=close

u=close

u=close

u=stop

u=stop

u=stop

u=open
u=openu=open

Figure 2.1: Finite state machine of an outflow unit

This section, together with the CONTINUOUS and AD sections allows more flexibility when
modeling the SAS. This extra flexibility allows algebraic loops that may render undefined
trajectories of the model. The HYSDEL compiler integrates a semantic checker that is able
to detect and report such abnormal situations.

AUTOMATA Section

The AUTOMATA section specifies the state transition equations of the finite state machine
(FSM) as Boolean functions x′b(k) = fB(xb(k), ub(k), δe(k)).

The general syntax is:

AUTOMATA{automata-item+}

and each automata-item is as follows:

var = Boolean-expr ;

Example 6 An outflow unit of a hydroelectric power plant is described by the automaton of
Figure 2.1.

SYSTEM outflow {

INTERFACE {

STATE {

BOOL closing, stop, opening; }

INPUT {

BOOL uclose, uopen, ustop; }

} /* end of interface */

IMPLEMENTATION {

AUTOMATA {

closing = (uclose & closing) | (uclose & stop);

stop = ustop | (uopen & closing) | (uclose & opening);

opening = (uopen & stop) | (uopen & opening); }

MUST {

~(uclose & uopen);

~(uclose & ustop);

~(uopen & ustop); }

} /* end implementation */

} /* end system */

This file is available in the distribution as l0006.hys.
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MUST Section

The MUST section specifies constraints on continuous and Boolean variables, i.e., linear
constraints and Boolean formulas, and therefore it allows defining the sets Xr, Xb, Ur, Ub,
Yr, Yb (more generally, the MUST section allows also mixed constraints on states, inputs,
and outputs).
The general syntax is:

MUST{must-item+}

and each must-item is one of the following:

affine-expr <= affine-expr ;
affine-expr >= affine-expr ;

Boolean-expr ;

Example 7 The level h in a water tank must be nonnegative and below the maximum height hmax

of the tank, 0 ≤ h ≤ hmax.

SYSTEM watertank {

INTERFACE {

STATE {

REAL h; }

INPUT {

REAL Q; }

PARAMETER {

REAL hmax = 0.3;

REAL k = 1; }

} /* end interface */

IMPLEMENTATION {

CONTINUOUS {

h = h + k*Q; }

MUST {

h - hmax <= 0;

-h <= 0; }

} /* end implementation */

} /* end system */

This file is available in the distribution as l0007.hys.

Symbolic manipulation, and Cast operator

HYSDEL implements a simple symbolic computation tool. The simple symbolic manipulator
handles efficiently linear and affine expression but cannot detect that an expression is linear
if it involves cancellation on nonlinear terms.

Example 8 HYSDEL will report an error with the following source:

SYSTEM outflow {

INTERFACE {

OUTPUT {

REAL y1,y2,y3;}

INPUT {

REAL x1,x2,x3; }

} /* end of interface */
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IMPLEMENTATION {

OUTPUT {

y1 = x1 + 2 * x2 + 3 * x3 + 4 * x1;

/* OK! = 5 * x1 + 2 * x2 + 3 * x3 */

y2 = x1 + log(2) * x2 - log(2) * x2;

/* OK! = x1 */

y3 = x1 + x2 * x3 - x3 * x2;

/* ERROR! although linear, HYSDEL will*/

/* report an error */}

} /* end implementation */

} /* end system */

This file is available in the distribution as l0009.hys.

A Boolean expression Boolean-expr has a conventional value of 1 if true and 0 otherwise,
the value of a Boolean expression can be used in affine expressions by using the cast operator:
(REAL Boolean-expr ).

Example 9 The flow through a pipe is 10 l/s if both valve v1 and valve v2 are opened, 0 otherwise

SYSTEM outflow {

INTERFACE {

OUTPUT {

REAL flow; }

INPUT {

BOOL v1, v2; }

} /* end of interface */

IMPLEMENTATION {

OUTPUT {

flow = 10 * (REAL v1 & v2);}

} /* end implementation */

} /* end system */

This file is available in the distribution as l0008.hys.

2.1.3 HYSDEL Compiler

Once the HYSDEL model of a system is available, the companion HYSDEL compiler is able
to generate the equivalent MLD model.

