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Agenda

• Introduction
•  Overview
• Concluding Remarks
• Discussion



WP5 Introduction
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WP5 Overview

• Proof of concept: water network

• Objectives
– The role of WP5 is to validate the 

concepts developed in WP2, WP3 and 
WP4 on a large-scale water distribution 
system. 

– It will also serve to motivate and 
circumscribe the class of large-scale 
systems WP2, WP3 and WP4 will focus 
on, providing useful engineering 
inputs to the theoretical developments. 

– The concepts will be demonstrated in a 
software demonstration of the entire 
water network using a simulation 
environment based on 
MATLAB/SIMULINK and an 
experimental demonstration of part of 
the water network. 

• Tasks
– T5.1 Definition of the water network 

demonstration 
– T5.2 Dynamical model of the water network 

and model decomposition
– T5.3 Control design for the water network
– T5.4 Development of the water demo 

demonstrator 
– T5.4 Testing and evaluation of the solution 



T5.1 Definition of the Water Network 
Demonstration 
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Pilot Definition

• Definition of Pilot 1: DMPC of the 
Barcelona Water Transprot Network 

– Definition of the part of Barcelona water 
network used to illustrate DMPC 

– Definition of the control problem

• Definition of Pilot 2: Wireless Control 
of Valve in Barcelona Water Network 

– Definition of the part of Barcelona water 
network used to illustrate wireless 
control 

– Definition of the control problem
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Test Pilot 1: Demo of DMPC in the Barcelona Network
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Test Pilot 1: Demo of DMPC in the Barcelona Network

Supervisory MPC Control Architecture
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9

Interface Simulator/DMPC Controller

Test Pilot 1: Demo of DMPC in the Barcelona Network
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Test Pilot 2: Demo of Wireless Control Functionalities

CABLE CONNECTION

WIRELESS 
CONNECTION

• The overall idea is to check the use of wireless connection between the sensors and the 
remote station.

• Each signal will be doubled (cable connection and wireless connection) as a protection to the 
overall control system.  Both sets of data will be compared and contrasted afterwards.

• Double aim: a) Transference of information through wireless.
     b) Operational feasibility/constraints regarding the overall valve control (delays, 

etc.)

Closed-loop Control of a Valve at the Regulatory Level 
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Phase 1: Lab Test

Test Pilot 2: Demo of Wireless Control Functionalities

AGBAR Labs UPC Labs
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Valve and Servomotor

Flow / pressure 
meters

Remote stationCurrent working situation 

• Pressure and flow data are stored every 0.4 s in the remote station.
• Input data + desired pressure downstream the PID controller in the remote station changes 
valve position.
• The remote station sends flow and pressure data every 4-5 s to the Control Centre.
• Set points of pressure or flow can be sent from the Control Centre to the remote station when 
necessary.
• Alarms due to values out of the acceptable range also pop up at the alarms panel in the Control 
Centre.

Phase 2: Real Test

Test Pilot 2: Demo of Wireless Control Functionalities
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Demonstration Objectives

• Demonstrate the benefits of 
distributed MPC by comparing 
overall costs for legacy and 
distributed MPC control strategies. 

• Demonstrate the ability of the 
proposed distributed MPC solution 
to replace the legacy control in 
multiple steps.

–  In each step, the APC will be 
implemented on a selected network 
part only.

–  Important for practical application and 
advanced process control life cycle; 
standard requirement by process 
operators.

–  Demonstrating the ability of APC to 
work with some controllers switched to 
a backup strategy based on the legacy 
control 

• Demonstrate control over wireless 
network on the lowest control 
level.

– Robust algorithms assuming 
communication delays, packet 
dropouts, etc. will be demonstrated on 
flow or tank level control with wireless 
sensors and actuators. 
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Benefit Demonstration

• As a baseline, the price of the 
current PID-based control strategy 
will be evaluated from 3 days 
historical process data. 

