
HYBRID TOOLBOX

FOR REAL-TIME
APPLICATIONS

User’s Guide

Alberto Bemporad
bemporad@ing.unitn.it

July 14, 2010

ii

This document describes a Matlab/Simulink Toolbox for the synthesis of hybrid
controllers for real-time applications.

The author gratefully acknowledges the Scientific Research Laboratory of Ford Motor
Company (Dearborn, MI) for continuous support, and in particular Davor Hrovat, Ilya
V. Kolmanovsky, and Stefano Di Cairano. Fabio D. Torrisi is also acknowledged for
having developed the HYSDEL compiler, Domenico Mignone for having maintained
MIQP.M for a long time, Nicolò Giorgetti for having developed Matlab interfaces to
several solvers and for continuously testing the toolbox and discussing new features, and
Alessandro Alessio, Davide Barcelli, Daniele Bernardini, Filippo Brogi, Giulio Ripaccioli,
Sergio Trimboli, for inspiring discussions, suggestions, and for reporting bugs. The Eu-
ropean Commission is also acknowledged for supporting many theoretical developments
through EU project “CC” (IST-2001-33520). Finally, I thank all the coauthors of my sci-
entific contributions at the basis of the Hybrid Toolbox, discovering theoretical properties
and designing algorithms with them was really exciting.

Hybrid Toolbox
c©Copyright 2003-2010 by Alberto Bemporad.

The software may be used or copied only under the terms of the license agreement. This man-
ual may be photocopied and reproduced, but no part may be included in any other document
without prior written consent from the author. MATLAB, Simulink, the Control Systems Toolbox,
the Optimization Toolbox, and the Model Predictive Control Toolbox, are registered trademarks
of The MathWorks, Inc. The NAG Foundation Toolbox is a registered trademark of Numerical
Algorithms Group, Ltd. CPLEX is a registered trademark of Ilog, Inc. Xpress-MP is a registered
trademark of Dash Optimization. The HYSDEL compiler, the GLPK (GNU Linear Programming
Kit) solver, the Matlab interface to GLPK, and the Matlab interfaces to CPLEX are free software
that can redistributed and/or modified under the terms of the GNU General Public License as
published by the Free Software Foundation. Other product or brand names are trademarks or
registered trademarks of their respective holders.

Contents

1 Installation 1

2 Description of the Toolbox 3

3 Explicit Constrained Control of Linear Systems 5
3.1 Example . 6
3.2 Constrained Optimal Control Formulation 9

3.2.1 Constrained Regulation to the Origin 9
3.2.2 Constrained Tracking . 10
3.2.3 Computation of the Explicit Representation 10
3.2.4 Output-Feedback Controllers 11

4 Hybrid Dynamical Systems 13
4.1 HYSDEL Models . 14

4.1.1 Mixed Logical Dynamical (MLD) Systems 16
4.1.2 Example . 17
4.1.3 Piecewise Affine Systems . 18

4.2 Equivalence of DHA, MLD, and PWA Models 19
4.2.1 Example . 19

4.3 Control of Hybrid Systems . 20
4.3.1 Example . 22

4.4 Explicit Form of the Optimal Hybrid Controller 24
4.4.1 Example . 24

4.5 Reachability Analysis and Verification of Safety Properties 25
4.5.1 Example . 27

5 Simulink Library 29
5.1 Constrained Control of Linear Systems 29

5.1.1 Example: Aircraft Control . 29
5.2 Constrained Control of Hybrid Systems 31

5.2.1 Example: Switching System 31

6 Function Reference 35
6.1 Functions by Category . 35

6.1.1 MLD Systems . 35
6.1.2 PWA Systems . 35

iii

iv CONTENTS

6.1.3 Constrained Optimal Control of Linear Systems 36
6.1.4 Constrained Optimal Control of Hybrid Systems 36
6.1.5 Explicit Constrained Optimal Control of Linear and Hybrid

Systems . 36
6.1.6 Polyhedral Computation and Partitions 36
6.1.7 Observer Design . 37
6.1.8 C-Code, MEX Functions, S-Functions 37
6.1.9 Solvers . 37

6.2 @LINCON – Controllers for Constrained Linear Systems 38
6.2.1 Output-Feedback Control . 41

6.3 @HYBCON – Controllers for Hybrid Systems 41
6.4 @EXPCON – Explicit Controllers (Linear/Hybrid Systems) 43

7 C-Code Generation 47
7.1 Mex Interfaces . 47
7.2 HWRITE . 47

8 Complexity and Tuning Guidelines 49
8.1 Complexity . 49

8.1.1 Dependence on the Number of Parameters 49
8.1.2 Dependence on the Input and Output Horizon 50

8.2 Tuning Guidelines . 50

A MILP Formulation (∞-Norm) 57

B Supported Solvers 59
B.1 Linear Programming . 59

B.1.1 LPSOL, LPTYPE . 59
B.2 Quadratic Programming . 59

B.2.1 QPSOL, QPTYPE . 59
B.3 Mixed-Integer Linear Programming 60

B.3.1 MILPSOL, MILPTYPE . 60
B.4 Mixed-Integer Quadratic Programming 60

B.4.1 MIQPSOL, MIQPTYPE . 60

C Storage of Polyhedral Partitions 63

D Auxiliary Functions 65
D.1 GETCONTROLLER . 65
D.2 REDUCE . 66
D.3 PWAEVAL . 66
D.4 PWAPLOT . 66
D.5 PWAPLOTSECTION . 66
D.6 GETGAIN . 67
D.7 GETREGNUM . 67
D.8 POLYREDUCE . 67

CONTENTS v

D.9 POLYPLOT . 67
D.10 LINEPLOT . 68
D.11 POLYPLOT3D . 68
D.12 MPLP . 68
D.13 MPQP . 69

vi CONTENTS

Chapter 1

Installation

To install the toolbox, you should follow the following procedure:

1. Extract the zip file to a directory (e.g. C:\MatlabR2007b\toolbox\hybrid)

2. Run Matlab

3. Add the directory C:\MatlabR2007b\toolbox\hybrid and
C:\MatlabR2007b\toolbox\hybrid\utils to the MATLABPATH.
(Go to the menu “FILE/SET PATH” from the Matlab Command Window,
and then “PATH/ADD TO PATH” from the Path Browser window)

Please read the following carefully when installing the toolbox:

• Errors have been reported when the working directory or the toolbox direc-
tory contain spaces, you should avoid paths containing spaces.

• Make sure that the \utils directory and working directories have write
permissions and that the .h and .dll files are not read-only.

This manual is available in PDF in the /manual subdirectory. Some demos are in
the /demos directory.

You should have a C-compiler compatible with Matlab (e.g. Microsoft Visual
C++ 6.0TM, or the free compiler and mex interface MINGW/GNUMEX) to be able
to generate mex files.

The toolbox contains LP, QP, and MILP solvers that can be redistributed and/or
modified under the terms of the GNU General Public License as published by
the Free Software Foundation. The QP solver of the Model Predictive Control
Toolbox (The Mathworks, Inc.), the LP/QP solvers of the NAG Foundation Tool-
box, the LP/QP solvers of the Optimization Toolbox (The Mathworks, Inc.), the
LP/QP/MILP/MIQP solvers of Cplex (Ilog, Inc.), and the LP/QP/MILP/MIQP
solvers of Xpress-MP (Dash Optimization) are also supported.

The Model Predictive Control Toolbox for Matlab must be installed for using
certain features of the Hybrid Toolbox.

If you plan to use Cplex (Ilog, Inc.) with the Hybrid Toolbox and the mex inter-
face CPLEMEX, you should copy ..\ILOG\CPLEX91\BIN\X86_WIN32\CPLEX91.DLL

1

2 CHAPTER 1. INSTALLATION

in a visible path (e.g.: C:\WINDOWS \SYSTEM32). The precompiled mex file CPLEXMEX.DLL
was compiled for CPLEX 9.1. If you have an earlier version of Cplex (e.g.: Cplex
9.0) try renaming CPLEX90.DLL to CPLEX91.DLL.

Since version 1.2.1 of the Hybrid Toolbox, the CPLEX interface CPLEXINT by
Mato Baotic is also supported, and successfully tested with CPLEX up to version
11.2.

Chapter 2

Description of the Toolbox

The Hybrid Toolbox offers the following features:

• Design, simulation, and control of hybrid dynamical systems.

• Design of constrained optimal controllers in explicit piecewise affine form
for linear and hybrid dynamical systems.

• A Simulink library for simulation and control of linear constrained systems
and hybrid systems.

• A multiparametric Quadratic Programming (mpQP), a multiparametric Lin-
ear Programming (mpLP) solver, and a multiparametric hybrid optimal
control solver for obtaining explicit piecewise affine controllers.

• C-code generation for real-time prototyping.

• Manipulation and visualization of polyhedral objects and polyhedral parti-
tions.

• Demos

3

4 CHAPTER 2. DESCRIPTION OF THE TOOLBOX

Chapter 3

Explicit Constrained Control of
Linear Systems

Receding horizon optimal control RHC (also known as Model Predictive Control,
MPC) has become the accepted standard for complex constrained multivariable
control problems in the process industries. Here at each sampling time, starting
at the current state, an open-loop optimal control problem is solved over a finite
horizon. At the next time step the computation is repeated starting from the new
state and over a shifted horizon, leading to a moving horizon policy. The solution
relies on a linear dynamic model, respects all input and output constraints, and
optimizes a quadratic performance index. Thus, as much as a quadratic perfor-
mance index together with various constraints can be used to express true per-
formance objectives, the performance of RHC is excellent. Over the last decade a
solid theoretical foundation for RHC has emerged so that in real-life large-scale
MIMO applications controllers with non-conservative stability guarantees can be
designed routinely and with ease [21].

The big drawback of RHC is the on-line computational effort which may limit
its applicability to relatively slow and/or small problems.

In [12], Bemporad et al. have shown how to move the computations necessary
for the implementation of RHC off-line while preserving all its other characteris-
tics. This should largely increase the range of applicability of RHC to problems
where anti-windup schemes and other ad hoc techniques dominated up to now.
Such an explicit form of the controller provides also additional insight for better
understanding the control policy of RHC.

Linear RHC is based on the solution of a quadratic program (QP) which needs
to be solved to determine the optimal control action. As the coefficients of the lin-
ear term in the cost function and the right hand side of the constraints depend
linearly on the current state, the quadratic program can be viewed as a multi-
parametric quadratic program (mp-QP). In [12], the authors analyze the properties
of mp-QP, showing that the optimal solution is a piecewise affine function of the
vector of parameters. As a consequence, the MPC controller is a piecewise affine
control law which not only ensures feasibility and stability, but is also optimal
with respect to LQR performance. An algorithm based on a geometric approach

5

6 CHAPTER 3. EXPLICIT CONSTRAINED CONTROL OF LINEAR SYSTEMS

for solving mpQP problems, and therefore obtain explicit RHC controllers, was
proposed in [12]. More recently, in [24] the authors proposed a faster algorithm
based on an active-set approach, which is implemented in the function mpqp de-
scribed in Appendix D.13.

3.1 Example

Consider the double integrator [12]

y(t) =
1

s2
u(t),

and its equivalent discrete-time state-space representation x(t+ 1) =

[
1 1
0 1

]
x(t) +

[
0
1

]
u(t)

y(t) =
[

1 0
]
x(t)

(3.1)

obtained by setting ÿ(t) ≈ ẏ(t+T)−ẏ(t)
T

, ẏ(t) ≈ y(t+T)−y(t)
T

, T = 1 s.
We want to regulate the system to the origin while minimizing the quadratic

performance measure
∞∑
t=0

x′(t)Qx(t) +Ru2(t)

subject to the input constraint −1 ≤ u(t) ≤ 1. This task is addressed by using
RHC with prediction horizon p = 2, number of free moves m = 2, and a terminal
weight P solving the Riccati equation with weight matrices Q = [1 0

0 0], R = 0.01.
In a neighborhood around the origin, the RHC controller coincides with the

constrained linear quadratic regulator K = [−0.81662 − 1.7499].
The multiparametric Quadratic Programming problem associated with the

RHC law is
min
z

1
2
z′Hz + x′(t)F ′z + 1

2
x′(t)′Hx(t)

s.t. Gz ≤ W + Sx(t)
(3.2)

where z = [u(t) u(t+ 1)]′ is the optimization vector, and

H =

[
6.0916 2.6241
2.6241 1.4996

]
, F =

[
3.3675 1.2246
9.3591 3.8487

]
, Y =

[
3.1429 6.5104
6.5104 15.8694

]

G =

1 0
−1 0
0 1
0 −1

 , W =

1
1
1
1

 , S =

0 0
0 0
0 0
0 0

 ,

3.1. EXAMPLE 7

0 5 10 15 20 25 30 35 40

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40
-5

0

5

10
state (t)x

input (t)u

(a) Closed-loop RHC
-15 -10 -5 0 5 10 15

-6

-4

-2

0

2

4

6

2

1

367

54

x-space

(b) Polyhedral partition of the state-space
and closed-loop MPC trajectories

Figure 3.1: Double integrator example (number of free input moves m = 2)

and the solution is

u =

[−0.8166 −1.75]x if
[−0.8166 −1.75

0.8166 1.75
0.6124 0.4957
−0.6124 −0.4957

]
x ≤

[
1
1
1
1

]
(Region #1)

− 1 if
[

0.297 0.9333
−0.8166 −1.75
−0.9712 −2.699

]
x ≤

[
1
−1
−1

]
(Region #2)

− 1 if
[−0.3864 −1.074
−0.297 −0.9333

]
x ≤

[−1
−1

]
(Region #3)

1 if [0.3864 1.074
0.297 0.9333]x ≤

[−1
−1

]
(Region #4)

[−0.5528 −1.536]x− 0.4308 if
[−0.3864 −1.074

0.9712 2.699
−0.6124 −0.4957

]
x ≤

[
1
1
−1

]
(Region #5)

[−0.5528 −1.536]x+ 0.4308 if
[
−0.9712 −2.699
0.3864 1.074
0.6124 0.4957

]
x ≤

[
1
1
−1

]
(Region #6)

1 if
[
−0.297 −0.9333
0.8166 1.75
0.9712 2.699

]
x ≤

[
1
−1
−1

]
(Region #7)

The corresponding polyhedral partition of the state-space is depicted in Fig. 3.1(b).
The same example was solved by increasing the number of degrees of freedom
m. The corresponding partitions are reported in Fig. 3.2.