Mixed Logical Dynamical (MLD) Systems

In [12], the authors proposed discrete-time hybrid systems denoted as mixed logical dynam-
ical (MLD) systems. An MLD system is described by the following relations:

[

xr(t+1)
xb(t+1)

]

=
[

Arr Arb

Abr Abb

]

[

xr(t)
xb(t)

]

+
[

B1rr B1rb

B1br B1bb

]

[

ur(t)
ub(t)

]

(2.3a)

+
[

B2rb

B2bb

]

d(t) +
[

B3rr

B3br

]

z(t),
[

yr(t)
yb(t)

]

=
[

Crr Crb

Cbr Cbb

]

[

xr(t)
xb(t)

]

+
[

D1rr D1rb

D1br D1bb

]

[

ur(t)
ub(t)

]

(2.3b)

+
[

D2rb

D2bb

]

d(t) +
[

D3rr

D3br

]

z(t),

E2d(t) + E3z(t) ≤ E1

[

ur(t)
ub(t)

]

+E2

[

xr(t)
xb(t)

]

+ E5, (2.3c)
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where xr ∈ Rnxr , xb ∈ {0, 1}nxb , ur ∈ Rnur , ub ∈ {0, 1}nub , yr ∈ Rnyr , yb ∈ {0, 1}nyb ,
z ∈ Rnz , and δ ∈ {0, 1}nδ . All the Ei matrices have ne rows.
A more general form of the MLD systems is:

[

xr(t+1)
xb(t+1)

]

=
[

Arr Arb

Abr Abb

]

[

xr(t)
xb(t)

]

+
[

B1rr B1rb

B1br B1bb

]

[

ur(t)
ub(t)

]

(2.4a)

+
[

B2rb

B2bb

]

d(t) +
[

B3rr

B3br

]

z(t) +
[

B5r

B5b

]

,
[

yr(t)
yb(t)

]

=
[

Crr Crb

Cbr Cbb

]

[

xr(t)
xb(t)

]

+
[

D1rr D1rb

D1br D1bb

]

[

ur(t)
ub(t)

]

(2.4b)

+
[

D2rb

D2bb

]

d(t) +
[

D3rr

D3br

]

z(t) +
[

D5r

D5b

]

,

E2d(t) + E3z(t) ≤ E1

[

ur(t)
ub(t)

]

+E2

[

xr(t)
xb(t)

]

+ E5, (2.4c)

where x ¦, u ¦, y ¦, z, and δ are as before, we denote this variant as extended MLD form. Note
that the matrices B5c, B5d, D5c, and D5d do not introduce any further expressivity in the
MLD model but are useful to keep the size of the models contained.
The parameters declared in the system form the coefficients of the E matrices. If the

system has symbolic parameters, then HYSDEL generates a symbolic output and assumes
a structure called params width a field with the same name as each symbolic parameter.

Example 10 The interface declaration:

INTERFACE {

PARAMETER {

REAL p1,p2;

}

}

assumes that the fields params.p1 and params.p2 are defined in the structure params.

Given the current state x(k) and input u(k), the time-evolution of (2.4) could be deter-
mined by solving δ(k) and z(k) from (2.4c), and then updating x′(k) and y(k) from (2.4a)–
(2.4b).
HYSDEL can also produce a function to simulate the hybrid system, this function directly

uses the definitions in the HYSDEL source and does not rely on any mixed integer solver.

function [xn, d, z, y] = sys_name (x, u, params)

x is the current state, u the input, and params the structure specifying the values for every
symbolic parameter and can be omitted if there is no symbolic parameter. The function
computes one time step and returns the new state as xn and the output as y. It also provides
the auxiliary variables d and z. xn, d, z, y, x and u are vectors. The order of the variables
corresponds to the order in which the real variables are stored before the Boolean ones,
otherwise the order corresponds to the order in which they are declared in the HYSDEL.

Command Line

HYSDEL accepts the following command line options:

-h,--help Print help and exit.

-V,--version Print version and exit.

-iSTRING,--input=STRING HYSDEL input file name (default=stdin).

15



HYSDEL 2.0.5 2 HYSDEL Models

-mSTRING,--MLDoutput=STRING MLD output file name (without extension) (default=stdout).

-sSTRING,--SIMoutput=STRING Simulator file name (without extension).

-p, --parametric Force all parameters to be handled as symbolic parameters.

-a, --allow-affine Allow affine state and output functions. Former version of HYSDEL
did not allows constant terms a0 in the affine state and output functions. This limi-
tation comes directly from equation (2.3a) and (2.3b). The option -a overrides that
limitation by adding an auxiliary variable z = a0. The output generated is backwards
compatible but somehow redundant. See also the next -5 option.

-5, --allow-B5-D5 Use Extended MLD form (2.4) (implies -a). Note that the Extended
MLD form may produce wrong results with old algorithms.

--no-symbol-table Omit the symbol table information.

--no-row-info Omit row information.

--no-params-checks Omit checks for symbolic parameters.

--matlab-symbolic Support for Matlab symbolic toolbox for parameters.

-vINT, --verbose=INT Verbosity level (0=silent, 3=max) (default=2).

HYSDEL stores the output in a file which describes a MLD-structure according to Matlab
syntax. If the system contains symbolic parameters then the generated file assumes that the
structure params is defined in the workspace.
In the next section we will present the complete format of the MLD-structure.

2.2 MLD structure

The structure S contains the following fields:

• Arr = Arr, Arb = Arb, Abr = Abr, Abb = Abb, A = [Arr, Arb; Abr, Abb].

• B1rr = B1rr, B1rb = B1rb, B1br = B1br, B1bb = B1bb, B1 = [B1rr, B1rb; B1br,
B1bb].