• Two distributed advanced control 
strategies will be evaluated:

– Distributed MPC with the central 
coordinator

– Distributed MPC without the central 
coordinator

– In either case, local MPC controllers 
will control groups of tanks.

• All strategies will use identical 
initial tank level settings and 
demand data.

• Demonstration Scale:
– Full model of the Barcelona Water 

network
• Demonstration Platform

– MATLAB/Simulink
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Sequential Replacement of Legacy Control
• Replacement of legacy control in 

successive steps.
• Demonstration will be done on a part 

of the network model.
• The part of the network is divided 

into 3 groups of tanks
– At the beginning, the network section 

under consideration is controlled by the 
PID-based legacy control.

– Nominal trajectories are pre-computed for 
all flows.

• Group #1 is switched to advanced 
control while the rest is controlled by 
the legacy control strategy.

• Groups #2 and #3 are sequentially 
switched from the legacy to the 
advanced control.

• Simulated communication failures 
can  test switching from the 
advanced to legacy control used as a 
back-up.

• Demonstration scale
– Part of the network

• Demonstration platforms
– Model – Simulink
– Backup control and backup/APC switching: 

Simulink, using blocks emulating 
Honeywell Experion DCS

– Advanced Control – Honeywell URT 
platform communicating with Simulink over 
the OPC bridge 
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Wireless Control

• Applied to the base control layer with 
fast sampling (1 second)

– Network effects will not show up at the 
advanced control layer with sampling interval 
1 hour.

• Demonstrating Integration of WSN and 
DCS.

• PID controller will be given, in place of 
raw measurement, a process value 
estimated by a network-aware Kalman 
filter.

– Kalman filter will receive measurement data 
from the network with time stamps provided 
by the sensor.

– Kalman filter will further receive time stamps 
of manipulated variables provided by the 
actuator, to account for network delays in the 
MV channel.

• Network delays and data losses will be 
simulated using network models 
developed in WP2.

• Demonstration scale
– Single flow/tank level controller

• Demonstration platform
– Simulink
– Real Site



WIDE

ist-wide.dii.unisi.it

17

WIDE

Distributed MPC

• Local controller controls water level 
for a group of tanks by defining set-
points of internal flows

– Internal flows – between tanks of the 
same group, controlled by PID controllers 
at the DCS level

– External flows – between tanks of 
different groups. Determined by a 
consensus negotiated between 
neighboring controllers.

– Set-point for an external flows is imposed 
by the predefined controller

• The implementation of the local 
controller allows its use in 2 
strategies

– With a global coordinator defining 
shadow prices of external flows

– Without a global coordinator: shadow 
prices are  defined locally by one of the 
neighboring controllers

Distributed 
MPC Controller

Distributed 
MPC Controller

Demands (DV)
Internal Flows (MV)

External Flows (MV)

(Controlled) External 
Flows Set Points

Communication 
Network

Tank Levels

Internal Flows 
Set Points

Global 
Coordinator 

Interface

Neighboring 
Controllers 
Interface

External Flows 
Coordinator Local Optimizer

Local Demands 
Predictor

Constraints and 
Prices

coordinated / non-coordinated
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Backup Strategy

• Legacy PID-based solution guarantees 
operational safety, and a baseline 
operation.

• Required as a back-up control strategy 
with advanced control

• Back-up control uses pre-computed 
nominal flow/level trajectories.

• Flow controllers either
– follow nominal flow trajectories
– track flow trajectories of the master level 

controller. 

• Master level controller (one per tank)
– Tracks the nominal level trajectory
– Typically controls the inflow with largest 

capacity for the tank.