The above example can be reproduced as follows (see the Matlab demo doubleint.m

in the demos folder):

8 CHAPTER 3. EXPLICIT CONSTRAINED CONTROL OF LINEAR SYSTEMS

-15 -10 -5 0 5 10 15
-6

-4

-2

0

2

4

6
x-space

(a) m = 3, 15 regions
-15 -10 -5 0 5 10 15

-6

-4

-2

0

2

4

6
x-space

(b) m = 4, 25 regions

-15 -5 5 10 15
-6

-4

-2

0

2

4

6

-10 0

x-space

(c) m = 5, 39 regions
-15 -5 5 10 15

-6

-4

-2

0

2

4

6

-10 0

x-space

(d) m = 6, 57 regions

Figure 3.2: Partition of the state space for the constrained receding horizon optimal
controller: m=number of control degrees of freedom

Ts=1; % Sampling time
model=ss([1 1;0 1],[0;1],[0 1;1 0],[0;0],Ts);

% Define the constrained optimal controller (implicit)
clear limits interval weights
limits.umin=-1;
limits.umax=1;

interval.N=2;

weights.R=.1;
weights.Q=[1 0;0 0];
weights.P=’lqr’; % P=solution of Riccati Equation

% Optimal controller based on on-line optimization (implicit)
Cimp=lincon(model,’reg’,weights,interval,limits);

% Get the PWA representation of the controller (explicit)

3.2. CONSTRAINED OPTIMAL CONTROL FORMULATION 9

% Define range of states (=parameters)
range=struct(’xmin’,-15,’xmax’,15);

% Compute explicit version of the controller
Cexp=expcon(Cimp,range);
plot(Cexp)
axis([-15 15 -6 6]);

% Closed-loop simulation
x0=[10,-.3]’;
Tstop=40; %Simulation time
[X,U,T,Y,I]=sim(Cexp,model,[],x0,Tstop);
hold on
plot(X(:,1),X(:,2),X(:,1),X(:,2),’d’);

3.2 Constrained Optimal Control Formulation

The receding horizon control problem is defined either a regulation or as a tracking
problem.

3.2.1 Constrained Regulation to the Origin

The regulator is based on the performance index

min x′(t+ T |t)Px(t+N |t) +
∑N−1

k=0 x
′(t+ k|t)Qx(t+ k|t) + u′(t+ k)Ru(t+ k) + ρε2

s.t. ymin − ε ≤ y(t+ k|t) ≤ ymax + ε, k = 1, ..., Ncy

umin ≤ u(t+ k) ≤ umax, k = 0, ..., Ncu

u(t+ k) = Kx(t+ k|t), k ≥ Nu

x(t+ k + 1|t) = Ax(t+ k|t) +Bu(t+ k)
y(t+ k|t) = Cx(t+ k|t) +Du(t+ k)

(3.3)
where A,B,C,D are the state-space matrices of the LTI state-space model, Q,R
are weight matrices, and ρ is a penalty on constraint violation. P is a weight on
the terminal state, andK is a state-feedback gain. P,K may have different values:

• P,K solve the Riccati equation

K = −(R +B′PB)−1B′PA (3.4a)
P = (A+BK)′P (A+BK) +K ′RK +Q. (3.4b)

This choice of P,K correspond to settingN = +∞ in (3.6), and (for ρ = +∞)
make (3.6) equivalent to the Linear Quadratic Regulation problem

min
∞∑
k=0

x′(t+ k)Qx(t+ k) + u′(t+ k)Ru(t+ k)

under the constraints ymin ≤ y(t+ k) ≤ ymax, umin ≤ u(t+ k) ≤ umax
1.

1The equivalence only holds in a region Ω around the origin. The largerm, Ncy , Ncu, the larger
Ω. See [12, 17] for further details

10 CHAPTER 3. EXPLICIT CONSTRAINED CONTROL OF LINEAR SYSTEMS

• P solves the Lyapunov equation

P = A′PA+Q, K = 0. (3.5)

This choice of P,K correspond to setting N = +∞ under the assumption
u(t+ k) = 0 for k ≥ Nu.

• Matrices P,K are provided by the user.

3.2.2 Constrained Tracking

The tracking controller is based on the performance index

min
∑N−1

k=0 [y′(t+ k|t)− r(t)]S[y(t+ k|t)− r(t)] + ∆u′(t+ k)T∆u(t+ k) + ρε2

s.t. ymin − ε ≤ y(t+ k|t) ≤ ymax + ε, k = 1, ..., Ncy

umin ≤ u(t+ k) ≤ umax, k = 0, ..., Ncu

∆umin ≤ ∆u(t+ k) ≤ ∆umax, k = 0, ..., Ncu

u(t+ k) = 0, k ≥ Nu

x(t+ k + 1|t) = Ax(t+ k|t) +B[u(t+ k − 1|t) + ∆u(t+ k)]
y(t+ k|t) = Cx(t+ k|t) +D[u(t+ k − 1|t) + ∆u(t+ k)]

(3.6)
where ∆u(t) = u(t)− u(t− 1) represents the input increment.

A much more versatile formulation and handling of controllers based on on-
line quadratic optimization can be found in the Model Predictive Control Toolbox
for Matlab.

3.2.3 Computation of the Explicit Representation

The constrained finite time optimal control problems described above can be con-
verted into the multiparametric Quadratic Program (mpQP)

min 1
2
z′Qz + θ′C ′z

s.t. Gz ≤ W + Sθ
(3.7)

where z = [u′(0), . . . , u′(m − 1)]′ is the vector to be optimized, and θ =
[
x(t)
r(t)

]
is the vector of parameters. When output constraints are softened as ymin − ε ≤
y(t + k|t) ≤ ymax + ε, k = 1, ..., Ncy, and the term ρε2 is added in the cost function
to penalize constraint violation, z = [u′(0), . . . , u′(m− 1), ε]′.

The vector of parameters θ ranges within the box θmin ≤ θ ≤ θmax. Function
mpqp implements the active-set method proposed in [24] to solve problem (3.7).

The output argument of the multiparametric quadratic solver is a partition
of neighboring convex polytopes Hiθ ≤ Ki in the θ-space and the optimizer
z(θ) = Fiθ + Gi in each region #i. See Appendix C for details on how polyhe-
dral partitions are stored.

Explicit controllers can be obtained through the Hybrid Toolbox by conversion
of MPC objects defined using the Model Predictive Control Toolbox for Matlab.

3.2. CONSTRAINED OPTIMAL CONTROL FORMULATION 11

3.2.4 Output-Feedback Controllers

An output feedback constrained optimal controller is obtained by computing the
control law as a function of an estimate of the state vector, obtained via a state ob-
server, see Section 6.2.1. See also the demo dcmotor in the demos/linear directory
for an example.

12 CHAPTER 3. EXPLICIT CONSTRAINED CONTROL OF LINEAR SYSTEMS

Chapter 4

Hybrid Dynamical Systems

The mathematical model of a system is traditionally associated with differential
or difference equations, typically derived from physical laws governing the dy-
namics of the system under consideration. Consequently, most of the control
theory and tools have been developed for such systems, in particular for systems
whose evolution is described by smooth linear or nonlinear state transition func-
tions. On the other hand, in many applications the system to be controlled is also
constituted by parts described by logic, such as for instance on/off switches or
valves, gears or speed selectors, and evolutions dependent on if-then-else rules.
Often, the control of these systems is left to schemes based on heuristic rules in-
ferred from practical plant operation.

Recent technological innovations have caused a considerable interest in the
study of dynamical processes of a heterogeneous continuous and discrete nature,
denoted as hybrid systems. The peculiarity of hybrid systems is the interaction
between continuous-time dynamics (governed by differential or difference equa-
tions), and discrete dynamics and logic rules (described by temporal logic, finite
state machines, if-then-else conditions, discrete events, etc.) and discrete compo-
nents (on/off switches, selectors, digital circuitry, software code, etc.).

Hybrid systems switch among many operating modes, where each mode is
governed by its own characteristic dynamical laws. Mode transitions are trig-
gered by variables crossing specific thresholds (state events), by the elapse of
certain time periods (time events), or by external inputs (input events) [2]. A
typical example of hybrid systems are embedded systems, constituted by dy-
namical components governed by logical/discrete decision components. Com-
plex systems organized in hierachical way, where for instance discrete planning
algorithms at the higher level interact with continuous control algorithms and
processes at the lower level, are another example of hybrid systems.

As an example of hybrid control problem consider the design of a cruise con-
trol system that commands the gear shift, the engine torque, and the braking force
in order to track a desired vehicle speed while minimizing fuel consumption and
emissions. Designing a control law that optimally selects both the discrete inputs
(gears) and continuous inputs (torque and brakes) requires a hybrid model that
includes the continuous dynamics of the power train, the discrete logic of the

13

14 CHAPTER 4. HYBRID DYNAMICAL SYSTEMS

Discrete
dynamics
and logic

Continuous
dynamics

continuous
outputs

discrete
inputs

discrete
outputs

continuous
inputs

events
mode
switches

Figure 4.1: Hybrid systems. Logic-based discrete dynamics and continuous dy-
namics interact through events and mode switches

gearbox, and consumption/emission maps [4].
We focus here on discrete-time hybrid systems, denoted as discrete hybrid au-

tomata (DHA) [27], whose continuous dynamics is described by linear difference
equations and whose discrete dynamics is described by finite state machines,
both synchronized by the same clock.

A particular case of DHA is the popular class of piecewise affine (PWA) sys-
tems first introduced by Sontag [23]. Essentially, PWA are switched affine sys-
tems whose mode only depends on the current location of the state vector. More
precisely, the state space is partitioned into polyhedral regions, as depicted in
Figure 4.2, and each region is associated with a different affine state-update equa-
tion (more generally, the partition is defined in the combined space of state and
input vectors). We will actually show that DHA and PWA systems are equiv-
alent model classes, and hence, in particular, that generic DHA systems can be
converted to equivalent PWA systems.

4.1 HYSDEL Models

We designed a modeling language to describe DHA models, called HYbrid Sys-
tem DEscription Language (HYSDEL). In this section we will detail the language
capabilities and we will show how DHA systems can be modeled within HYS-
DEL. The HYSDEL description is an abstract modeling step. The associated HYS-
DEL compiler then translates the description into several computational models,
in particular into MLD and PWA form.

A HYSDEL list is composed of two parts: The first one, called INTERFACE,
contains the declaration for all the variables and parameters, so that it is pos-
sible to make the proper type checks. The second part, IMPLEMENTATION, is
composed of specialized sections where the relations among the variables are de-
scribed, these sections are described next.
AD SECTION The HYSDEL section AD allows one to define Boolean variables

4.1. HYSDEL MODELS 15

Figure 4.2: Piecewise affine systems. Mode switches are triggered by threshold
events

from continuous ones, such as “yes/no” events representing that certain contin-
uous variables have passed some given thresholds. HYSDEL does not provide
explicit access to the time instance, however this limitation can be easily over-
come by adding a continuous state variable t such that t′ = t+ Ts, where Ts is the
sampling time. Examples include level indicator variables, operational alarms,
etc.
Example: In a water tank with inflow Q, the sensor δ provides the signal 1 if and
only if the liquid level h ≥ hmax.
LOGIC SECTION The section LOGIC allows one to specify arbitrary functions
of Boolean variables: In particular the mode selector is a Boolean function and
therefore it can be modeled in this section.
DA SECTION The HYSDEL section DA defines continuous variables according
to if-then-else conditions on Boolean variables. This section is particularly useful
to model parts of the switched affine system (SAS) dynamics.
Example: The command signal u to an electric motor is passed through a non-
linear amplifier, which has two modes of operation: high gain and low gain. In
“low gain” the amplifier completely rejects the noise d, while in “high gain” it
only attenuates it. The Boolean input l = 1 selects the low gain mode. The actual
signal ucomp applied to the motor is ucomp = u if l = 1, otherwise ucomp = 2.3u+.4d.
CONTINUOUS SECTION The CONTINUOUS section describes the linear dy-
namics, expressed as difference equations.
LINEAR SECTION HYSDEL allows also to define a continuous variable as an
affine function of continuous variables in the LINEAR section. This section, to-
gether with the CONTINUOUS and AD sections allows more flexibility when mod-
eling the SAS. This extra flexibility allows algebraic loops that may render unde-

16 CHAPTER 4. HYBRID DYNAMICAL SYSTEMS

fined the trajectories of the model. The HYSDEL compiler integrates a semantic
checker that is able to detect and report such abnormal situations.
AUTOMATA SECTION The AUTOMATA section specifies the state transition
equations of the finite state machine (FSM) as Boolean functions x′b(k) = fB(xb(k),
ub(k), δe(k)).
OUTPUT SECTION The OUTPUT section allows specifying static linear and logic
relations for the output vector y = [yr

yb].
Finally HYSDEL allows one more section:

MUST SECTION The MUST section specifies constraints on continuous and Boolean
variables, i.e., linear constraints and Boolean formulas, and therefore it allows
restricting the sets of feasible real and binary states, inputs, and outputs (more
generally, the MUST section allows also mixed constraints on states, inputs, and
outputs).

A more detailed description of the syntax of HYSDEL is available in the HYS-
DEL user’s guide contained in the doc/ directory.

4.1.1 Mixed Logical Dynamical (MLD) Systems

In [10] a class of hybrid systems has been introduced in which logic, dynamics
and constraints are integrated, of the form

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) (4.1a)
y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) (4.1b)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5, (4.1c)

where x(k) =
[
xc(k)
x`(k)

]
is the state vector, xc(k) ∈ Rnc and x`(k) ∈ {0, 1}n` , y(k) =[

yc(k)
y`(k)

]
∈ Rpc × {0, 1}p` is the output vector, u(k) =

[
uc(k)
u`(k)

]
∈ Rmc × {0, 1}m` is the

input vector, z(k) ∈ Rrc and δ(k) ∈ {0, 1}r` are auxiliary variables, A, Bi, C, Di

and Ei denote real constant matrices, E5 is a real vector, nc > 0, and pc, mc, rc, n`,
p`, m`, r` ≥ 0. Without loss of generality, we assumed that the continuous com-
ponents of a mixed-integer vector are always the first. Inequalities (4.1c) must
be interpreted componentwise. Systems that can be described by model (4.1) are
called Mixed Logical Dynamical (MLD) systems. Contrarily to [10], we allow
here that the input vector u(k) and state vector x(k) may have unbounded com-
ponents.