• B2rb = B2rb, B2bb = B2bb, B2 = [B2rb; B2bb].

• B3rr = B3rr, B3br = B3br, B3 = [B3rr; B3br].

• B5r = B5r, B5b = B5b, B5 = [B5r; B5b].

• Crr = Crr, Crb = Crb, Cbr = Cbr, Cbb = Cbb, C = [Crr, Crb; Cbr, Cbb].

• D1rr = D1rr, D1rb = D1rb, D1br = D1br, D1bb = D1bb, D1 = [D1rr, D1rb; D1br,
D1bb].

• D2rb = D2rb, D2bb = D2bb, D2 = [D2rb; D2bb].

• D3rr = D3rr, D3br = D3br, D3 = [D3rr; D3br].

• D5r = D5r, D5b = D5b, D5 = [D5r; D5b].

• E1 = E1, E2 = E2, E3 = E3, E4 = E4, E5 = E5.
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• nxr = nxr, nxb = nxb, nx = nxr + nxb, nur = nur, nub = nub, nu = nur + nub, nyr
= nyr, nyb = nyb, ny = nyr + nyb, nd = nδ, nz = nz, ne = ne.

• ul, uu lower and upper bound on u, same for xl, xu, yl, yu, dl, du, and zl, zu.

• MLDisvalid 1 if the model has passed a validity check (sizes of the matrices, null
entries,. . . ). User functions can trust this information.

• name string containing the system name as specified in the HYSDEL declaration.

• MLDstructver integer containing the protocol version, needed for future extentions.
All the protocol versions should be backwards compatible. User’s function should
check if the protocol version is new enough. The protocol version presented in this
document is 2. HYSDEL version 1.3.0 and higher support protocol version 2.

• MLDsymtable 1 if the structure includes symbol table informations.

• MLDrowinfo 1 if the structure includes debugging information for the generated con-
straints.

• symtable Cell array containing the symbols.

– name string containing the name of the symbol

– kind {’x’|’u’|’y’|’z’|’d’|’p’} name of the array containing the variable, note that
they are lower case. The letter ’p’ stands for parameter, it is just a place holder
as there is no parameter vector.

– type {’r’|’b’} type of the variable, note that they are lower case.
– index position of the variable in the array kindtype. In case of parameters (kind

= ’p’) the content of this variable is of no relevance.

– line of declaration line where the variable was declared in the HYSDEL code.
This index is -1 for the predefined parameters.

– line of first use line where the variable was used for the first time in the HYSDEL
code.

– defined group of constraints containing the definition of the variable (see the
following rowinfo entry).

– computable order priority for computation. This information can be used as
branching priority if the mixed integer solver supports this option.

– min minimum of the variable.

– min computed 1 if HYSDEL computed the minimum.

– max maximum of the variable.

– max computed 1 if HYSDEL computed the maximum.

– value numerical value of the parameter (this field is present only if kind = ’p’).

• rowinfo Structure containing the information on the matrices.

– state upd Cell array containing the information on the rows in the state update
matrices (2.4a). The cell array has the same number of items as the number of
rows of the matrices, the i-th element of the array provides information on the
i-th constraint.
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∗ section Name of the section where the state update was declared.
∗ item type Actual section the item belong to.
∗ defines Name of the variable that is defined.
∗ depends Cell array of variable names the definition. depends on.
∗ group, subgroup, subindex unique identification of the source declaration.
Each statement in HYSDEL gets a sequential number, this statement is
stored in group. A statement may correspond to more than one basic el-
ement of HYSDEL (i.e. in case of automatic introduction of variables), each
such a constituting element gets an sequential number, stored in subgroup.
Each element may correspond to more than one inequality or equality con-
straint, each constraint gets a sequential number. Summing up, all the con-
straints coming from a HYSDEL statement share the same group index, all
the constraints coming from a basic element share the same subgroup in-
dex and within the same group,subgroup each constraint gets a sequential
subindex.

∗ source Code snippet of the original HYSDEL declaration.
∗ sourceline Line in the source code.
∗ human Human readable expression.

– output Cell array containing the information on the rows in the output matri-
ces (2.4b). As before the i-th element of the array provides information on the
i-th constraint and each item has the same fields as in the previous point.

– ineq Cell array containing the information on the rows of the inequality con-
straints (2.4c). As before the i-th element of the array provides information on
the i-th constraint. The item has the same fields as described in the previous
point plus the following fields:

∗ aff min value of m used for the transformations (3.12) and (3.10).

∗ aff min computed 1 if m was computed, 0 if provided.

∗ aff max value of M used for the transformations (3.12) and (3.10).

∗ aff max computed 1 if M was computed, 0 if provided.

∗ aff eps value of the tolerance ε used for the transformations (3.10).
∗ aff eps computed 1 if a default value for ε was used, 0 if provided.
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3 From DHA to Computational Models

3.1 DHA and Piecewise Affine Systems

This section highlights the relationships between the DHA introduced above and the class
of Piecewise Affine (PWA) systems [49].