• Advanced control (MPC), if available, 
provides set-points for flow controllers

pump or valve

PID

PID

Level controller

Nominal level trajectory

Flow controller

Tank water level

SP from Distributed MPC Remote CAS

Master Level Controller

CAS

Flow Controller

Nominal flow trajectory

Communication
Network

SW1

SW2

• In the case of a level control on a tank 
being in the back-up mode due to the 
communication failure, MPC can still 
control other tanks

– Manipulated variable in the back-up 
mode can be treated as a disturbance by 
MPC



T5.2 Dynamical model of the water network 
and model decomposition
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Network Model

 121 control variables

 67 system states (tank volumes)

 88 perturbations (water demands)

 15 additional constrains (related to the nodes equalities)

 Matlab implementation
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Graph Analysis
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Subsystem Decomposition using Graph Partitioning
PROPOSED SOLUTION – Graph Partitioning Algorithm

• Novel algorithm for automatic LSS subsytem 
decomposition based on a graph partitioning approach

• Step 0: Graph representation of the LSS system

• Step 1: Subsystem decompostion based on identifyng 
loosely coupled subsystems using graph theory

• Step 2: Solution refinement using some auxiliary 
criteria

PUBLICATIONS
Paper submitted to IFAC World Congress 2011 and Journal of Process Control
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Daily 
forecast

Hourly 
forecast

Demand Forecast Time Series Model
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Electricity Cost Model

-    An electricity cost model that takes 
into account the price of electricity 
depending on the day, hour and period 
of the year has been developed and 
taken into account in the MPC 
formulation.   



T5.3 Control design for the water network
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1. Energy/Production Costs

2. Operation-safety Costs

3. Stability Costs
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Distributed MPC

SOLVED PROBLEM
• Design of Distributed MPC for truly large scale 

systems

• Class of target systems (Barcelona WN):
• Centralized optimization problem impossible to 

solve due to high number of variables (~5000) 
and constraints (~10000)

• Long sampling period (1 hrs)  iterative solution 
with nearly optimal performance

• Two controller types:
• WITH Central Coordination – fast coordination, 

useful also for large scale optimization on a 
single computer

• WITHOUT Central Coordination – local controllers 
coordinate flows between neighbors only 
(modular architecture)STATE OF THE ART

• Well known methods based on dual decompositions; 
however, with problematic speed of convergence

• No application of MPC to full-scale water distribution 
network

• LS system partitioning algorithms for DMPC are 
missing

Distributed MPC

Coordinated Distributed MPC
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Hierachical Decentralized MPC 
PROPOSED SOLUTION - Decentralized MPC

• A hierarchy of a local MPC controllers (one per each 
subsystem) is designed.

• Only one optimization per MPC controller is necessary. 
Coordination is established thanks to the 
unidirectional flow of shared variables.

PUBLICATIONS
Papers presented at ACC’10, LSS’10  and submitted to IEEE Journal
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Wireless PID Control in Lab Environment (1)
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Wireless PID Control in Lab Environment (2)
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T5.4 Development of the water demo 
demonstrator 
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Network Simulator



WIDE

ist-wide.dii.unisi.it

33

WIDE

 Simulated volume (blue) compared to real volume (red) for some tanks
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Interface Simulator/DMPC Controller
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Electrical and Software Interfaces for Wireless Test
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MATLAB Toolbox for E-Senza Wireless Devices
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T5.5 Testing and evaluation  
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Centralized MPC Results 

• Centralized MPC Control of Barcelona  water network has been implemented by 
means of PLIO tool.

• To test and adjust the MPC controller some different scenarios have been studied. 
Parameters to take into account in the calibration of the model are:

– Initial and security levels in tanks
– Objective function weights: economical, safety and maintenance factors. 
– Working with different sources operation:

• Llobregat source set at constant flow (Scenario 1)
• Fixed sources at real flow (Scenario 2)
• Source optimization. The optimizer calculates the flow for each time step 

inside the operational limits of each source (Scenario 3)
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Centralized MPC: Scenario 1  (1)

Flow(m3/s)

Case 1 Case 2

Llobregat surface source 3 0

Llobregat underground source 2 2

• Barcelona’s average input flow is about 7.5 m3/s.
• In case 1 an important part of the total  demand is taken from Llobregat. 
• In case 2 only a 25% of the total demand is taken from Llobregat.  It is expected that 

an important part of the network consumption is going to be taken from Ter.
• These two scenarios are interesting from the point of view of the behaviour of the 

economical cost.