The MLD system (4.1) is called completely well-posed if δ(k) and z(k) are uniquely
defined by (4.1c) in their domain, once x(k) and u(k) are assigned [10]. From (4.1a)–
(4.1b) this implies that also x(k + 1), y(k) are uniquely defined functions of x(k),
u(k).

The MLD formalism allows specifying the evolution of continuous variables
through linear dynamic equations, of discrete variables through propositional
logic statements and automata, and the mutual interaction between the two. The
key idea of the approach consists of embedding the logic part in the state equa-
tions by transforming Boolean variables into 0-1 integers, and by expressing the

4.1. HYSDEL MODELS 17

relations as mixed-integer linear inequalities (see [10, 27] and references therein).
MLD systems are therefore capable of modeling a broad class of systems, in par-
ticular those systems that can be modeled through the hybrid system description
language HYSDEL [27].

4.1.2 Example

Consider the following example of hybrid system [10] (demo bm99sim.m):
x(k + 1) = 0.8

[
cosα(k) − sinα(k)
sinα(k) cosα(k)

]
x(k) +

[
0
1

]
u(k)

y(k) =
[

0 1
]
x(k)

α(k) =

{
π
3

if [1 0]x(k) ≥ 0
−π

3
if [1 0]x(k) < 0

(4.2)

Assuming that [−10, 10] × [−10, 10] is the set of states x(k) of interest, and that
[−1.1, 1.1] is the set of inputs u(k) of interest, using HYSDEL we describe (4.2) as

/* 2x2 PWA system */

SYSTEM pwa {

INTERFACE {
STATE { REAL x1 [-10,10];

REAL x2 [-10,10];
}

INPUT { REAL u [-1.1,1.1];
}

OUTPUT{ REAL y;
}

PARAMETER {
REAL alpha = 1.0472; /* 60 deg in radiants */
REAL C = cos(alpha);
REAL S = sin(alpha);

}
}

IMPLEMENTATION {
AUX { REAL z1,z2;

BOOL sign; }
AD { sign = x1<=0; }

DA { z1 = {IF sign THEN 0.8*(C*x1+S*x2)
ELSE 0.8*(C*x1-S*x2) };

z2 = {IF sign THEN 0.8*(-S*x1+C*x2)
ELSE 0.8*(S*x1+C*x2) }; }

CONTINUOUS { x1 = z1;
x2 = z2+u; }

OUTPUT { y = x2; }
}

}

(see bm99.hys). The equivalent MLD system has the form and obtain the

18 CHAPTER 4. HYBRID DYNAMICAL SYSTEMS

equivalent MLD form

x(k + 1) = [1 0
0 1] z(k) + [0

1]u(k)
y(k) = [0 1]x(k)

−10
10

21.8564
21.8564
−21.8564
−21.8564
21.8564
21.8564
−21.8564
−21.8564

 δ(k) +

0 0
0 0
−1 0
1 0
−1 0
1 0
0 −1
0 1
0 −1
0 1

 z(k) ≤

1 0
−1 0
−0.4 −0.6928
0.4 0.6928
−0.4 0.6928
0.4 −0.6928

0.6928 −0.4
−0.6928 0.4
−0.6928 −0.4
0.6928 0.4

x(k) +

0
10

21.8564
21.8564

0
0

21.8564
21.8564

0
0

 .
(4.3)

Now go to the directory demos/hybrid/ and type:

S=mld(’bm99’)

The corresponding output is

S is an MLD hybrid model generated from the HYSDEL file <bm99.hys>

2 states (2 continuous, 0 binary)
1 inputs (1 continuous, 0 binary)
1 outputs (1 continuous, 0 binary)

2 continuous auxiliary variables
1 binary auxiliary variables
10 mixed-integer linear inequalities

sampling time: 1

Type S.rowinfo for information about dynamics and constraints.
Type S.symtable for information about variables.
Type "struct(S)" for extra details.

The MLD system equations are stored in the MLD object S (try typing S.A,
S.B1, S.E2, S.E3, S.E4, or S.E5).

4.1.3 Piecewise Affine Systems

Piecewise affine (PWA) systems are described by

x(k + 1) = Aix(k) +Biu(k) + fi
y(k) = Cix(k) +Diu(k) + gi

for
[
x(k)
u(k)

]
∈ Ωi, (4.4)

where u(k) ∈ Rm, x(k) ∈ Rn and y(k) ∈ Rp denote the input, state and output,
respectively, at time k, Ωi , {[xu] : Hixx + Hiuu ≤ Ki}, i = 1, . . . , s, are convex
(possibly unbounded) polyhedra in the input+state space. Ai, Bi, Ci, Di, Hix and
Hiu are real matrices of appropriate dimensions and fi and gi are real vectors for
all i = 1, . . . , s.

PWA systems have been studied by several authors (see [10, 16, 18, 23] and
references therein) as they form the “simplest” extension of linear systems that

4.2. EQUIVALENCE OF DHA, MLD, AND PWA MODELS 19

can still model nonlinear and non-smooth processes with arbitrary accuracy and
are capable of handling hybrid phenomena, such as linear-threshold events and
mode switching.

A PWA system of the form (4.4) is called well-posed, if (4.4) is uniquely solvable
in x(k + 1) and y(k), once x(k) and u(k) are specified. A necessary and sufficient
condition for the PWA system (4.4) to be well-posed over Ω , ∪si=1Ωi is there-
fore that x(k + 1), y(k) are single-valued PWA functions of x(k), u(k). Therefore,
typically the sets Ωi have mutually disjoint interiors, and are often defined as
the partition of a convex polyhedral set Ω. In case of discontinuities of the PWA
functions over overlapping boundaries of the regions Ωi, one may ensure well-
posedness by writing some of the inequalities in the form (Hix)

jx+(Hiu)
ju < Kj

i ,
where j denotes the j-th row. Although this would be important from a system
theoretical point of view, it is not of practical interest from a numerical point of
view, as “<” cannot be represented in numerical algorithms working in finite
precision.

4.2 Equivalence of DHA, MLD, and PWA Models

In [3] it is shown that MLD systems can be transformed into equivalent PWA sys-
tems. Equivalence means that for the same initial conditions and input sequences
the trajectories of the system are identical. Once the HYSDEL model of a system
is available, the equivalent MLD and PWA models can be generated in Matlab.

4.2.1 Example

Consider again the example in demo bm99sim.m. To convert the MLD system to
PWA form, type P=pwa(S). The corresponding output is

P is a PWA hybrid model defined over 2 polyhedral regions and with
2 state(s) (2 continuous, 0 binary)
1 input(s) (1 continuous, 0 binary)
1 output(s) (1 continuous, 0 binary)

P was generated from the MLD system ’S’ (HYSDEL model <bm99.hys>, sampling time = 1).
Type "struct(P)" for full information.

The corresponding equivalent PWA object is now contained in the workspace
variable P, and was computed using the algorithm of [3]. P contains all the infor-
mation about the different dynamical affine submodels and the polyhedral cells
where they are defined. For instance, the second dynamics (A2, B2, f2, C2, D2,
g2) and corresponding cell Ω2 = {[xu] : H2xx + H2uu ≤ K2} can be retrieved as
follows:

A2=P.A{2};
B2=P.B{2};
f2=P.f{2};

20 CHAPTER 4. HYBRID DYNAMICAL SYSTEMS

C2=P.C{2};
D2=P.D{2};
g2=P.g{2};
H2x=P.Hx{2};
H2u=P.Hu{2};
K2=P.K{2};

You can plot the section of the cell in the x-space {x : H2xx ≤ K2} by typing

polyplot(H2x,K2)

(see also plot and plotsection for plotting 2-D sections of PWA system parti-
tions).

4.3 Control of Hybrid Systems

Controlling a system means to choose the command input signals so that the out-
put signals tracks some desired reference trajectories.

In [6, 10] the authors showed how mixed-integer programming (MIP) can be
efficiently used to determine optimal control sequences. It was also shown that
when optimal control is implemented in a receding horizon fashion by repeatedly
solving MIPs on-line, this leads to an asymptotically stabilizing control law. For
those cases where on-line optimization is not viable, [6, 7] proposed multipara-
metric programming as an effective means for synthesizing piecewise affine op-
timal controllers, that solve in state-feedback form the finite-time hybrid optimal
control problem with criteria based on linear (1-norm, ∞-norm) and quadratic
(squared Euclidean norm) performance objectives. Such a control design flow
for hybrid systems was applied to several industrial case studies, in particular to
automotive problems where the simplicity of the control law is essential for its
applicability [4, 9, 20].

Receding horizon ideas can be applied to control hybrid models. Assume we
want the output y(t) to track a reference signal yr, and let xr, ur, zr be a desired
references for the state, input, and auxiliary variables. Let t be the current time,

4.3. CONTROL OF HYBRID SYSTEMS 21

and x(t) the current state. Consider the following optimal control problem

min
{u,δ,z}N−1

0

J({u, δ, z}N−1
0 , x(t)) , ‖QxN(x(N |t)− xr)‖p +

N−1∑
k=1

‖Qx(x(k)− xr)‖p +

+
N−1∑
k=0

‖Qu(u(k)− ur)‖p + ‖Qz(z(k|t)− zr)‖p + ‖Qy(y(k|t)− yr)‖p (4.5a)

s.t.

x(0|t) = x(t)
x(k + 1|t) = Ax(k|t) +B1u(k) +B2δ(k|t) +B3z(k|t)
y(k|t) = Cx(k|t) +D1u(k) +D2δ(k|t) +D3z(k|t)
E2δ(k|t) + E3z(k|t) ≤ E1u(k) + E4x(k|t) + E5

umin ≤ u(t+ k) ≤ umax, k = 0, 1, . . . , N − 1
xmin ≤ x(t+ k|t) ≤ xmax, k = 1, . . . , N
ymin ≤ y(t+ k) ≤ ymax, k = 0, . . . , N − 1
Sxx(N |t) ≤ Tx

(4.5b)

where N is the optimal control interval, x(k|t) is the state predicted at time t + k
resulting from the input u(t+k) to (4.1) starting from x(0|t) = x(t), umin, umax, ymin,
ymax, and xmin, xmax are hard bounds on the inputs, outputs, and states, respec-
tively, and {x : Sxx ≤ Tx} is a final target polyhedral subset of the state-space Rn.
In (4.5a), ‖Qx‖p = x′Qx for p = 2 and ‖Qx‖p = ‖Qx‖∞ for p =∞.

Assume for the moment that the optimal solution {u∗t (0), . . ., u∗t (N − 1), δ∗t (0),
. . ., δ∗t (N − 1), z∗t (0), . . ., z∗t (N − 1)} exists. According to the receding horizon phi-
losophy, set

u(t) = u∗t (0), (4.6)

disregard the subsequent optimal inputs u∗t (1), . . . , u∗t (N−1), and repeat the whole
optimization procedure at time t+1. The control law (4.5)–(4.6) provides an exten-
sion of MPC to hybrid models, and relies upon the solution of the mixed-integer
program (4.5). The exact formulation of the mixed-integer linear program (MILP)
corresponding to problem (4.5) is reported in Appendix A for the case p =∞.

Problem (4.5) is formulated for hard constraints. However, in practice it is
often useful to treat constraints as soft by adding a scalar panic variable ρ ≥ 0:

umin − 1mρ ≤ u(t+ k) ≤ umax + 1mρ, k = 0, 1, . . . , N − 1 (4.7a)
xmin − 1nρ ≤ x(t+ k|t) ≤ xmax + 1nρ, k = 1, . . . , N (4.7b)
ymin − 1pρ ≤ y(t+ k) ≤ ymax + 1pρ, k = 0, . . . , N − 1 (4.7c)
Sxx(N |t) ≤ Tx + 1qρ (4.7d)

where 1h is a column vector of ones of length h, and by adding the term ‖Qρρ‖p
in cost function (4.5a), which penalizes constraint violations.

By default p = ∞, Qx = I , Qu = 0.1I , Qy = I , Qz = 0, QxN = Qx, Qρ = ∞
(hard constraints), umax = −umin = ∞, xmax = −xmin = ∞, ymax = −ymin = ∞,
and {x : Sxx ≤ Tx} = Rn.

22 CHAPTER 4. HYBRID DYNAMICAL SYSTEMS

4.3.1 Example

Consider again the example in demo bm99sim.m. We want to obtain a controller
based on the optimal control problem

min
u(0),u(1),δ(0|t),δ(1|t),z(0|t),z(1|t)

2∑
k=0

‖y(k|t)− ry(t))‖∞ (4.8a)

s.t.

x(t|t) = x(t)
MLD model (4.3)
−1 ≤ u(t), u(t− 1) ≤ 10
−10 ≤ x(1|t), x(2|t) ≤ 10.

(4.8b)

We define a controller object C:

clear Q refs limits
refs.y=1; % output references (no state, input, zeta references)
Q.y=1;
Q.rho=Inf; % Hard constraints
Q.norm=Inf; % Infinity norm
N=2;

limits.umin=-1;
limits.umax=1;
limits.xmin=[-10;-10];
limits.xmax=[10;10];

C=hybcon(S,Q,N,limits,refs)

The corresponding output is

C is a hybrid controller based on MLD model S <bm99.hys>

2 state measurement(s)
1 output reference(s)
0 input reference(s)
0 state reference(s)
0 reference(s) on auxiliary continuous z-variables

10 optimization variable(s) (8 continuous, 2 binary)
36 mixed-integer linear inequalities
sampling time = 1, MILP solver = glpk

Type "struct(C)" for more details.

