WIDE – End User Panel Meeting

TOOLBOX for Matlab©

European Commission Information Society and Media

WIDE toolbox

Generality:

- Networked Control System (developed by TU/e);
- Large Scale Model Management (developed by Honeywell);
- Decentralized and Hierarchical MPC (developed by Unisi/Unitn)
- Available for public download on September 1st 2011
 http://ist-wide.dii.unisi.it/

Documentation

- Automatically generated with Publish Matlab function, thus included in the download;
- Living WEB wiki as part of Hycon2: <u>http://cse.lab.imtlucca.it/HYCON2/index.php/Main_Page</u>

Requirements

- Hybrid toolbox, Linsyskit, Mpt Toolbox, SeDuMi, TrueTime 1.5, Cplex

WIDE toolbox: Networked Control System

- Purpose:
 - model, analyze and synthesize control of a linear time invariant plant over a network.
- Modeling approaches:
 - Discretized NCS model
 - Hybrid NCS model.
- Modeled effects
 - varying transmission intervals
 - varying delays
 - communication constraints

\varTheta 🔿 🕥 ncs File Heln	Editor			
Networked Control Systems Editor				
Plant A: B: C: Controller Static Feedback	Network Properties Transmission Interval: min max Delay: min max Dropouts: max Comm Constraints: Edit Nodes			
Modes: 1 K:	Protocol: RR ‡ Quantizer: Uniform ‡			

NCS Editor

WIDE toolbox: Networked Control System

DNCS Functionalities:

- isNcsStable(ovraprx,drpmdl,lyap,gamma): verifies stability with
 - ovraprx: Jordan Normal Form or Caley-Hamilton overapproximations
 - drpmdl: prolonged transmission-interval' or 'explicit 'dropout model
 - Iyap: quadratic or parameter dependent Lyapunov function
 - gamma: measure of the Lyapunov function decay
- *stabilizeNcs(ovraprx,drpmdl,lyap,gamma):* computes a stabilizing gain accounting for the specified network;

HNCS Functionalities:

- *findNcsStablilityTradeoff(Sy,Su):* finds the stability tradeoff between the maximally allowable transmission interval (MATI) and maximally allowable delay (MAD) with
 - Sy: continuous faultless or sampled networked sensor-to-controller
 - Su: continuous faultless or sampled networked controller-to-actuator

WIDE toolbox: Networked Control System

Discretized example:

- Upper-bound on the convergence rate of a given NCS modeled as discrete-time linear parameter varying (DLPV) system.
- The system LTI model is

- Sampling time in [0.9;1.1], delay in [0;0.001] and no dropouts.
- Verify stability for values of in

$||\bar{x}_k|| \le c ||\bar{x}_0|| (1 - \gamma)^k$

- Method isNcsStable('JNF', 'explicit', 'pardep', gamma):

lower bound on gamma is 0.2 Stability: Guaranteed

lower bound on gamma is 0.3 Stability: Not Guaranteed

• Hybrid example:

 Compare the robustness of Try-Once-Discard (TOD) network protocol against Round Robin (RR) network protocol.

- Tradeoff plot between the maximally allowable transmission interval (MATI) and maximally allowable delay (MAD).
- hncs_RR.findNcsStablilityTradeoff([0 0],[1 1]);
- hncs_TOD.findNcsStablilityTradeoff([0 0],[1 1]);

WIDE Toolbox for Matlab

WIDE toolbox: Large Scale Model Management

• Large Scale:

- Represent and manage Large Scale models. LS model is described as a set of submodels together with description of mutual and external inputs/outputs interconnections.
- Model creation from a set of submodels, a set of summators and string cell arrays defining external inputs and outputs.
- Add/remove submodels and external inputs/outputs.
- Handle structured model order reduction, decomposition of subsystems into groups for distributed control/estimation and merging of information from multiple models into single one.
- Model plot and analysis via many standard functions.

Water Network Model

- Child of LS, extended to model water distribution networks;
- Import scheme from text file, customized plot, customized Epsilon decomposition procedure.