PWA systems [33] are defined by partitioning the state space into polyhedral regions, and
associating with each region a different linear state-update equation

x′(k) = Ai(k)x(k) +Bi(k)u(k) + fi(k), (3.1a)

y(k) = Ci(k)x(k) +Di(k)u(k) + gi(k), (3.1b)

i(k) such that Hi(k)x(k) + Ji(k)u(k) ≤ Ki(k), (3.1c)

where x ∈ X ⊆ Rn, u ∈ U ⊆ Rm, y ∈ Y ⊆ Rp, {Hix + Jiu ≤ Ki}si=1, is a polyhedral
partition1 of the set X × U , the matrices Ai, Bi, fi, Ci, Di, gi, Hi, Ji, Ki are constant and
have suitable dimensions, the inequality in (3.1c) should be interpreted componentwise. For
PWA systems, well-posedness is defined similarly to Definition 1.

Definition 2 Let Σ1, Σ2 be hybrid models, whose inputs are u1(k), u2(k) ∈ U , and outputs
y1(k), y2(k) ∈ Y, k ∈ Z≥0. Let x1(k) ∈ X1 be the state of Σ1 and x2(k) ∈ X2 the state

of Σ2, k ∈ Z≥0. The hybrid model Σ2 is equivalent to Σ1 on X1,U ,Y, Σ2
X1,U,YÃ Σ1, if

there exists a mapping T : X1 7→ X2 such that for all initial conditions x1(0) ∈ X1, and
for all u1(k) = u2(k) = u(k) ∈ U , the output trajectories y1(k) and y2(k) coincide and
x2(k) = Tx1(k) at all steps k ∈ Z≥0.

Lemma 1 Let ΣPWA be a well-posed PWA model defined on a set of states X ⊆ Rn, a set
of inputs U ⊆ Rm, and a set of outputs Y ⊆ Rp. Then there exists a well-posed DHA model

ΣDHA such that ΣDHA
X ,U,Y
Ã ΣPWA under the identity state transformation T (x) = x.

Proof. Equations (3.1a)–(3.1b) are the modes of the SAS, the constraints Hix + Jiu ≤
Ki, i = 1, . . . , s are the defining hyperplanes fH(·) of the EG, and the MS is defined by
Equation (3.1c), namely if all the events associated to the hyperplanes of Hjx + Jju ≤ Kj

are satisfied then i(k) = j. 2

PWA systems can model a large number of physical processes, such as systems with
static nonlinearities, and can approximate nonlinear dynamics via multiple linearizations at
different operating points.

1The double definition of the state-update function over common boundaries of the partition (the bound-
aries will also be referred to as guardlines) is a technical issue that can be resolved by allowing a part of
the inequalities in (3.1) to be strict. However, from a numerical point of view, this issue is not relevant.
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3.2 DHA and Mixed Logical Dynamical Systems

This section describes how to transform a DHA into linear mixed integer equations and
inequalities, by generalizing several results already appeared in the literature [12, 16, 35, 43,
44,53], and the equivalence between DHA and Mixed Logical Dynamical (MLD) systems [12].

3.2.1 Logical Functions

Boolean functions can be equivalently expressed by inequalities. This technique allows us to
translate both the LOGIC and AUTOMATA sections of a HYSDEL model into inequalities.
In order to introduce our notation, we recall here some basic definitions of Boolean algebra.

A variableX is a Boolean variable ifX ∈ {0, 1}. A Boolean expression is inductively defined2

by the grammar

φ ::= X|¬φ1|φ1 ∨ φ2|φ1 ⊕ φ2|φ1 ∧ φ2|φ1 ← φ2|φ1 → φ2|φ1 ↔ φ2|(φ1) (3.2)

where X is a Boolean variable, and the logic operators ¬ (not), ∨ (or), ∧ (and), ← (implied
by), → (implies), ↔ (iff) have the usual semantics. A Boolean expression is a conjunctive
normal form (CNF) or product of sums if it can be written according to the following
grammar:

φ ::= ψ|φ ∧ ψ (3.3)

ψ ::= ψ1 ∨ ψ2|¬X|X (3.4)

where ψ are called terms of the product, and X are the terms of the sum ψ. A CNF is
minimal if it has the minimum number of terms of product and each term has the minimum
number of terms of sum. Every Boolean expression can be rewritten as a minimal CNF.
A Boolean expression f will be also called Boolean function when is used to define a literal

Xn as a function of X1, . . . , Xn−1:

Xn = f(X1, X2, . . . , Xn−1). (3.5)

More in general, we can define relations among Boolean variables X1, . . . , Xn through a
Boolean formula

F (X1, . . . , Xn) = 1, (3.6)

where Xi ∈ {0, 1}, i = 1, . . . , n. Note that each Boolean function is also a Boolean formula,
but not vice versa. Boolean formulas can be equivalently translated into a set of integer
linear inequalities. For instance, X1 ∨ X2 = 1 is equivalent to X1 + X2 ≥ 1 [53]. The
translation can be performed either using an symbolical method or a geometrical method.