The MILP problem solving (4.8) has the form

min f ′q

s.t. Aq ≤ b+ Cxx(t) + Cy
r ry(t)

(4.9)

4.3. CONTROL OF HYBRID SYSTEMS 23

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

output y(t)

input u(t)

Figure 4.3: Closed-loop system constituted by the hybrid system (4.3) and the
controller (4.8).

where qc = [u(0), u(1), δ(0|t), δ(1|t), z(0|t), z(1|t)] are the continuous and binary
optimization variables. The matrices of (4.9) are stored in the HYBCON ob-
ject contained in the workspace variable C, in particular f=C.f, A=C.A, b=C.b,
Cx=C.Cx, Cy

r=C.Cr.y.
We want to simulate now the closed-loop system constituted by the hybrid

system (4.3) and the controller (4.8). To this end, typing

Tstop=100;

x0=[0;0];

r.y=sin((0:99)’/5);

sim(C,S,r,x0,Tstop);

produces the plot shown in Figure 4.3.
To switch to the squared 2-norm (while maintaining the same controller weights,

constraints, horizons, and referenced variables) type:

Q.norm=2; % 2-norm

C=hybcon(S,Q,N,limits,refs);

Terminal state constraints of the form Sxx(N |t) ≤ Tx can be enforced by defin-
ing limits.Sx=Sx, limits.Tx=Tx. For controllers that must be processed by mul-
tiparametric solvers, the set {x : Sxx ≤ Tx} should be full-dimensional in order
to prevent numerical problems.

24 CHAPTER 4. HYBRID DYNAMICAL SYSTEMS

4.4 Explicit Form of the Optimal Hybrid Controller

There is an alternative to on-line mixed integer optimization for implementing
controllers for hybrid systems.

By generalizing the result of [12] for linear systems to hybrid systems and
handling the state vector x(t), which appears in the the linear part of the objective
function and of the rhs of the constraints, as a vector of parameters, in [5,6] it was
shown how to transform the hybrid control law (4.5) into the piecewise affine
form

u(t) = Fi

[
x(t)
r(t)

]
+ gi, for[

x(t)
r(t)

]
∈ Ωi , {[xr] : Hi [

x
r] ≤ Si}, i = 1, . . . , s

(4.10)

where ∪si=1Ωi is the set of states+references for which a feasible solution to (4.5)
exists.

There are several approaches to compute the explicit representation (4.10).
Here, we use a combination of reachability analysis, multiparametric linear pro-
gramming, and computational geometry for comparison of convex piecewise
affine functions (see function pwaopt.m). In case of infinity norms, the explicit
hybrid optimal controller is returned as a piecewise affine function. In case of
squared Euclidean norms, the controller is currently returned as a collection of
(possibly overlapping and redundant) piecewise affine maps (techniques for sim-
plifying the collection are currently under development).

4.4.1 Example

Consider again the example in demo bm99sim.m. We want to obtain the explicit
form of controller (4.8). To this end, we define a range of parameters where we
want to solve the problem, namely the set of states x(t) whose components are
between −10 and 10, and of references ry(t) between −1 and 1:

range.xmin=[-10;-10];

range.xmax=[10;10];

range.refymin=-1;

range.refymax=1;

E=expcon(C,range,options)

The corresponding output is

E is an explicit controller (based on controller C)
3 parameter(s)
1 input(s)
5 partition(s)

sampling time = 1

The controller is for hybrid systems (tracking)
This is an output-feedback controller.

4.5. REACHABILITY ANALYSIS AND VERIFICATION OF SAFETY PROPERTIES25

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

1

2

3

4

5

x1

x2

Section for ry = 0

Figure 4.4: Partition associated with the explicit hybrid controller equivalent
to (4.8).

Type "struct(E)" for more details.

The partition consist of 5 polyhedral regions in R3. A section for ry = 0 can be
plotted using the command plotsection(E,3,0), and is depicted if Figure 4.4.

The piecewise affine controller (4.10) and the MPC controller (4.5) are equal, in
the sense that they produce the same control action, and therefore share the same
stabilizing and optimality properties. The difference is only in the implementa-
tion: for the form (4.10), on-line computation reduces to a function evaluation,
instead of a mixed-integer linear program.

The explicit representation of the MPC controller discussed above is signifi-
cant for several reasons. First of all, it gives some insight into the mathematical
structure of the controller which is otherwise hidden behind the optimization
formalism. Furthermore, it offers an alternative route to an efficient controller
implementation, opening up the route to use MPC in “fast” and “cheap” systems
where the on-line solution of a mixed-integer program is prohibitive.

4.5 Reachability Analysis and Verification of Safety
Properties

Although simulation allows to probe a model for a certain initial condition and
input excitation, any analysis based on simulation is likely to miss the subtle
phenomena that a model may generate, especially in the case of hybrid mod-
els. Reachability analysis (also referred to as “safety analysis” or “formal verifi-

26 CHAPTER 4. HYBRID DYNAMICAL SYSTEMS

cation”), aims at detecting if a hybrid model will eventually reach unsafe state
configurations or satisfy a temporal logic formula [1] for all possible initial condi-
tions and input excitations within a prescribed set. Reachability analysis relies on
a reach set computation algorithm, which is strongly related to the mathematical
model of the system.

Timed automata and hybrid automata have proved to be a successful mod-
eling framework for formal verification and have been widely used in the litera-
ture. The starting point for both models is a finite state machine equipped with
continuous dynamics. In the theory of timed automata, the dynamic part is the
continuous-time flow ẋ = 1. Efficient computational tools complete the theory
of timed automata and allow one to perform verification and scheduling of such
models. Timed automata were extended to linear hybrid automata [1], where the
dynamics is modeled by the differential inclusion a ≤ ẋ ≤ b. Specific tools al-
low one to verify such models against safety and liveness requirements. Linear
hybrid automata were further extended to hybrid automata where the continuous
dynamics is governed by differential equations. Tools exist to model and ana-
lyze those systems, either directly or by approximating the model with timed
automata or linear hybrid automata (see e.g. the survey paper [22]).

For MLD and PWA systems formulated in discrete time, several approaches
have been proposed, we refer the reader to [11, 13, 14, 25, 26]. The toolbox uses a
different approach based mixed-integer linear programming.

The problem is to test whether a certain terminal set Xf = {x : Sxx ≤ Tx}
can be reached after exactly N steps, starting from a set of initial states X0 = {x :
S0x ≤ T0} for some input sequence u(0), . . . , u(N − 1) with umin ≤ u(k) ≤ umax,
∀k = 0, . . . , N − 1. Such a sequence exists if the following set of mixed-integer
linear inequalities is feasible:

S0x(0) ≤ T0

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k), k = 0, 1, . . . , N − 1
E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5, k = 0, 1, . . . , N − 1
umin ≤ u(k) ≤ umax, k = 0, 1, . . . , N − 1

Sxx(N) ≤ Tx

(4.11)

with respect to the unknowns u(0), δ(0), z(0), . . . , u(N − 1), δ(N − 1), z(N − 1),
x(0).

Complex conditions can be posed in the reachability analysis by adding con-
straints (such as linear constraints and Boolean constraints) in the MUST section
of the HYSDEL file that defines the MLD model.

A more extended “safety” question is whether the state can never reach Xf

at any time k, 1 ≤ k ≤ N , starting from X0 = {x : S0x ≤ T0} and for some
input sequence u(0), . . . , u(N − 1), with umin ≤ u(k) ≤ umax, ∀k = 0, . . . , N −
1. Instead of solving this extended problem by solving the MILP (4.11) for all
horizons between 1 and N , the Hybrid Toolbox provides the answer with one
MILP, by introducing the auxiliary variable δf (k) ∈ {0, 1} subject to the constraint

[δf (k) = 1] −→ [x(k + 1) ∈ Xf] (4.12)

4.5. REACHABILITY ANALYSIS AND VERIFICATION OF SAFETY PROPERTIES27

and by imposing the constraint

N−1∑
k=0

δf (k) ≥ 1.

The function reach performs the reachability analysis (4.11), as detailed in the
following example.

4.5.1 Example

Consider the example in demo reachtest.m. The hybrid dynamics consists of
three continuous states x1, x2, x3, two binary states x4, x5, two continuous inputs
u1, u2, one binary input u3, and is defined by the equations

x1(k + 1) =

{
0.1x1(k) + 0.5x2(k) if (δ1(k) ∧ δ2(k)) ∨ x4(k) true
−0.3x3(k)− x1(k) + u1(k) otherwise

x2(k + 1) =

{
−0.8x1(k) + 0.7x3(k)− u1(k)− u2(k) if δ3(k) ∨ x5(k) true
−0.7x1(k)− 2x2(k) otherwise

x3(k + 1) =

{
−0.1x3(k) + u2(k) if (δ3(k) ∧ x5(k)) ∨ (δ1(k) ∧ x4(k)) true
x3(k)− 0.5x1(k)− 2u1(k) otherwise

x4(k + 1) = δ1(k) ∧ x4(k)

x5(k + 1) = ((x4(k) ∨ x5(k)) ∧ (δ1(k) ∨ δ2(k)) ∨ (δ3(k) ∧ u3(k))

δ1(k) true ↔ [x1(k) ≤ 0]

δ2(k) true ↔ [x2(k) ≥ 0]

δ3(k) true ↔ [x3(k)− x2(k) ≤ 1]

where −10 ≤ x1 ≤ 10, −5 ≤ x2 ≤ 5, −20 ≤ x3 ≤ 20, −1 ≤ u1 ≤ 1, −2 ≤ u2 ≤ 2, as
described in HYSDEL in reachtest.hys, and k is the time step index (sampling
time=0.2 s).

We want to test if the set of states Xf = {x : −1 ≤ x1,2,3 ≤ 1, x4,5 ∈ {0, 1}}
can be reached within N = 5 steps from an initial state x(0) in the set X0 = {x :
−0.1 ≤ xi ≤ 0.1, x4,5 ∈ {0, 1}} under the conditions

x3(k) + x2(k) ≤ 0, ∀k = 0, . . . , N − 1

δ1(k) ∨ δ2(k) ∨ x5(k) true, ∀k = 0, . . . , N − 1

¬x4(k) ∨ x5(k) true, ∀k = 0, . . . , N − 1.

The reachability analysis question is answered through the following code:

ts=0.2; % Sampling time

S=mld(’reachtest’,ts);

N=5;

Xf.A=[eye(5);-eye(5)];

Xf.b=[1 1 1 1 1 1 1 1 0 0]’;

28 CHAPTER 4. HYBRID DYNAMICAL SYSTEMS

X0.A=[eye(5);-eye(5)];

X0.b=[.1 .1 .1 1 1 .1 .1 .1 0 0]’;

[flag,x0,U,xf,X,T]=reach(S,[1 N],Xf,X0);

The answer is flag=1, which means that the set of states Xf is reachable from
X0 under the above dynamics and conditions. The code also returns an example
of initial state x(0) = x0, sequence of inputs [u(0) u(1) . . . u(N − 1)] = U , and the
corresponding final state x(N) = xf and state sequence [x(0) x(1) . . . x(N − 1)] =
X , satisfying the reachability analysis problem:

U =

-0.0000 -1.0000 1.0000

-0.6000 -1.1000 1.0000

0.1714 -0.2714 1.0000

-0.0800 -0.0171 1.0000

0 0 0

X =

0.0000 -0.0000 0 1.0000 1.0000

0.0000 1.0000 -1.0000 0 1.0000

-0.3000 1.0000 -1.0000 0 1.0000

0.4700 -0.3600 -0.1714 0 1.0000

-0.4986 -0.3989 0.0000 0 1.0000

0.4986 0.3989 -0.0000 0 1.0000

xf =

0.4986

0.3989

-0.0000

0

1.0000

In order to test whether the set of states Xf = {x : −1 ≤ x1,2,3 ≤ 1, x4,5 ∈
{0, 1}} can be reached after exactly N = 5 steps, we can use the different syntax

[flag,x0,U,xf,X,T]=reach(S,N,Xf,X0);

Chapter 5

Simulink Library

This chapter describes the Simulink Library of the Hybrid Toolbox. The library
offers blocks for

• Simulation of constrained controllers for linear systems (either based on on-
line quadratic optimization or in explicit PWA form);

• Simulation of constrained controllers for hybrid systems (either based on
on-line mixed-integer linear optimization or in explicit PWA form);

• Simulation of MLD and PWA systems.

The library is depicted in Figure 5.1. The leftmost blocks are controllers based
on on-line optimization, the blocks in the middle are controllers based on explicit
representations, the rightmost blocks are for simulation of MLD and PWA sys-
tems.

5.1 Constrained Control of Linear Systems

As described in Section 3.2, the receding horizon control problem is defined either
a regulation or as a tracking problem. The Simulink block “Linear Constrained
Controller” implements both a constrained regulator and a tracking controller
based on on-line quadratic optimization. If a Kalman filter is associated with
the controller, the block also internally estimates the state of the system to be
controlled. In this case, the initial condition of the observer can be specified in
the block mask, see Figure 5.2. In case the controller is for reference tracking, the
value of the initial input u(−1) can be also specified in the block mask.

5.1.1 Example: Aircraft Control

The folder demos/linear contains the demo afti16.m for the design of a con-
troller for the AFTI-F16 aircraft [8, 19].

29

30 CHAPTER 5. SIMULINK LIBRARY

Figure 5.1: Hybrid Toolbox Simulink Library.

The linearized dynamic model for the attack and pitch angles as a function of
the elevator and flaperon angles is

ẋ =

−.0151 −60.5651 0 −32.174
−.0001 −1.3411 .9929 0
.00018 43.2541 −.86939 0

0 0 1 0

x+

−2.516 −13.136
−.1689 −.2514
−17.251 −1.5766

0 0

u

y =

[
0 1 0 0
0 0 0 1

]
x,

where u contains the elevator and flaperon angles, y the attack and pitch angles.
The open-loop response of the system is unstable (open-loop poles: −7.6636,−0.0075±
0.0556j, 5.4530). The model is converted to discrete-time with a sampling period
Ts = .05 s. Both inputs are constrained between±25o. The task is to get zero offset
for piecewise-constant references, avoiding instability due to input saturation.