WIDE toolbox: Large Scale Model Management

• LS Functionalities:

- Model Editing

- add_mod; add_sum; add_ext_inp; add_ext_out; rem_mod; rem_sum; rem_ext_inp; rem_ext_out; select, group, squeeze (remove unused);
- Set_sig_type (Manipulated Variable, Measured Disturbances, Unmeasured Disturbances, Measured Outputs, Unmeasured Outputs, Internal Signal); Set_sig_lim (signal limits); Set_sig_data;

- Model Reduction

• **struct_red**, **merge** (ARX models of different structure), **freq_uncert** (frequency uncertainty for ARX model); **eps** (epsilon decomposition); **bbd** (Border Block Diagonal decomposition);

- Model Representation

• display, n (total order: sum of subsystems order), orders, plot (interactions);

- Overloaded functions

• dcgain, pole, zero, impulse, step, bode, nyquist, pzmap, iopzmap, ss;

• WN Functionalities:

- *import_scheme* (imports water network model from file);
- plot, eps;

WIDE toolbox: Large Scale Model Management

Large Scale example:

- Plant: N boiler to single heater
 - % M: boilers + heater state space models

- % sums steam flows from boilers to header
- * sum1 =
 sumblk('SF','SF1','SF2','SF3','SF4','SF5')
- sum1.Name = 'SFsum';
- LSmodel(M,sum1,{'FF', 'SD'},{'ph', 'SF'} (standard construction with cell array of ss model);
- connect(M{1}, M{2}, M{3}, M{4}, M{5}, M{6}, sum1, {'FF', 'SD'}, {'ph', 'SF'});(connect function with individual models);
- LSmodel(M{1}, M{2}, M{3}, M{4}, M{5}, M{6}, Q, inputs, outputs) (numeric indexing of inputs and outputs);

• Water Network example:

- Import file structure:
 - Tank##,<tank name> / Node##
 - d,<demand name>
 - s,<source name>
 - +,<outlet pump/valve name>,<destination tank name>
 - -,<inlet pump/valve name>,<source tank name>
- mod = WNmodel('BCN_network')
- plot(mod);
- mod.eps(6);

- step(mod6_gr6);

WIDE Toolbox for Matlab

WIDE toolbox: Decentralized/Hierarchical MPC

• Purpose:

- Generate TrueTime code for quick NCS simulations.
- Synthesize Robust/Stochastic decentralized linear regulator by solving LMI.
- Use single command to compute control action of a set of decentralized MPC controllers and test 'a-posteriori' the closed loop stability with bounded measurement losses.
- Explicit MPC controller with sensors measurements subject to an energy-aware policy intended to lower the number of transmissions and, ultimately, save sensor nodes battery.
- In a upper layer decentralized hierarchical control structure, with linear regulators at lower level, compute reference restrictions so as to enforce plant constraints.
- Connect to real devices to close the control loop with Matlab: currently supported devices are Telos Motes and Esenza Nodes.

WIDE toolbox: Decentralized/Hierarchical MPC

• Functionalities:

- TrueTime code generation:
 - ACG (number of sensors/actuators); GenerateCode; RemoveOldCode;
- Linear Regulator:
 - decLMI, solve_centralized_lm, solve_dec_ideal_lmi(), solve_dec_lossy_lmi(), solve_dec_stoch_lmi;
- Decentralized MPC:
 - Dlincon, Deval, stability_test;
- Energy Aware MPC:
 - eampc, init_sim, send_predictions, get_measurements, get_input, build_MPC;
- Hierarchical MPC:
 - HiMPC, computeMOARS, plotMOARS, computeDeltaR, plotDeltaR;
- Connect to device (yet to be completed):
 - Connect, send, receive;

WIDE toolbox: Decentralized/Hierarchical MPC

• DHiMPC example:

- Plant model:

- HiMPC(sys, dec, Xcon, DeltaX, coupledCons);
- computeMOARS(); plotMOARS();

• decLMI example:

- Plant: randomly unstable with communication structure;

- decLMI(Net, A, B, Qx, Qu, X0, xmax, umax, Mc);
- solve_centralized_lmi()
- solve_dec_ideal_lmi();
- solve_dec_lossy_lmi();
- solve_dec_lossy_lmi();
- Results over 50 simulations:

	$\mu(J_i)$	$\sigma(J_i)$	CPU
Ideal network			(off-line time)
Centralized control	41.0	0	$2.8 \mathrm{~s}$
Decentralized control	45.1	0	1.2 s
Lossy network			(off-line time)
Dec. robust control	50.0	1.57	8.1 s
Dec. stochastic control	47.1	2.38	59.2 s

WIDE Toolbox for Matlab