Symbolical Method

The symbolical method consists of first converting (3.5) or (3.6) into CNF, a task that can be
performed automatically by using one of the several techniques available, see e.g. [42,45]. Let

the CNF have the form
∧m

j=1

(

∨

i∈Pj
Xi

∨∨

i∈Nj
¬Xi

)

, Nj , Pj ⊆ {1, . . . , n} ∀j = 1, . . . ,m.
Then, the corresponding set of integer linear inequalities is











1 ≤∑i∈P1
Xi +

∑

i∈N1
(1−Xi),

...
1 ≤∑i∈Pm

Xi +
∑

i∈Nm
(1−Xi).

(3.7)

2In the sake of simplicity we are neglecting precedence.
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With these inequalities we can define the set PCNF for any Boolean formula F as:

PCNF = {x ∈ [0, 1]n : (3.7) are satisfied with x = [X1, . . . , Xn]
T }. (3.8)

Geometrical Method

The geometrical method consists of two steps (see e.g. [41]). First, the set of points satisfying
(3.5) or (3.6) is computed (for this reason, the method was also called truth table method
in [41]). Each row of the truth table is associated with a vertex of the hypercube {0, 1}n.
The vertices are collected in a set V of valid points, all the other points {0, 1}n \V are called
invalid. The inequalities representing the Boolean formula are obtained by computing the
convex hull of V , for which several tools are available (see e.g. [29]). We therefore define

PCH = {x ∈ [0, 1]n : x ∈ conv(V )} (3.9)

In general it holds that PCH ⊆ PCNF , since conv(V ) is the smallest set containing all
integer feasible points. However, there exist Boolean formulas, for which PCH 6= PCNF

3.
Conditions for which PCH = PCNF are currently a topic of research.

3.2.2 Continuous-Logic Interfaces

Events of the form (1.3) can be equivalently expressed as

f iH(xr(k), ur(k), k) ≤ M i(1− δie), (3.10a)

f iH(xr(k), ur(k), k) > miδie, i = 1, . . . , ne, (3.10b)

where M i, mi are upper and lower bounds, respectively, on f iH(xr(k), ur(k), k). As we
will point out in Section 3.2.4, sometimes from a computational point of view, it may be
convenient to have a system of inequalities without strict inequalities. In this case we will
follow the common practice [53] to replace the strict Inequality (3.10b) as

f iH(xr(k), ur(k), k) ≥ ε+ (m− ε)δ (3.10c)

where ε is a small positive scalar, e.g. the machine precision, although the equivalence does
not hold for 0 ≤ f iH(xr(k), ur(k), k) < ε.
The most common logic to continuous interface is the if-then-else construct

IF δ THEN z = aT1 x+ b
T
1 u+ f1 ELSE z = aT2 x− bT2 u+ f2 (3.11)

which can be translated into [16]

(m2 −M1)δ + z ≤ a2x+ b2u+ f2, (3.12a)

(m1 −M2)δ − z ≤ −a2x− b2u− f2, (3.12b)

(m1 −M2)(1− δ) + z ≤ a1x+ b1u+ f1, (3.12c)

(m2 −M1)(1− δ)− z ≤ −a1x− b1u− f1, (3.12d)

whereMi,mi are upper and lower bounds on aix+biu+fi, i = 1, 2, δ ∈ {0, 1}, z ∈ R, x ∈ Rn,
u ∈ Rm. Note that (3.11)–(3.12) are a generalization of the real product z = δ · (ax+ bu+f)
described in [53].

3For example (X1 ∨ X2) ∧ (X1 ∨ X3) ∧ (X2 ∨ X3).
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3.2.3 Continuous Dynamics

As already mentioned, we will deal with dynamics described by linear affine difference equa-
tions

x′(k) =

s
∑

i=1

zi(k). (3.13)

3.2.4 Mixed Logical Dynamical (MLD) Systems

In [12], the authors proposed discrete-time hybrid systems denoted as mixed logical dynam-
ical (MLD) systems. An MLD system is described by the following relations:

x′(k) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) +B5, (3.14a)

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) +D5, (3.14b)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5, (3.14c)

Ẽ2δ(k) + Ẽ3z(k) < Ẽ1u(k) + Ẽ4x(k) + Ẽ5. (3.14d)

where x ∈ Rnr ×{0, 1}nb is a vector of continuous and binary states, u ∈ Rmr ×{0, 1}mb are
the inputs, y ∈ Rpr × {0, 1}pb the outputs, δ ∈ {0, 1}rb , z ∈ Rrr represent auxiliary binary
and continuous variables, respectively, and A, B1, B2, B3, C, D1, D2, D3, E1,. . . ,E5 and
Ẽ1,. . . ,Ẽ5 are matrices of suitable dimensions. Given the current state x(k) and input u(k),
the time-evolution of (3.14) is determined by solving δ(k) and z(k) from (3.14c)–(3.14d),
and then updating x′(k) and y(k) from (3.14a)–(3.14b). The equations and inequalities
obtained with methods presented in Sections 3.2.1, 3.2.2, 3.2.3 can be represented using the
MLD framework. When the problems of synthesis and analysis of MLD models are tackled
by optimization techniques, it is convenient to replace the strict inequalities as in (3.10c).
We will therefore consider an MLD model where the matrices Ẽ1,. . . ,Ẽ5 are embedded in
(3.14c) as nonstrict inequalities. For MLD systems, well-posedness is defined similarly to
Definition 1.