The file afti16.m sets the model and the controller design up, determines the
explicit form of the MPC controller, and simulate the closed loop.

5.2. CONSTRAINED CONTROL OF HYBRID SYSTEMS 31

Figure 5.2: “Linear Constrained Controller”: Simulink block mask.

Figure 5.3: AFTI-F16 aircraft

5.2 Constrained Control of Hybrid Systems

5.2.1 Example: Switching System

Consider again the example in demo bm99sim.m. We want to simulate now in
Simulink the closed-loop system constituted by the hybrid system (4.3) and con-
troller (4.8). The Simulink diagram bm99mld.mdl, represented in Figure 5.7 pro-
duces the plots shown in Figure 5.8.

The simulation needs to solve one MILP per sampling interval. On the other
hand, we can repeat the simulation using the explicit version of the controller
calculated in Section 4.4.1, as shown in the Simulink diagram bm99exp reported
in Figure 5.9.

32 CHAPTER 5. SIMULINK LIBRARY

Figure 5.4: Simulation of the (linearized) dynamics of an AFTI-F16 aircraft in
closed-loop with an explicit constrained linear controller.

(a) Output trajectories (b) Input trajectories (c) Controller mode

Figure 5.5: AFTI-F16 aircraft closed-loop trajectories

5.2. CONSTRAINED CONTROL OF HYBRID SYSTEMS 33

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

ry1

ry2

Section obtained by setting x = 0, u = 0

Figure 5.6: Partition associated with the explicit controller for the AFTI-F16 air-
craft. Section in the output reference space, obtained by zeroing the current state
x and previous input u.

Figure 5.7: Closed-loop system constituted by the hybrid system (4.3) and con-
troller (4.8) based on MILP.

34 CHAPTER 5. SIMULINK LIBRARY

(a) Output trajectory (b) Input trajectory

Figure 5.8: Closed-loop trajectories for the system constituted by the hybrid sys-
tem (4.3) and controller (4.8) based on on-line MILP

Figure 5.9: Closed-loop system constituted by the hybrid system (4.3) and the
explicit version of controller (4.8), whose partition is depicted in Figure 4.4.

Chapter 6

Function Reference

The Hybrid Toolbox provides a set of Matlab functions for design, computation,
and simulation of constrained controllers for linear and hybrid systems.

6.1 Functions by Category

6.1.1 MLD Systems

Methods for the @mld object (MLD hybrid system dynamics):

Function name Description
mld Construct an MLD system from a HYSDEL description
update Update MLD dynamics
sim Open-loop simulation
reach Reachability analysis of MLD systems
getfeasible Get a feasible state+input pair
getbounds Get bounds on states and inputs
info Get information from the symbolic table generated by HYSDEL
getvar Get information about specific HYSDEL variables

6.1.2 PWA Systems

Methods for @pwa object (PWA hybrid system dynamics):

Function name Description
pwa Construct a PWA system from an MLD description
update Update PWA dynamics
sim Open-loop simulation
plot Plot partition (only 2D)
plotsection Plot sections of the partition
fix Reduce PWA system by fixing input/states to given values
pwaprops Help on PWA model properties

35

36 CHAPTER 6. FUNCTION REFERENCE

6.1.3 Constrained Optimal Control of Linear Systems

Methods for @lincon object (constrained control of linear systems):

Function name Description
lincon Controller based on quadratic optimization
eval Evaluation of the control law using quadratic optimization
kalman Design of a Kalman observer for output feedback
setnames Assign input and output variable names
sim Closed-loop simulation

6.1.4 Constrained Optimal Control of Hybrid Systems

Methods for @hybcon object (controller for hybrid systems):

Function name Description
hybcon Control of hybrid systems
eval Evaluation of the hybrid control law based on MILP/MIQP
sim Closed-loop simulation

6.1.5 Explicit Constrained Optimal Control of Linear and Hy-
brid Systems

Methods for the @expcon object (constrained control of linear and hybrid sys-
tems):

Function name Description
expcon Convert controller to explicit PWA form
eval Evaluation of the explicit control law
getgain Get the polyhedron and gain corresponding to a region number
getregnum Pick up region numbers from 2D plots of controller partitions
hwrite Convert PWA controller to C header file
latex Convert PWA controller to LATEX
plot Plot partition (only 2D)
plotsection Plot sections of the partition
reduce Eliminate small regions from the partition
kalman Design a Kalman observer for output feedback (only linear models)
setnames Assign input and output variable names (only linear models)
sim Closed-loop simulation

6.1.6 Polyhedral Computation and Partitions

Functions for polyhedral computation (contained in the directory utils):

6.1. FUNCTIONS BY CATEGORY 37

Function name Description
polyincl Compute inclusion of polyhedra
polyminus Compute difference of polyhedra
polynormalize Normalize polyhedra inequalities
polyplot Plot 2D polytopes
polyplot3d Plot 3D polytopes
lineplot Plot a line in a 2D figure
polyreduce Reduce polyhedra to minimal hyperplane representation
polyunion Compute the union of polyhedra
joinconvex Join controller regions (if the union is a convex set)
reduce reduce piecewise affine solutions by eliminating small regions
pwaplot Plot polyhedral partitions
pwaplotsection Plot sections of polyhedral partitions

6.1.7 Observer Design

Auxiliary functions for observer design (contained in the directory utils):

Function name Description
kalmdesign Design Kalman filter for @lincon and linear @expcon objects
kalmanhelp Help on KALMDESIGN

6.1.8 C-Code, MEX Functions, S-Functions

C-code for evaluation of explicit control for linear and hybrid systems, MEX inter-
faces, S-functions for explicit controller evaluation and for simulation of hybrid
MLD and PWA dynamics (located in the directory utils):

Function name Description
expcon.c C file for computing an explicit controller
expcon.h Header file (generated by expcon/hwrite)
linobsmex.c MEX-C file for computing an explicit controller for

linear output-feedback systems
linobsmex Help on linobsmex.c
expconmex.c MEX-C file for computing an explicit linear/hybrid state-feedback controller
expconmex Help on expconmex.c
expsfun.c MEX-C S-function for simulating an explicit controller in Simulink
expsfun.h Header file (generated by expcon/hwrite)
hybsfun S-function for simulating hybrid controllers based on MILP in Simulink
linsfun S-function for simulating constrained linear controller

based on QP in Simulink
mldsfun S-function for simulating MLD models
pwasfun S-function for simulating PWA models

6.1.9 Solvers

Solvers for LP, QP, MILP, mpLP, mpQP, comparison of PWA functions (contained
in the directory utils):

38 CHAPTER 6. FUNCTION REFERENCE

Function name Description
cddmex LP solver and polyhedral computation (by K. Fukuda)
cplexmex Detailed help on CPLEXMEX (by N. Giorgetti)
glpkmex LP/MILP solver (by A. Makhorin, Maltab interface by N. Giorgetti)
glpkparams Detailed help on GLPKMEX (by N. Giorgetti)
lpsol Interface to different LP solvers
lptype Selection of preferred LP solver
mexpress Detailed help on MEXPRESS (by N. Giorgetti)
mld2pwa MLD to PWA conversion algorithm
milpsol Interface to different MILP solvers
milptype Selection of preferred MILP solver
minpwa Compute the minimum of several convex PWA functions
miqpsol Interface to different MIQP solvers
miqptype Selection of preferred MIQP solver
miqp Solve MILP/MIQP problems (Matlab based)
miqp3 naf Another MILP/MIQP solver (Matlab based)
mplp multiparametric linear programming solver
mpqp multiparametric quadratic programming solver
mplpjoin reduce mplp solutions
pwaopt Compute explicit representation of hybrid optimal controllers
qpsol Interface to different QP solvers
qptype Selection of preferred QP solver
qpact QP solver based on an active-set method

6.2 @LINCON – Controllers for Constrained Linear
Systems

Controllers for constrained linear systems based on quadratic optimization are
described by @LINCON objects. The constructor function lincon has the following
syntax:

Syntax: C=lincon(SYS,TYPE,COST,INTERVAL,LIMITS)
Given the linear model SYS, if TYPE=’reg’ lincon builds a constrained regulator
to the origin based on the optimal control problem (3.3)

min x′(t+ T |t)Px(t+N |t) +
∑N−1

k=0 x
′(t+ k|t)Qx(t+ k|t) + u′(t+ k)Ru(t+ k) + ρε2

s.t. ymin − ε ≤ y(t+ k|t) ≤ ymax + ε, k = 1, ..., Ncy

umin ≤ u(t+ k) ≤ umax, k = 0, ..., Ncu

u(t+ k) = Kx(t+ k|t), k ≥ Nu

x(t+ k + 1|t) = Ax(t+ k|t) +Bu(t+ k)
y(t+ k|t) = Cx(t+ k|t) +Du(t+ k)

or, if TYPE=’track’, it builds a constrained controller for output reference track-

6.2. @LINCON – CONTROLLERS FOR CONSTRAINED LINEAR SYSTEMS 39

ing based on the optimal control problem (3.6)

min
∑N−1

k=0 [y′(t+ k|t)− r(t)]S[y(t+ k|t)− r(t)] + ∆u′(t+ k)T∆u(t+ k) + ρε2

s.t. ymin − ε ≤ y(t+ k|t) ≤ ymax + ε, k = 1, ..., Ncy

umin ≤ u(t+ k) ≤ umax, k = 0, ..., Ncu

∆umin ≤ ∆u(t+ k) ≤ ∆umax, k = 0, ..., Ncu

u(t+ k) = 0, k ≥ Nu

x(t+ k + 1|t) = Ax(t+ k|t) +B[u(t+ k − 1|t) + ∆u(t+ k)]
y(t+ k|t) = Cx(t+ k|t) +D[u(t+ k − 1|t) + ∆u(t+ k)]

COST is a structure defining the parameters of the optimal control problem and
has the following fields:

Property Description Type Default
Q state weight x′(k)Qx(k) reg I
R input weight u′(k)Ru(k) reg 1

10I
P final state weight x′(N)Px(N) reg ’lqr’
S output weight (y(k)− r)′S(y(k)− r) track I
T input increment weight ∆u′(k)T∆u(k) track 1

10I
rho slack var weight ρε2 reg, track 104 or Inf
K feedback gain u(k) = Kx(k) for k ≥ Nu reg LQ gain

For regulators to the origin, COST.P must be either a matrix of weights or a string.
An accepted option is COST.P=’lqr’, which forces the terminal weight P to be
the solution of the LQR problem with weights Q, R, and K to be the correspond-
ing LQR gain (cf. Eq. (3.4)). Another accepted option is COST.P=’lyap’, which
forces the terminal weight P to be the solution of the Lyapunov equation (3.5)
and K = 0. By default, cost.rho=104; in case the controller has no output con-
straints, however, cost.rho is always set to Inf, even if a finite value of cost.rho
has been specified, as input constraints only never lead to unfeasibility of the QP
problem. Note: the code building the QP problem scales the cost function matri-
ces by dividing the cost function by the maximum singular value of the Hessian
matrix. This is done before adding soft constraints, and hence, cost.rho is not
scaled.

The structure INTERVALS defines the number of input and output optimal con-
trol steps. INTERVALS has the following fields:

Field name Description Default
.N optimal control interval over which the cost function is summed Nu

.Nu number of free optimal control moves u(0), . . . , u(Nu − 1) 2

.Ncy output constraints are checked up to time k = Ncy N − 1

.Ncu input constraints are checked up to time k = Ncu Nu − 1

The structure LIMITS defines upper and lower bounds on output, state, and
input variables. LIMITS has the following fields:

40 CHAPTER 6. FUNCTION REFERENCE

Field name Description Type
.umin lower bounds on inputs u(k) ≥ umin reg, track
.umax upper bounds on inputs u(k) ≤ umax reg, track
.dumin lower bounds on input increments ∆u(k) ≥ ∆umin track
.dumax upper bounds on input increments ∆u(k) ≤ ∆umax track
.ymin lower bounds on outputs y(k) ≥ ymin − ε reg, track
.ymax upper bounds on outputs y(k) ≤ ymax + ε reg, track

Default values for limits are±∞. Limits are treated as hard constraints if COST.rho=+Inf,
as soft constraints otherwise.

The output argument is a @LINCON object which collects the matrices of the
quadratic program (cf. Eq. (3.7)) corresponding to the posed optimal control prob-
lem. The quadratic program has the form:

min 1
2
z′Qz + θ′C ′z

s.t. Gz ≤ W + Sθ

Correspondingly, the output argument C is a @LINCON object with the following
properties:

Property Description
Q Hessian matrix
C linear cost matrix
G lhs constraint matrix
W rhs constraint vector
S rhs constraint matrix
model LTI model
nx number of states
nu number of inputs
ny number of outputs
type controller type
ts sampling time
isconstr controller constrained/unconstrained
soft soft constraints/hard constraints
nvar number of optimization variables
nq number of linear inequality constraints
npar number of parameters (states and references)
QPsolver QP solver
I1 matrix to extract u(0) from the optimal vector
Qinv inverse of Hessian matrix
Observer observer information

For output-feedback controllers, C.Observer contains the observer information.
See Section 6.2.1 below.

Syntax: C=lincon(SYS,TYPE,COST,INTERVAL,LIMITS,QPSOLVER)
also specifies the type of QP solver to be used for computations. See Appendix B.2
for supported QP solvers. The default QP solver is the active set algorithm qpact.

6.3. @HYBCON – CONTROLLERS FOR HYBRID SYSTEMS 41

6.2.1 Output-Feedback Control

Output-feedback controllers for constrained linear systems can be obtained by
appending a state observer to the controller object (either a @LINCON or an @EXPCON

object for linear systems). The method kalman allows one to associate a Kalman
filter to the controller and has the following syntax:

Syntax: KALMAN(CON,Q,R)
designs a state observer for the linear model (A,B,C,D)=CON.model which con-
troller CON is based on, using Kalman filtering techniques. The resulting observer
is stored in the ’Observer’ field of the controller object CON. The controller object
can be either of class @LINCON or @EXPCON (explicit controller for linear systems).

Q is the covariance matrix of state noise, R is the covariance matrix of output
noise.