Scenario 1: Llobregat source set at constant flow



WIDE

ist-wide.dii.unisi.it

40

WIDE

Centralized MPC: Scenario 1 (2)

• Conclusions
• It exists a strong and linear dependency between economical cost and the 

operation of this two sources.
• In order to reduce the total cost it is necessary to maximise the quantity of 

water taken from Llobregat.

Electrical cost Water cost Total cost

Day 1 52,42 47,58 100,00

Day 2 46,65 53,35 100,00

Day 3 48,10 51,90 100,00

Day 4 47,57 52,43 100,00

Electrical cost Water cost Total cost

Day 1 -50,27 +91,34 +17,11

Day 2 -47,94 +72,77 +16,47

Day 3 -48,37 +78,27 +17,36

Day 4 -47,67 +71,06 +14,58

Case 1
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Increase/decrease % in 
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Centralized MPC: Scenario 2

 Sources flow is imposed by using real data obtained from AGBAR historical 
database. 

 It is an interesting case study in order to compare centralised MPC control and 
current control applied regarding to transportation cost. 

 It is a previous step before comparing centralised and decentralised MPC 
control.

 Important improvement in electrical cost, which represents between 10% and 
the 25 % of the real operation cost.

 Total cost using MPC control is between 4 and 8 % lower than the real one.

Scenario 2: Sources set at real flow

Current control

MPC

Increase/decrease % in 
comparison to current control

Electrical cost Water cost Total cost

23/07/2007 33,13 66,87 100,00

24/07/2007 34,66 65,34 100,00

25/07/2007 32,00 68,00 100,00

26/07/2007 31,29 68,71 100,00

Electrical cost Water cost Total cost

23/07/2007 -23,27 +0,00 -7,71

24/07/2007 -10,56 +0,00 -3,66

25/07/2007 -20,61 +0,00 -6,59

26/07/2007 -18,58 +0,00 -5,81
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Centralized MPC: Scenario 3 (1)

42

 In this case electrical and water costs are minimised, so it is expected a 
higher improvement in the total cost referring to the scenario with fixed 
sources.

 Taking into account results obtained in the first case study (constant fixed 
flow in Llobregat source)  a solution with maximum average flow from 
Llobregat source is expected.

 In the optimization results shown the term that guarantees stability in 
control elements (pumps and valves) is on.

 Underground sources’ water cost is penalized to avoid its over-
exploitation.

Scenario 3: Flow optimization
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Centralized MPC: Scenario 3 (2)

Electrical cost Water cost Total cost

23/07/2007 33,13 66,87 100,00

24/07/2007 34,66 65,34 100,00

25/07/2007 32,00 68,00 100,00

26/07/2007 31,29 68,71 100,00

Current control

Electrical cost Water cost Total cost

23/07/2007 18,92 -50,70 -27,63

24/07/2007 14,04 -32,56 -16,41

25/07/2007 26,29 -43,91 -21,45

26/07/2007 26,09 -44,43 -22,36

MPC improvement in comparison to 
current control case

MPC improvement in comparison to 
fixed sources to real flow case (Scenario 
2) 

Electrical cost Water cost Total cost

23/07/2007 54,99 -50,70 -21,59

24/07/2007 27,51 -32,56 -13,23

25/07/2007 59,08 -43,91 -15,91

26/07/2007 54,86 -44,43 -17,57

– Big water cost savings, between 30% and  50 %.
– Electrical cost has increased regarding to 

current control case ([+18,+27]%) and MPC case 
with fixed sources ([+27,+60]%). 

– Total cost has decreased between 13% and 22 
% regarding to MPC results obtained with fixed 
sources. 

– Sources flow distribution is the expected one. 
Llobregat’s source flow is maximized. 
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