Lemma 2 Let ΣDHA be a well-posed DHA model defined on a set of states X ⊆ Rn, a set
of inputs U ⊆ Rm, and a set of outputs Y ⊆ Rp. Then there exists a well-posed MLD model

ΣMLD such that ΣMLD
X ,U,Y
Ã ΣDHA under the identity state transformation T (x) = x.

Proof. Directly follows from Sections 3.2.1, 3.2.2, 3.2.3. 2

3.3 Other Computational Models

In the previous section we showed the equivalence relations between DHA and PWA and
MLD systems. In this section, we review other existing models of linear hybrid systems and
show further relationships with DHA.
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PSfrag replacements

Lemma 1

Lemma 2

Fact 1

Figure 3.1: Conceptual scheme for the proof of Theorem 1

3.3.1 Linear Complementarity (LC) Systems

Linear complementarity (LC) systems are given in discrete-time by the equations

x′(k) = Ax(k) +B1u(k) +B2w(k), (3.15a)

y(k) = Cx(k) +D1u(k) +D2w(k), (3.15b)

v(k) = E1x(k) + E2u(k) + E3w(k) + E4, (3.15c)

0 ≤ v(k) ⊥ w(k) ≥ 0 (3.15d)

with v(k), w(k) ∈ Rq and where ⊥ denotes the orthogonality of vectors (i.e. v(k)⊥w(k)
means that vT (k)w(k) = 0). We call v(k) and w(k) the complementarity variables. A, Bi,
C, Di and Ei are real matrices [20,31,32,46,52].
In [33] the relationships among the model classes mentioned above and two others, min-

max-plus-scaling (MMPS) and extended linear complementarity (ELC) systems, were dis-
cussed. As ELC systems are of similar nature as LC systems, we will not define them here,
but refer to [24,33]. MMPS systems are obtained by choosing the state-update function, the
output function, and constraints as (nested) combinations of the operations maximization,
minimization, addition and scalar multiplication. More detail on this class can be found
in [25,33].

Fact 1 PWA, MLD, LC, ELC, and MMPS models are equivalent classes of hybrid models
(certain equivalences require assumptions on the boundedness of input, state, and auxiliary
variables or on well-posedness).

Proof. See [33] for full detail on assumptions, relationships, and a constructive proof. 2

Theorem 1 Let X , U , Y be sets of states, inputs, and outputs respectively, and assume
that X , U are bounded. Then DHA, PWA, MLD, LC, ELC, and MMPS well-posed models
are equivalent to each other on X , U , Y.

Proof. By referring to Figure 3.1, mutual equivalences among PWA, MLD, LC, ELC, and

MMPS on bounded X , U , Y follows from Fact 1. The equivalence ΣDHA
X ,U,Y
Ã ΣPWA follows

by Lemma 1, while the equivalence ΣMLD
X ,U,Y
Ã ΣDHA follows by Lemma 2. Therefore, any

equivalence relation can be stated for any ordered pairs of models.
2

23



HYSDEL 2.0.5 3 From DHA to Computational Models

Thanks to the equivalences mentioned above, it is clear that HYSDEL is a tool that allows
generating several different hybrid models of a given hybrid system. In particular, HYSDEL
generates MLD models, which can be immediately (and efficiently) translated into PWA
systems [7], or LC/ELC/MMPS systems using the constructive methods reported in [30,33].
Note that by Propositions 1 and 2 also DHA models with resets are equivalent to any of the
other classes of hybrid models.
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4 Applications

In this paper we introduced Discrete Hybrid Automata as a general modeling framework for
obtaining hybrid models oriented to the solution of analysis and synthesis problems. The
language HYSDEL describes DHA at a high level and its associated compiler generates the
corresponding computational models. This simplifies the use of the whole theory and set
of tools available for different classes of hybrid systems for solving control, state estimation
and verification problems.
The effectiveness of HYSDEL was shown on an automotive case study in [26]. In [16]