Syntax: Kest=KALMAN(CON,Q,R)
also returns the state observer as an LTI object. Kest receives u(k) and y(k) as
inputs (in this order), and provides the best estimated state x(k|k − 1) of x(k)
given the past measurements y(k − 1), y(k − 2), . . .

x(k + 1|k) = Ax(k|k − 1) +Bu(k) + L(y(k)− Cx(k|k − 1)−Du(k)

Syntax: Kest=KALMAN(CON,Q,R,ymeasured)
assumes that only the outputs specified in vector ymeasured are measurable out-
puts. In this case, R is a nym-by-nym matrix, where nym is the number of measured
outputs.

Syntax: [Kest,M]=KALMAN(CON,Q,R,ymeasured)
also returns the gain M which allows computing the measurement update

x(k|k) = x(k|k − 1) +M(y(k)− Cx(k|k − 1)−Du(k)

See also the command KALMAN in the Control Systems Toolbox. An example is
contained in the demo dcmotor in the demos/linear directory.

6.3 @HYBCON – Controllers for Hybrid Systems

Controllers for hybrid systems based on mixed-integer linear optimization are
described by @HYBCON objects. The constructor function hybcon has the following
syntax:

Syntax: P=hybcon(MLD,Q,N)
Builds a hybrid controller based on the optimal control problem (4.5)–(4.7). The
input arguments are the MLD system MLD, typically obtained from a HYSDEL file

42 CHAPTER 6. FUNCTION REFERENCE

through the constructor mld, the structure Q of weights

Q.y = Qy, (default: Qy = I)
Q.u = Qu, (default: Qu = 0.1I)
Q.x = Qx, (default: Qx = I)
Q.z = Qz, (default: Qz = 0)

Q.xN = QxN , (default: QxN = Qx)
Q.rho = Qρ, (default: Qρ = +∞),

the control horizon N (default: N=1). As an output, the @HYBCON object contains the
matrices of the MILP problem

min f ′q

s.t. Aq ≤ b+ Cxx(t) + Cy
r ry(t) + Cu

r ru(t) + Cy
z rz(t)

(6.1)

where q collects slack variables and the sequence of future u, δ, and z variables,
or the MIQP problem

min 1
2
q′Hq + θ′(t)Dq + f ′q + 1

2
θ(t)′Y θ(t) + V ′θ(t) + d

s.t. Aq ≤ b+ Cxx(t) + Cy
r ry(t) + Cu

r ru(t) + Cy
z rz(t)

(6.2)

associated with the control law, where θ = [x(t), rx(t), ry(t), ru(t), rz(t)]
′ and q col-

lects future u, δ, and z variables. The main fields of object @HYBCON are the follow-
ing:

Property Description
f linear cost
H Hessian matrix (only 2-norm)
D parameter linear cost (only 2-norm)
Y quadratic term (only 2-norm)
A constraint matrix
b constraint constant vector
Cx constraint matrix for state vector x(t)
Cr constraint matrix for references r(t):
Cr.y constraint matrix for input reference vector ry(t)
Cr.u constraint matrix for input reference vector ru(t)
Cr.x constraint matrix for state reference vector rx(t)
Cr.z constraint matrix for z-reference vector rz(t)

uvar position of u(0),. . . ,u(N − 1) within vector q
dvar position of δ(0),. . . ,δ(N − 1) within vector q
zvar position of z(0),. . . ,z(N − 1) within vector q
ivar position of integer variables within the optimization vector q

(binary inputs and binary auxiliary variable δ)
horizon prediction horizon
model name of MLD variable which the controller is based on
name name of HYSDEL model which generated the MLD model
ts sampling time of the controller (inherited from MLD’s sampling time)

6.4. @EXPCON – EXPLICIT CONTROLLERS (LINEAR/HYBRID SYSTEMS) 43

Syntax: P=hybcon(MLD,Q,N,LIMITS)
also specifies the structure LIMITS of upper and lower bounds on output, state,
and input variables. LIMITS has the following fields:

Field name Description
.umin lower bounds on inputs [u(k) ≥ umin]
.umax upper bounds on inputs [u(k) ≤ umax]
.xmin lower bounds on states [x(k) ≥ xmin − ρ]
.xmax upper bounds on states [x(k) ≤ xmax + ρ]
.ymin lower bounds on outputs [y(k) ≥ ymin − ρ]
.ymax upper bounds on outputs [y(k) ≤ ymax + ρ]

Limits are treated as hard constraints if Q.rho=+Inf, otherwise as soft constraints.

Syntax: P=hybcon(MLD,Q,N,LIMITS,REFSIGNALS)
also specifies the structure REFSIGNALS denoting output/state/input/z variables
for which a reference is specified, and has the following fields

Field name Description Default
.y outputs having a reference signal [1:ny]
.u inputs having a reference signal []
.x states having a reference signal []
.z z-vectors having a reference signal []

NOTE: The weight matrices specified in the structure Q must have a dimen-
sion equal to the number of tracked signals, i.e., Q.y must have dimension =
length(REFSIGNALS.y), Q.u must have dimension = length(REFSIGNALS.u), Q.x
must have dimension = length(REFSIGNALS.x), Q.zmust have dimension = length

(REFSIGNALS.z), Q.xN must have dimension = length(REFSIGNALS.x).
Example: The MLD system has 3 outputs and 2 inputs, and we want only outputs
y1 and y3 to track certain reference signals ry1, ry3 by minimizing ‖

[
2(y1−ry1)
5(y3−ry3)

]
‖,

and no reference trajectories for inputs, states, and z-variables. We must set
REFSIGNALS.y=[1 3], REFSIGNALS.u=[], REFSIGNALS.x=[], REFSIGNALS.z=[], and
Q.y=[2 0;0 5], Q.u=[], Q.x=[], Q.z=[], Q.xN=[]. Q.rho is always a scalar.

Syntax: P=hybcon(MLD,Q,N,LIMITS,REFSIGNALS,mipsolver)
also specifies the type of MIP solver to be used for computations. See Appen-
dices B.3, B.4 for supported MILP/MIQP solvers. The default MIP solver is the
one specified in MLD.mipsolver.

6.4 @EXPCON – Explicit Controllers (Linear/Hybrid
Systems)

Explicit controllers for linear or hybrid systems are described by @EXPCON objects.
The constructor function expcon has the following syntax:

Syntax: E=expcon(C,RANGE)

44 CHAPTER 6. FUNCTION REFERENCE

Converts controller C to piecewise affine explicit form. C must be a constrained
optimal controller for linear systems (@lincon object), or for hybrid systems (@hybcon
object), or an MPC controller defined through the Model Predictive Control Tool-
box for Matlab v2.0 (@mpc object).

The optional input argument RANGE is a structure defining the range of initial
states and references (i.e., the parameters of the multiparametric program) for
which the explicit solution is computed. RANGE has the following fields:

Property Range Model
xmin, xmax states xmin≤ x(t) ≤xmax linear and hybrid

(for MPC objects, x includes states of plant and)
disturbance models)

umin, umax inputs umin≤ u(t− 1) ≤umax linear w/tracking
refymin, refymax output refs. refymin≤ ry(t) ≤refymax linear w/tracking

and hybrid
refxmin, refxmax state refs. refxmin≤ rx(t) ≤refxmax hybrid
refumin, refumax input refs. refumin≤ ru(t) ≤refumax hybrid
vmin, vmax measured disturbances vmin≤ v(t) ≤vmax MPC objects

For hybrid controllers, refxmin, refxmax, refumin, refumax, refymin, refymax
must have dimensions consistent with the number of indices specified in C.refsignals

(see Section 6.3).

Example: Consider again the example of Section 6.3, where we have an MLD
system with 3 outputs and 2 inputs, and we want only outputs y1 and y3 to track
certain reference signals ry1, ry3 and no reference trajectories for inputs, states,
and z-variables. Assume the state vector x has 4 components, and that we want
to compute the explicit controller for the range −10 ≤ xi ≤ 10, i = 1, 2, 3, 4,
−1 ≤ ry1 ≤ 1, −2 ≤ ry3 ≤ 2. We must set xmin=[-10 -10 -10 -10], xmax=[10
10 10 10], refymin=[-1 -2], refymax=[1 2]. The default value for unspecified
ranges is ±104.

Note that the defined range may be different from the limits over variables
imposed in the control law.

Syntax: E=expcon(C,RANGE,OPTIONS)
also specifies the structure OPTIONS defining various options for computing the
explicit control law. OPTIONS has the following fields:

6.4. @EXPCON – EXPLICIT CONTROLLERS (LINEAR/HYBRID SYSTEMS) 45

Field name Description Default
.lpsolver LP solver (cf. Sect. B.1) ’glpk’
.qpsolver QP solver (cf. Sect. B.2) ’qpact’
.fixref structure with fields ’y’, ’x’, ’u’ []

defining references that are fixed at given values
.valueref structure with fields ’y’, ’x’, ’u’ of values []

at which references are fixed
.flattol tolerance for a polyhedral set to be considered flat 1e-6
.waitbar display waitbar (only for hybrid) 1
.verbose level of verbosity 0,1,2 of mp-PWA solver 0
.mplpverbose level of verbosity 0,1,2 of mp-LP solver 1
.uniteeps tolerance for judging convexity of the union of polyhedra 1e-3
.join flag for reducing the complexity by joining regions 1

whose union is a convex set
.reltol tolerance used for several polyhedral operations 1e-6

The options options.fixref and options.valueref, only available for con-
trollers of hybrid systems, are fundamental instruments for simplifying the mul-
tiparametric solution, as they allow reducing the dimension of the parameter
space.
Example: Consider again the example of Section 6.3 and assume that we want to
obtain a multiparametric solution only with respect to ry1(t), x(t) for ry3 = 0.5.
We must set options.fixref.y=3, options.valueref.y=0.5.

Explicit controllers based on linear models can be converted to output-feedback
controllers by using a state observer, see Section 6.2.1.

46 CHAPTER 6. FUNCTION REFERENCE

Chapter 7

C-Code Generation

The Hybrid Toolbox is able to generate C-code for the explicit optimal controller.
The core C-function is expcon.c, which computes the explicit optimal control ac-
tion associated with the PWA mapping. expcon.c is a very simple function (about
30 lines of C code), for the evaluation of a piecewise map. In addition, for output-
feedback constrained controllers for linear systems, expcon.c estimates the state
vector. expcon.c requires the header file expcon.h. This contains all the param-
eters defining the explicit controller, and is generated by the method hwrite for
@expcon objects. Note that the combined control law expcon.c + expcon.h can be
thought as the implementation of a look-up table of linear (affine) control laws.

7.1 Mex Interfaces

The toolbox also provides the C-function expconmex.c for generating a mex file of
a state-feedback explicit controller. expconmex.c includes expmpc.c and expmpc.h,
and provides a control action equivalent to a state-feedback @lincon/eval or
@hybcon/eval controller. For output-feedback explicit controllers for linear sys-
tems, the mex C-function linobsmex.c provides the control action equivalent to
@lincon/eval.

7.2 HWRITE

Syntax: hwrite(C)
Writes the header file expcon.h for the state-feedback or output-feedback explicit
controller C. This must be a valid @expcon object.

Syntax: hwrite(C,zerotol)
also specifies a tolerance for considering small numbers as true zeros.

Syntax: hwrite(C,zerotol,type)
also specifies the type (’int’, ’float’, or ’double’) for storing the parameters
defining the polyhedral cells of the solution.

47

48 CHAPTER 7. C-CODE GENERATION

In addition, the following syntax is valid for output-feedback controllers based
on linear models:

Syntax: hwrite(C,zerotol,type,u1)
also specifies the previous input u(−1) at time t=-1. This is only meaningful for
tracking controllers.

Syntax: hwrite(C,zerotol,type,u1,x0)
also specifies the initial condition for the state observer.

Contrarily to expmpc.c, the header file expmpc.h depends on the values of the
explicit controller expcon.

The header file is saved in the utils/ directory. Make sure that the utils/

directory has write permissions and that the .h and .dll files are not read-only.
An example of header file automatically generated for the explicit controller

in the example reported in Section 3.1 (see Figure 3.1) is reported here below.

#define EXPCON_CONSTRAINED
#define EXPCON_REGULATION
#define EXPCON_LINEAR_MODEL
#define EXPCON_NU 1
#define EXPCON_NX 2
#define EXPCON_NY 2
#define EXPCON_TS 1.00000000
#define EXPCON_REG 7
#define EXPCON_NTH 2
#define EXPCON_NH 20
#define EXPCON_NF 7
#define EXPCON_NYM 2
static double EXPCON_F[]={

-0.816617,0,0,0,-0.552806,-0.552806,0,-1.74993,0,0,0,
-1.53639,-1.53639,0};

static double EXPCON_G[]={
0,-1,-1,1,-0.430778,0.430778,1};

static double EXPCON_H[]={
-0.816617,0.816617,0.612406,-0.612406,0.296959,-0.816617,
-0.97116,-0.386367,-0.296959,0.386367,0.296959,-0.386367,
0.97116,-0.612406,-0.97116,0.386367,0.612406,-0.296959,
0.816617,0.97116,-1.74993,1.74993,0.49571,-0.49571,
0.933314,-1.74993,-2.6991,-1.07381,
-0.933314,1.07381,0.933314,-1.07381,
2.6991,-0.49571,-2.6991,1.07381,
0.49571,-0.933314,1.74993,2.6991
};

static double EXPCON_K[]={
1,1,1,1,1,-1,-1,-1,
-1,-1,-1,1,1,-1,1,1,
-1,1,-1,-1};

static int EXPCON_len[]={
4,3,2,2,3,3,3};

Note: hwrite does not handle explicit hybrid controllers based on quadratic
penalties in the current version of the Hybrid Toolbox.

Chapter 8

Complexity and Tuning Guidelines

8.1 Complexity

The number nr of regions in the solution to the multiparametric Quadratic Pro-
gramming (mpQP) problem

min 1
2
z′Qz + θ′C ′z

s.t. Gz ≤ W + Sθ
(8.1)

depends on the dimension n of the parameter vector θ ∈ Rm (i.e., the number of
states, reference signals, previous control inputs, measured disturbances), on the
dimension of the free vector z ∈ Rn (i.e., the number of free inputs in the optimal
control problem), the number of constraints q in the optimization problem (8.1),
and the size of the range θmin ≤ θ ≤ θmax where the mpQP problem is solved.
In (D.1), Q ∈ Rn×n, C ∈ Rn×m, G ∈ Rq×n, W ∈ Rq, S ∈ Rq×m, where q is the
number of constraints.