HYSDEL was used to model a batch evaporator plant and the associate PLC controller.
HYSDEL has been successfully used in several industrial applications. In [18] the authors
modeled the hybrid behavior of a vehicle/tyre system and designed a traction controller
that helps the driver to control a vehicle under adverse external conditions such as wet or
icy roads. Another automotive application was presented in [9], where the focus is on the
application of hybrid modeling and optimal control to the problem of air-to-fuel ratio and
torque control in advanced gasoline direct injection stratified charge (DISC) engines. In both
cases, the control design leaded to a control law that can be implemented on automotive
hardware as a piecewise affine function of the measured and estimated quantities. In [27]
the economic optimization of a combined cycle power plant was accomplished by modeling
the system in HYSDEL (turning on/off the gas and steam turbine, operating constraints,
different modalities start up of the turbines), and then using the generated MLD model in
a mixed integer linear optimization algorithm [36].
The latest version of the HYSDEL compiler is available on-line at http://control.ethz.

ch/~hybrid/hysdel.
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A Errors and Warnings

Syntactic errors are reported verbatim from bison. All other errors are listed in Table A.1.
Warnings are stated in Table A.2.

error message location

left hand side variable xxx is not auxiliary AD, DA, LINEAR, LOGIC
left hand side variable xxx is not state AUTOMATA, CONTINUOUS
left hand side variable xxx is not output OUTPUT

left hand side variable xxx is not Boolean
AD, AUTOMATA, LOGIC,
OUTPUT

left hand side variable xxx is not real
CONTINUOUS, OUTPUT, DA,
LINEAR

recursive definition of variable xxx AD, DA, LINEAR, LOGIC

expression must be affine
AD, CONTINUOUS, MUST,
OUTPUT, LINEAR

then-expression must be affine DA
else-expression must be affine DA
constant term in CONTINUOUS CONTINUOUS
constant term in OUTPUT OUTPUT
division by zero Expr
log of non positive Expr
sqrt of negative Expr
MLD epsilon required but is not a parameter AD
Logic expression in equality is always true, re-
sulting in a constant term

AUTOMATA, OUTPUT

bounds must be constant AD, DA
epsilon must be constant AD
parameter xxx is defined using variable yyy PARAMETER
expression contains output variable Expr
variable xxx redefined
failed to compute bounds: no definition for
variable xxx

AD, DA

failed to compute bounds: circular definition
of variable xxx

AD, DA

Table A.1: Errors generated by HYSDEL
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warning message location
Upper bound not tight AD, DA
Lower bound not tight AD, DA
Variable xxx is never used
Parameter xxx is never used
Variable xxx is never defined

Table A.2: Warnings generated by HYSDEL
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B Matlab Functions

HYSDEL comes with a number of Matlab functions. This section reports verbatim the
Matlab help for those commands.

B.1 Main Routines

B.1.1 hysdel

% hysdel(filename,simname,options)

% Compiles the HYSDEL list <filename.hys>,

% generates the M-file <filename.m>

%

% INPUT:

% filename: the hysdel source

% simname : if not empty, generates the HYSDEL simulator (see manual)

% options : a string of space separated command line switches to append to

% HYSDEL call (see HYSDEL manual, it includes: -p -a -5

% --no-symbol-table --no-row-info --no-params-checks

% --matlab-symbolic -v[0-3])

%

% OUTPUT:

% filename.m and simname.m on disk

%

% (C) 2000--2002 F.D. Torrisi,

% Automatic Control Laboratory, ETH Zentrum, CH-8092 Zurich, Switzerland

% torrisi@aut.ee.ethz.ch

%

% see license.txt for the terms and conditions.

B.1.2 hybsim
% [XX,DD,ZZ,YY]=HYBSIM(X0,UU,FILE,PARS,OPT)

% Simulates a hybrid system

% if sys is a simulator-file-name, uses the Matlab simulator (see HYSDEL Manual)

% if sys is a MLDstructure, uses MLDSIM which solves a Mixed Integer Program

% (see MLDSIM)

%

% INPUT:

% X0 : is the initial condition;

% UU : is the input vector u(t) = UU(:,t);

% SYS : system either the filename of the Matlab simulator

% or the Name of the MLD struct

% PARS: is the parameters structure passed to the one step

% Matlab simulator (see HYSDEL Manual, Simulator)

% OPT : are the options passed to the one step MLDsimulator MLDSIM (see MLDSIM)

%

% OUTPUT:

% XX : is the state trajectory

% DD : is the auxiliary bool variables trajectory

% ZZ : is the auxiliary real variables trajectory

% YY : is the output trajectory

%
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% REMARK:

% using the matlab simulator is much faster. The results produced by the two

% approaches should be the same.

%

% SEE:

% matlab simulator (in the HYSDEL manual, simulator)

% MLDSIM

% PANMIP

% MIQP

%

% (C) 2002 F.D. Torrisi

% Automatic Control Laboratory, ETH Zentrum, CH-8092 Zurich, Switzerland

% torrisi@aut.ee.ethz.ch

%

% see license.txt for the terms and conditions.

B.1.3 hylink
%HYLINK: HYSDEL models in simulink via S-function

%

% use: drag a simulink block of type ’S-function’ in your simulink model

% set the function name to hylink and the filename as parameter.

% The optional parameter x0 sets the initial state.