As the number of combinations of ` constraints out of a set of q is (q`) = q!
(q−`)!`! ,

the number of possible combinations of active constraints at the solution of a QP
is at most

∑q
`=0 (q`) = 2q. This number represents an upper-bound on the number

of different linear feedback gains which describe the controller. In practice, far
fewer combinations are usually generated as θ spans the box [θmin, θmax]. Further-
more, the gains for the future input moves u(t+1), . . . , u(t+m−1) are not relevant
for the control law. Thus several different combinations of active constraints may
lead to the same first components u(t) of the solution . On the other hand, the
number nr of regions of the piecewise affine solution is in general larger than the
number of feedback gains, because possible nonconvex critical regions may be
split into several convex sets.

8.1.1 Dependence on the Number of Parameters

Let qs , rankS, qs ≤ q, θ ∈ Rm. For m > qs the number of polyhedral regions
nr remains constant. To see this, consider the linear transformation θ̄ = Sθ, θ̄ ∈
Rq. Clearly θ̄ and θ define the same set of active constraints, and therefore the

49

50 CHAPTER 8. COMPLEXITY AND TUNING GUIDELINES

number of partitions in the θ̄- and θ-space are the same. Therefore, the number
of partitions nr of the θ-space defining the optimal controller is insensitive to
the dimension m of the parameter vector θ for all m ≥ qs, i.e. to the number of
parameters involved in the mp-QP.

In particular, the additional parameters needed to extend MPC to reference
tracking, disturbance rejection, soft constraints, do not affect significantly the
number of polyhedral regions nr (i.e., the complexity of the mp-QP), and hence
the number of regions in the explicit MPC controller.

With respect to the size of the range θmin ≤ θ ≤ θmax where the mpQP problem
is solved, the larger the range the larger may be the number of polyhedral cells in
the partition.

8.1.2 Dependence on the Input and Output Horizon

The larger the number of constraints q, the larger the number nr of regions in the
solution, and the dependence is exponential.

The number q of constraints increases with the length of the control horizon
(multiplied by the number of constrained control inputs) for input constraints.
Fortunately, many MPC control problems involve input constraints only, and
typically horizons of 2, 3 steps or blocking of control moves are adopted, which
reduces the number of constraints q and therefore the number of regions in the
explicit MPC controller.

For output constraints, the number q of constraints increases also with the
length p of the prediction horizon (multiplied by the number of constrained out-
puts). One way to reduce the complexity nr of the explicit controller is to con-
strain only a limited number of outputs over the prediction horizon. Say N = 20
and you want to constraint y(t+ 1|t) ≥ −1, y(t+ 2|t) ≥ −1. This can be achieved
by setting ymin=-1 and Ncy = 1. The Model Predictive Control Toolbox offers
more flexibility for this, as time-varying constraints are allowed.

8.2 Tuning Guidelines

The following points should be kept in mind while tuning an MPC controller:

1. For a long enough prediction horizon N , when the constraints are not ac-
tive the MPC controller performs as LQ control, assuming that P=’lqr’.
Therefore, the same noise rejection/bandwidth/sensitivity considerations
apply: the larger the ratio between output weight and input weight, the
more aggressive the controller, but the larger the sensitivity to noise. Short
prediction horizons N also make the controller more aggressive.

2. Choice of the input horizon Nu: the larger, the better the performance, be-
cause the number of degrees of freedom is larger. On the other hand, the
complexity increases with Nu. Always choose Nu as small as possible, by
progressively reducing it until performance remains acceptable.

8.2. TUNING GUIDELINES 51

3. First tune an implicit MPC controller (either using lincon or hybcon). When
satisfied with the design, compute the explicit form using expcon. If you get
too many regions, revise the MPC design.

4. Be thrifty with constraints. They may provide an excellent design, but later
generate too many regions in the explicit MPC partition.

For explicit controllers for hybrid systems, the complexity also depends on the
number of binary states, inputs and auxiliary variables involved in the dynam-
ics. The use of long optimization horizons may therefore lead to very complex
partitions.

52 CHAPTER 8. COMPLEXITY AND TUNING GUIDELINES

Bibliography

[1] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata:
An algorithmic approach to the specification and verification of hybrid sys-
tems. In A.P. Ravn R.L. Grossman, A. Nerode and H. Rischel, editors, Hy-
brid Systems, volume 736 of Lecture Notes in Computer Science, pages 209–229.
Springer-Verlag, 1993.

[2] P.J. Antsaklis. A brief introduction to the theory and applications of hybrid
systems. Proc. IEEE, Special Issue on Hybrid Systems: Theory and Applications,
88(7):879–886, July 2000.

[3] A. Bemporad. Efficient conversion of mixed logical dynamical systems
into an equivalent piecewise affine form. IEEE Trans. Automatic Control,
49(5):832–838, 2004.

[4] A. Bemporad, P. Borodani, and M. Mannelli. Hybrid control of an auto-
motive robotized gearbox for reduction of consumptions and emissions. In
O. Maler and A. Pnueli, editors, Hybrid Systems: Computation and Control,
number 2623 in Lecture Notes in Computer Science, pages 81–96. Springer-
Verlag, 2003.

[5] A. Bemporad, F. Borrelli, and M. Morari. Optimal controllers for hybrid
systems: Stability and piecewise linear explicit form. In Proc. 39th IEEE Conf.
on Decision and Control, pages 1810–1815, Sydney, Australia, December 2000.

[6] A. Bemporad, F. Borrelli, and M. Morari. Piecewise linear optimal controllers
for hybrid systems. In Proc. American Contr. Conf., pages 1190–1194, Chicago,
IL, June 2000.

[7] A. Bemporad, F. Borrelli, and M. Morari. On the optimal control law for
linear discrete time hybrid systems. In M. Greenstreet and C. Tomlin, editors,
Hybrid Systems: Computation and Control, number 2289 in Lecture Notes in
Computer Science, pages 105–119. Springer-Verlag, 2002.

[8] A. Bemporad, A. Casavola, and E. Mosca. Nonlinear control of constrained
linear systems via predictive reference management. IEEE Trans. Automatic
Control, AC-42(3):340–349, 1997.

53

54 BIBLIOGRAPHY

[9] A. Bemporad, N. Giorgetti, I.V. Kolmanovsky, and D. Hrovat. A hybrid sys-
tem approach to modeling and optimal control of DISC engines. In Proc. 41th
IEEE Conf. on Decision and Control, pages 1582–1587, 2002.

[10] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics,
and constraints. Automatica, 35(3):407–427, 1999.

[11] A. Bemporad and M. Morari. Verification of hybrid systems via mathemat-
ical programming. In F.W. Vaandrager and J.H. van Schuppen, editors, Hy-
brid Systems: Computation and Control, volume 1569 of Lecture Notes in Com-
puter Science, pages 31–45. Springer-Verlag, 1999.

[12] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The explicit linear
quadratic regulator for constrained systems. Automatica, 38(1):3–20, 2002.

[13] A. Bemporad, F.D. Torrisi, and M. Morari. Optimization-based verification
and stability characterization of piecewise affine and hybrid systems. In
B. Krogh and N. Lynch, editors, Hybrid Systems: Computation and Control, vol-
ume 1790 of Lecture Notes in Computer Science, pages 45–58. Springer-Verlag,
2000.

[14] A. Bemporad, F.D. Torrisi, and M. Morari. Discrete-time hybrid modeling
and verification of the batch evaporator process benchmark. European Journal
of Control, 7(4):382–399, July 2001.

[15] P.J. Campo and M. Morari. Robust model predictive control. In Proc. Ameri-
can Contr. Conf., volume 2, pages 1021–1026, 1987.

[16] R. DeCarlo, M. Branicky, S. Pettersson, and B. Lennartson. Perspectives and
results on the stability and stabilizability of hybrid systems. Proceedings of
the IEEE, 88(7):1069–1082, 2000.

[17] P. Grieder, F. Borrelli, F.D. Torrisi, and M. Morari. Computation of the con-
strained infinite time linear quadratic regulator. In Proc. American Contr.
Conf., Denver, Colorado, June 2003.

[18] M. Johannson and A. Rantzer. Computation of piece-wise quadratic
Lyapunov functions for hybrid systems. IEEE Trans. Automatic Control,
43(4):555–559, 1998.

[19] P. Kapasouris, M. Athans, and G. Stein. Design of feedback control systems
for unstable plants with saturating actuators. In Proc. IFAC Symp. on Nonlin-
ear Control System Design, pages 302–307, Pergamon Press, 1990.

[20] R. Möbus, M. Baotić, and M. Morari. Multi-objective adaptive cruise con-
trol. In O. Maler and A. Pnueli, editors, Hybrid Systems: Computation and
Control, number 2623 in Lecture Notes in Computer Science, pages 359–374.
Springer-Verlag, 2003.

BIBLIOGRAPHY 55

[21] S.J. Qin and T.A. Badgwell. An overview of industrial model predictive con-
trol technology. In Chemical Process Control - V, volume 93, no. 316, pages
232–256. AIChe Symposium Series - American Institute of Chemical Engi-
neers, 1997.

[22] B.I. Silva, O. Stursberg, B.H. Krogh, and S. Engell. An assessment of the cur-
rent status of algorithmic approaches to the verification of hybrid systems.
In Proc. 40th IEEE Conf. on Decision and Control, pages 2867–2874, Orlando,
Florida, December 2001.

[23] E.D. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE
Trans. Automatic Control, 26(2):346–358, April 1981.

[24] P. Tøndel, T. A. Johansen, and A. Bemporad. An algorithm for multi-
parametric quadratic programming and explicit MPC solutions. In Proc. 40th
IEEE Conf. on Decision and Control, pages 1199–1204, Orlando, Florida, 2001.

[25] F.D. Torrisi. Modeling and Reach-Set Computation for Analysis and Optimal Con-
trol of Discrete Hybrid Automata. PhD thesis, Automatic Control Labotatory -
ETH, Zurich, 2003.

[26] F.D. Torrisi and A. Bemporad. Discrete-time hybrid modeling and verifi-
cation. In Proc. 40th IEEE Conf. on Decision and Control, pages 2899–2904,
Orlando, Florida, 2001.

[27] F.D. Torrisi and A. Bemporad. HYSDEL — A tool for generating computa-
tional hybrid models. IEEE Trans. Contr. Systems Technology, 12(2):235–249,
March 2004.

56 BIBLIOGRAPHY

Appendix A

MILP Formulation (∞-Norm)

The sum of the components of any vector

q , [εu0 , . . . , ε
u
N−1, ε

z
0, . . . , ε

z
N−1, ε

x
1 , . . . , ε

x
N , ε

y
0, . . . , ε

y
N−1]

′

that satisfies
1mε

u
k ≥ ±Qu(u(k|t)− ur) k = 0, 1, . . . , N − 1

1rcε
z
k ≥ ±Qz(z(k|t)− zr) k = 0, 1, . . . , N − 1

1nε
x
k ≥ ±Qx(x(k|t)− xr) k = 1, 2, . . . , N − 1

1nε
x
T ≥ ±QxN(x(N |t)− xr)

1pε
y
k ≥ ±Qy(y(k|t)− yr) k = 0, 1, . . . , N − 1

(A.1)

represents an upper bound on J(vT−1
0 , x(t)), where 1h is a column vector of ones

of length h, and where

x(k|t) = Akx(t) +
k−1∑
j=0

Aj(B1u(k − 1− j|t) + (A.2)

B2δ(k − 1− j|t) +B3z(k − 1− j|t)). (A.3)

The current version of the software allows nonzero matrices D1, D2, D3 of the
MLD model, and therefore possible direct feedthrough from the input u(t) to the
output y(t)1.

Similarly to what was shown in [15], it is easy to prove that the vector q that
satisfies equations (A.1) and simultaneously minimizes

J(q) =
N−1∑
k=0

εuk +
N∑
k=0

εxk +
N−1∑
k=0

εzk +
N−1∑
k=0

εyk

also solves the original problem, i.e. the same optimum J∗(vN−1
0 , x(t)) is achieved.

1Note that even ifD1 = 0, I/O feedthrough may still result through theD2, D3 matrices, given
that the auxiliary variables δ and z are in static functions of both x(t), u(t), in general.

57

58 APPENDIX A. MILP FORMULATION (∞-NORM)

Therefore, problem (4.5) can be reformulated as the following MILP problem

min
q

J(q) = [1 1 . . . 1]q

s.t. 1mε
u
k ≥ ±Qu(u(k|t)− ue), k = 0, 1, . . . , N − 1

1mε
z
k ≥ ±Qz(z(k|t)− ze), k = 0, 1, . . . , N − 1

1nε
x
k ≥ ±Qx(x(k|t)− xe), k = 1, . . . , N − 1

1nε
x
N ≥ ±QxN(x(N |t)− xe)

1pε
y
k ≤ ±Qy(k|t)− ye), k = 0, . . . , T − 1

umin ≤ u(k|t) ≤ umax, k = 0, 1, . . . , N − 1
ymin ≤ y(k|t) ≤ ymax, k = 0, . . . , N − 1
xmin ≤ x(k|t) ≤ xmax, k = 1, . . . , N

HNx(T |t) ≤ KN

x(k + 1|t) = Ax(k|t) +B1u(k) +B2δ(k|t) +B3z(k|t), k ≥ 0
y(k|t) = Cx(k|t) +D1u(k) +D2δ(k|t) +D3z(k|t)

E2δ(k|t) + E3z(k|t) ≤ E1u(k) + E4x(k|t) + E5 k ≥ 0
E2δ(k|t) + E3z(k|t) = E1u(k) + E4x(k|t) + E5, k ≥ 0

(A.4)

where the variable x(0|t) appears only in the constraints in (A.4) as a vector pa-
rameter. Problem (A.4) can be rewritten in the more compact MILP form

q∗t , arg min
q

fTc qc + fTd qd

s.t. Gcqc +Gcqd ≤ S + Fx(t)

(A.5)

where the matrices G, S, F can be straightforwardly defined from (A.4), and
qc, qd represent the continuous and binary components, respectively, of the op-
timization vector q. The case of quadratic cost functions leads to an MIQP, whose
derivation is very similar and is therefore omitted here.