% Use multiplex/demultiplex to access all the inputs/outputs

%

% (C) 2000--2002 F.D. Torrisi,

% Automatic Control Laboratory, ETH Zentrum, CH-8092 Zurich, Switzerland

% torrisi@aut.ee.ethz.ch

%

% see license.txt for the terms and conditions.

B.1.4 syminfo
% info = syminfo(S, vname, vtype, vkind, vindex)

% extract infos from the symble table

% look up the symble table for entries matching the query

% item.name == name AND item.type == type AND item.kind == kind

% empty field (’’) matches all entries

%

% INPUT:

% S : the system name

% vname : var name as in the Hysdel source

% vtype : var type (’b’,’r’)

% vkind : var kind (’x’,’u’,’d’,’z’)

% vindex: var index

%

% OUTPUT

% info : cell array of info records saisfying the query

%

% REMARK

% the contents of the syminfo records are detailed in the HYSDEL manual in the

% section describing the MLD-structure

%

% (C) 2001 by F.D. Torrisi

% Automatic Control Laboratory, ETH Zentrum, CH-8092 Zurich, Switzerland

% torrisi@aut.ee.ethz.ch

%

% see license.txt for the terms and conditions.

B.1.5 gen log
% gen_log(S, log)
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% generates log-file of all variables

%

% INPUT:

% S : structure containing the MLD-model

% log: structure containing the log-data of all variables (d, z, u, x, y)

% obtained by runing ’hybsim.m’ i.e.: log.x has the dimensions

% nx times nm (nx=number of states, nm=number of time-steps)

%

% OUTPUT:

% a logfile ’’systemname’’.log on disk

%

% (C) 2002 Tobias Geyer

% Automatic Control Laboratory, ETH Zentrum, CH-8092 Zurich, Switzerland

% geyer@aut.ee.ethz.ch

%

% see license.txt for the terms and conditions.

B.1.6 mldsim

% function [xt1, dt, zt, yt, fl, eps] = mldsim( m, xt, ut, Options )

% Simulates an MLD System. Given the MLD system and the current state and

% input, computes the next state and the current output.

%

% INPUT:

% m : MLD system

% xt : current state

% ut : current input

% Options: 1. Specify with Options.solver the miqp solver desired, e.g. like:

% Options.solver = ’miqp’;

% SEE PANMIP

% 2. Specify options for the choosen solver e.g. like:

% Options.miqp.solver = ’linprog’;

% SEE PANMIP

% 3. Specify options for the simulation

% Options.large : specifies the magnitude of the box bounds

% for the solver

% 4. Specify options to debug models (see implementation for details)

% Options.relaxIneq = 1: relax inequalities to maintain feasibility

% Options.relaxU = 1 : relax inputs

%

% OUTPUT:

% xt1 : next time step

% dt : delta vector

% zt : zeta vector

% yt : output vector

% fl : flags from the MIP solver

% eps : epsilon needed in relaxation (see implementation for details)

%

% REMARK:

% Requires panmip as solver interface and some solver supported by panmip

%

% (C) 1998--2002 D. Mignone

% Automatic Control Laboratory, ETH Zentrum, CH-8092 Zurich, Switzerland

% mignone@aut.ee.ethz.ch

%

% see license.txt for the terms and conditions.

B.1.7 hysdel old

% hysdel_old(filename)

% THIS FILE GENERATES THE DEPRECATED MLD STRUCTURE 1.0

% IT IS PROVIDED FOR BACKWARDS COMPATIBILITY.
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%

% INPUT:

% filename: the hysdel source

%

% OUTPUT:

% filename.mat on disk

%

% REMARK:

% the M-file <hout.m> contains the system in the new format. Use

% load filename.mat if you want to access the system in the old format.

%

% (C) 2000--2002 by F.D. Torrisi, A. Bemporad, T. Geyer

% Automatic Control Laboratory, ETH Zentrum, CH-8092 Zurich, Switzerland

% torrisi|bemporad|geyer@aut.ee.ethz.ch

%

% see license.txt for the terms and conditions.

B.1.8 new2old
% Sold = new2old(S)

% THIS FILE TRANSLATES THE MLD STRUCTURE INTO THE DEPRECATED MLD STRUCTURE 1.0

% IT IS PROVIDED FOR BACKWARDS COMPATIBILITY.

%

% INPUT:

% S : a MLD-structure 2.0

%

% OUTPUT:

% Sold: a MLD-structure 1.0

%

% (C) 2002 by F.D. Torrisi

% Automatic Control Laboratory, ETH Zentrum, CH-8092 Zurich, Switzerland

% torrisi@aut.ee.ethz.ch

%

% see license.txt for the terms and conditions.

B.2 Support Routines
This is the list of additional routines that come with HYSDEL: mld2mat.m (extracts matrices from the
MLD structure), panmip.m (common MIP interface), miqp.m (free MIQP solver).

B.3 Contributed Routines
The subdirectory contrib of the HYSDEL distribution, contains routines contributed by the users: pwa2hys.m
(Piecewise affine to HYSDEL), con list6.m (adjacency map for a polyhedral partition)
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