Appendix B

Supported Solvers

B.1 Linear Programming

B.1.1 LPSOL, LPTYPE

• solver=’glpk’ uses the LP from the GLPK GNU library developed by A.
Makhorin through the Maltab interface developed by N. Giorgetti glpkmex.dll
(default).

• solver=’lp’ uses lp.m for LP from the Optimization Toolbox for Matlab
(performance is scarce).

• solver=’nag’ uses e04mbf or e04mf for LP from the NAG Foundation Tool-
box for Matlab, depending on the available version of NAG.

• solver=’cplex’ uses the LP solver of CPLEX (Ilog, Inc.) through the Matlab
interface to CPLEX developed by F.D. Torrisi and maintained by M. Baotic.

• solver=’qpact’ uses the active set method qpact.dll also for solving LPs
(reliability is scarce).

• solver=’linprog’ uses linprog.m for LP from the Optimization Toolbox
for Matlab (performance is scarce).

• solver=’cdd’ uses cddmex.dll by K. Fukuda for LP, through the Matlab
interface developed by F.D. Torrisi and maintained by M. Baotic.

B.2 Quadratic Programming

B.2.1 QPSOL, QPTYPE

• solver=’qpact’ uses the active set method qpact.dll for solving QPs (de-
fault).

59

60 APPENDIX B. SUPPORTED SOLVERS

• solver=’qp’ uses qp.m from the Optimization Toolbox for Matlab (perfor-
mance is scarce).

• solver=’nag’ uses e04naf or e04nf from the NAG Foundation Toolbox for
Matlab, depending of the available version.

• solver=’cplex’ uses the QP solver of CPLEX (Ilog, Inc.) through the Mat-
lab interface to CPLEX developed by F.D. Torrisi and maintained by M.
Baotic.

• solver=’quadprog’ uses quadprog.m for QP from the Optimization Toolbox
for Matlab (performance is scarce).

B.3 Mixed-Integer Linear Programming

B.3.1 MILPSOL, MILPTYPE

• solver=’glpk’ uses the MILP from the GLPK GNU library developed by A.
Makhorin through the Maltab interface developed by N. Giorgetti glpkmex.dll
(default).

• solver=’matlab’ uses miqp.m + lp.m for MILP (performance is scarce).

• solver=’nag’ uses miqp3 naf.m + e04naf from the NAG Foundation Tool-
box for MILP (performance is not excellent).

• solver=’cplex’ uses the MILP solver of CPLEX (Ilog, Inc.) through the
Matlab interface to CPLEX developed by N. Giorgetti (most powerful and
reliable).

• solver=’xpress’ uses the MIQP solver of Xpress-MP (Dash Optimization)
through the Matlab interface developed by N. Giorgetti.

• solver=’linprog’ uses miqp.m + linprog.m for MILP (performance is scarce).

B.4 Mixed-Integer Quadratic Programming

B.4.1 MIQPSOL, MIQPTYPE

• solver=’miqp’ uses miqp.m + quadprog.m for MIQP (default, slow).

• solver=’nag’ uses miqp.m + e04mbf from the NAG Foundation Toolbox for
MIQP (performance is not excellent).

• solver=’cplex’ uses the MIQP solver of CPLEX (Ilog, Inc.) through the
Matlab interface developed by N. Giorgetti (most powerful and reliable).

B.4. MIXED-INTEGER QUADRATIC PROGRAMMING 61

• solver=’xpress’ uses the MIQP solver of Xpress-MP (Dash Optimization)
through the Matlab interface developed by N. Giorgetti.

• solver=’qpact’ uses miqp.m + qpact.dll for MIQP (performance is scarce).

62 APPENDIX B. SUPPORTED SOLVERS

Appendix C

Storage of Polyhedral Partitions

A polyhedral partition of neighboring convex polytopes Hiθ ≤ Ki in the θ-space
and the optimizer z(θ) = Fiθ + Gi in each region #i is stored as a structure with
the following fields:

• H,K,i1,i2: The matrices Hi, Ki of the polyhedral region #i are stored in
H(i1(i):i2(i),:) and K(i1(i):i2(i),:).

• F,G: The gains Fi, Gi of the optimizer x(θ) = Fiθ +Gi are stored in
F((i-1)*n+1:i*n,:), G((i-1)*n+1:i*n).

• rCheb: rCheb[i] is the Chebychev radius of region #i, i.e., the radius of the
largest ball contained in Hiθ ≤ Ki. It provides and information of how flat
the region #i is.

• act,i3,i4: The combination of active constraints corresponding to region
#i is stored in act(i3(i):i4(i),:).

• unconstr num: The number of the region where no constraints are active
(only for mpQP problems)

• nr: Total number of regions in the partition.

63

64 APPENDIX C. STORAGE OF POLYHEDRAL PARTITIONS

Appendix D

Auxiliary Functions

D.1 GETCONTROLLER

Syntax: expcon=getcontroller(mpqpsol,nu,uniteeps,flattol,join,lpsolver)

getcontroller computes the constrained controller from the mpQP solution mpqpsol.
Contrarily to the structure mpqpsol used to store the solution to a mpQP problem,
in expcon the gains Fi, Gi have nu components, where nu is the number of control
inputs to the system, instead of nu multiplied by the input prediction horizon.

If the flag join=1, pairs of regions where the controller gains are the same are
united, provided that the union is a convex set. uniteeps defines the tolerance
used to detect that the gains are equal, ‖[Fi Gi]− [Fj Gj]‖∞ ≤ uniteeps.

flattol is a relaxation tolerance. Polyhedral regions of the mpQP solution
whose Chebychev radius is smaller than flattol are eliminated. The remaining
regions Hix ≤ Ki are enlarged into Hix ≤ Ki + flattol‖Hi‖ (see reduce). This
guarantees that no “holes” remain in the partition. A positive flattol is always
recommended (e.g.: 10−6), as the mpQP solution may contain thin “holes” due to
numerical precision.

The output argument expcon is a structure with the following fields: H,K,G,F,
i1,i2,nr,thmin,thmax,nu,npar. Contrarily to the structure mpqpsol used to
store the solution to a mpQP problem, expcon does not contain the fields i3,i4,act,
as different combinations of active constraints may correspond to the same region
of the controller after the union of polyhedra.

Syntax: [expcon,colors]=getcontroller(mpqpsol,...)
also returns a matrix of RGB colors, with as many rows as there are regions in the
control law, that can be used to plot piecewise affine partitions, so that regions
having the same affine gain are depicted in the same color. See pwaplot.

getcontroller is located in the @expcon/private folder.

65

66 APPENDIX D. AUXILIARY FUNCTIONS

D.2 REDUCE

Syntax: sol1=reduce(sol,flattol)

REDUCE is used to eliminate small regions from the solution. sol can be either
an mpQP solution structure, or an explicit MPC control structure. The regions
whose Chebychev radius is smaller than flattol are removed from the solution,
and the remaining regions are enlarged so that no hole remains. After removal,
regions may be overlapping, to guarantee the coverage of the whole parameter
set θmin ≤ θ ≤ θmax. See getcontroller for details on the relaxation tolerance
flattol.

D.3 PWAEVAL

Syntax: [u,j]=pwaeval(expmpc,x)

PWAEVAL is the M-function form of the explicit MPC controller described by the
structure expmpc. It computes the MPC control action u for the current vector of
parameters x using the PWA map stored in the structure expmpc. The index j is
the region of the PWA map containing x. In case regions overlap because a large
relaxation tolerance flattol was used, j is the first region where x is found to
belong to.

D.4 PWAPLOT

Syntax: pwaplot(sol,colors)

pwaplot plots the polyhedral partition corresponding to the multiparametric so-
lution / explicit controller sol. Only 2-D plots are supported. If the parameters
are more than two, plots can be obtained through pwaplotsection. The input
argument colors is optional and specifies a nr-by-3 vector of RGB colors, where
nr is the number of regions in the polyhedral partition. An example of output of
pwaplot is depicted in Figure 5.6.

D.5 PWAPLOTSECTION

Syntax: sol1=pwaplotsection(sol,index,values,plotflag)

pwaplotsection obtains a section of the partition defined by the explicit con-
troller or multiparametric solution sol by fixing θ(index) = values. The output

D.6. GETGAIN 67

argument sol1 is optional, and stores the new 2-D partition obtained by fixing
the specified parameters. plotflag is an optional input flag, when plotflag=0

the section is not plotted.

D.6 GETGAIN

Syntax: [Fi,Gi,Hi,Ki]=getgain(expcon,reg)

getgain gets the polyhedron Hiθ ≤ Ki and the gains Fi, Gi corresponding to the
region number reg in the explicit controller object expcon.

D.7 GETREGNUM

Syntax: [reg,x]=getregnum(expcon,n)

When a 2-D partition is plotted, getregnum allows to pick up n points on the
screen with the mouse and obtain the corresponding region numbers reg. x stores
the picked-up points.

D.8 POLYREDUCE

Syntax: [C,D,isemptypoly,keptrows,lpsolved,x0]=polyreduce(A,B,
solver,removetol,checkempty,x0,zerotol)

Given the polyhedron Ax ≤B, returns an equivalent polyhedron Cx ≤D by elimi-
nating redundant constrain inequalities. isemptypoly=1 if the given polyhedron
is empty. keptrows is an array collecting the indices of nonredundant rows of
Ax ≤B. lpsolved is the number of LP solved to reduce the polyhedron. The out-
put argument x0 is a feasible point in Ax ≤B, or x0=NaN if the polyhedron is empty.

D.9 POLYPLOT

Syntax: [V,handle]=polyplot(A,B,c)

2-D plot routine for polyhedra. polyplot plots the polygon Ax ≤B. It it assumed
that Ax ≤B does not have redundant constraints (see polyreduce).

polyplot(V) plots the polytope obtained by the convex hull of points in the
cell array V. V=polyplot(A,B) only returns the (ordered) vertices in the cell array
V. [V,handle]=polyplot(A,B) or handle=polyplot(V) also returns the handle to
the PATCH object that represents the polygon.

68 APPENDIX D. AUXILIARY FUNCTIONS

polyplot(A,B,c), polyplot(V,c) draws the polytope with fill color c=[r g

b].

D.10 LINEPLOT

Syntax: lineplot(a,b,width,color)

2-D plot routine for plotting lines. lineplot plots the line a’x =b. The optional
argument width is the width of the line, color is the fill color of the line, color=[r
g b].

D.11 POLYPLOT3D

Syntax: handles=polyplot3d(A,B,c)

3-D plot routine for polyhedra. polyplot3d plots the polyhedron Ax ≤B. It it
assumed that Ax ≤B does not have redundant constraints (see polyreduce).

polyplot(A,B,c), polyplot(V,c) draws the polytope with fill color c=[r g

b].

D.12 MPLP

Syntax: mplpsol=mplp(c,A,b,S,thmin,thmax,verbose,solver,envelope,Hth,Kth)

This function solves the multiparametric Linear Programming (mpLP)

min c′x
s.t. Ax ≤ b+ Sθ

(D.1)

within the box θmin ≤ θ ≤ θmax. In (D.1), x ∈ Rn is the optimization vector, θ ∈ Rm

is the vector of parameters, c ∈ Rn×1, G ∈ Rq×n, W ∈ Rq, S ∈ Rq×m, where q is the
number of constraints.

The output arguments of the function is a partition of neighboring convex
polytopes Hiθ ≤ Ki in the θ-space and the optimizer x(θ) = Fiθ + Gi ∈ Rn in
each region #i. These are stored in the structure mplpsol, see Appendix C for
details. The input argument verbose is the level of verbosity, between 0 (lowest)
and 2 (highest), solver specifies the LP solver to be used (see Section B.1). The
flag envelope specifies if the (convex) polyhedral hyperplane representation of
the set of feasible parameters (i.e., of the union of the critical regions) must be
computed. This is stored in mplpsol.Aenv, mplpsol.Benv (default: envelope=0).

D.13. MPQP 69

The extra arguments Hth, Kth specify a polyhedral region in the parameters
space. Only the critical regions of the feasible set of parameters that intersect the
polyhedron {θ : Hthθ ≤ Kth} are taken into account in the solution.

D.13 MPQP

Syntax: mpqpsol=mpqp(Q,C,A,b,S,thmin,thmax)

This function solves the multiparametric Quadratic Programming (mpQP)

min 1
2
x′Qx+ θ′C ′x

s.t. Ax ≤ b+ Sθ
(D.2)

within the box θmin ≤ θ ≤ θmax, using the method proposed in [24]. In (D.2),
x ∈ Rn is the optimization vector, θ ∈ Rm is the vector of parameters, Q ∈ Rn×n,
C ∈ Rn×m, G ∈ Rq×n, W ∈ Rq, S ∈ Rq×m, where q is the number of constraints.

The output arguments of the function is a partition of neighboring convex
polytopes Hiθ ≤ Ki in the θ-space and the optimizer x(θ) = Fiθ+Gi ∈ Rn in each
region #i. These are stored in the structure mpqpsol, see Appendix C for details.

Syntax: mpqpsol=mpqp(Q,C,A,b,S,thmin,thmax,verbose,qpsolver,...
lpsolver,envelope,Hth,Kth)

The optional input arguments have the following meaning: verbose is the
level of verbosity, between 0 (lowest) and 2 (highest), qpsolver specifies the QP
solver to be used (see Section B.2), lpsolver the LP solver to be used (see Sec-
tion B.1), envelope=1 also computes the polyhedral hyperplane representation of
the set of feasible parameters, i.e., of the union of the critical regions (the enve-
lope is stored in mpqpsol.Aenv, mpqpsol.Benv, Hth and Kth impose to only com-
pute the regions of the feasible set of parameters that intersect the polyhedron
{θ : Hthθ ≤ Kth}.

