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Networked control systems

Buildings consume 72% of 
electricity, 40% of all energy, 
and produce close to 50% of 

U.S. carbon emissions

Efficiency and safety in cars depend on a network of 
hundreds of ECUs (power train, ABS, stability control, 

speed control, transmission, …)

Robotic agents free humans from unpleasant, 
dangerous, and/or repetitive tasks in which 

human performance would degrade over time 
due to fatigue

Process control or power plant facilities often have 
between several thousand of coupled control loops
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Example #1: Networked Control System

processcontroller

shared
network sensor 2

sensor 1hold 1

hold 2

process: controller:

round-robin network access:

sampling
times

hold



Example #1: Networked Control System

process: controller:

round-robin network access:

hold

processcontroller

shared
network sensor 2

sensor 1hold 1

hold 2

sampling
times

What if the network is not available at a sample time tk ?

1st wait until network becomes available

2nd send (old) data from original sampling of continuous-time output
or

2nd send (latest) data from current sampling of continuous-time output

! intersampling times tk+1  –  tk typically become random variables

Example #1: Networked Control System

processcontroller

shared
network sensor 2

sensor 1hold 1

hold 2

sampling
times

Typical results:

Deterministic Modeling

• tk`1 ´ tk P r0, T s, @k
• worst-case sequence

• stability guaranteed for T ă .0279

Stochastic Modeling

(nec. & suff. condition for stability)(suff. condition for stability)

• tk`1 ´ tk iid random variables

• tk`1 ´ tk unif. distri. in r0, T s
• stability guaranteed for T ă .112



Example #1: Networked Control System

processcontroller

shared
network sensor 2

sensor 1hold 1

hold 2

sampling
times

Typical results:

Deterministic Modeling

• tk`1 ´ tk P r0, T s, @k
• worst-case sequence

• stability guaranteed for T ă .0279

Stochastic Modeling

(nec. & suff. condition for stability)(suff. condition for stability)

How to model/analyze such systems? 

 Stochastic Hybrid Systems

• tk`1 ´ tk iid random variables

• tk`1 ´ tk unif. distri. in r0, T s
• stability guaranteed for T ă .112

Deterministic Hybrid Systems

guard
conditions

reset-maps

continuous
dynamics

q(t) ! Q={1,2,…}! " discrete state  
x(t) ! Rn ! " continuous state

q 1
x f1 x

q 2
x f2 x

q 3
x f3 x



Deterministic Hybrid Systems

guard
conditions

continuous
dynamics

q(t) ! Q={1,2,…}! " discrete state  
x(t) ! Rn ! " continuous state

ẋ = f(x)

g(x) ≥ 0?

x �→ φ(x)
impulsive system

(single discrete mode)

q 1
x f1 x

q 2
x f2 x

q 3
x f3 x

reset-maps

Stochastic Hybrid Systems (time-triggered)

transition times
tk+1 – tk i.i.d.

with given distribution

N(t) " # of transitions before time t 

renewal process
(iid inter-increment times)

Also known as SHSs driven by renewal processes:

continuous
dynamics

ẋ = f(x)

x �→ φ(x)

stochastic impulsive
system (SIS)

(single discrete mode)

q 1
x f1 x

q 2
x f2 x

q 3
x f3 x

t1, t4, t7, ...

t2, t5, t8, ...

tk

t3, t6, ... reset-maps



Stochastic Hybrid Systems (time-triggered)

N(t) " # of transitions before time t 

renewal process
(iid inter-increment times)

Also known as SHSs driven by renewal processes:

continuous
dynamics

ẋ = f(x)

x �→ φ(x)

stochastic impulsive
system (SIS)

(single discrete mode)

tk

Special case: when tk+1 ! tk i.i.d. exponentially distributed 

 called Markovian Jump Systems

 in this case x(t) is a Markov Process

 well developed theory (analysis & design)

[Costa, Fragoso, Boukas, Loparo, Lee, Dullerud]

q 1
x f1 x

q 2
x f2 x

q 3
x f3 x

transition times
tk+1 – tk i.i.d.

with given distribution

t1, t4, t7, ...

t2, t5, t8, ...

t3, t6, ... reset-maps

Example #1: Networked Control System

processcontroller

shared
network sensor 2

sensor 1hold 1

hold 2

sampling
times

round-robin network access:

hold

• tk`1 ´ tk iid random variables

• tk`1 ´ tk unif. distri. in r0, T s



Example #1: Networked Control System

tk+1  –  tk # time-interval between successive transmissions

processcontroller

shared
network sensor 2

sensor 1hold 1

hold 2

sampling
times

�
ŷ1(tk)
ŷ2(tk)

�
=

�
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−
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�
ŷ1(tk)
ŷ2(tk)

�
=

�
ŷ1(t

−
k )

y2(t
−
k )

� t2, t4, ...

t1, t3, ...

Stability of Linear Time-triggered SIS

tk

ẋ = Ax

x �→ Jx

tk+1  –  tk # i.i.d., with cumulative 
distribution function F(·)

Defining xk := x(tk) xk+1 = JeA(tk+1−tk)xk

reset continuous
evolution

stochastic impulsive system
(single discrete mode)

state at jump times



Stability of Linear Time-triggered SIS

tk

ẋ = Ax

x �→ Jx

expectation w.r.t. ! = tk+1  –  tk
(cumulative distribution F )

tk+1  –  tk # i.i.d., with cumulative 
distribution function F(·)

For a given P = P � > 0

Defining xk := x(tk) xk+1 = JeA(tk+1−tk)xk

state at jump times
reset continuous

evolution

E[x�
k+1Pxk+1 | xk] = x�

k EF (∆)

�
eA

�∆J �PJeA∆
�
xk

stochastic impulsive system
(single discrete mode)

Stability of Linear Time-triggered SIS

tk

ẋ = Ax

x �→ Jx

Defining xk := x(tk) xk+1 = JeA(tk+1−tk)xk
state at jump times

reset continuous
evolution

If there exists 

then

What about x(t) between jumps?

LMI on Pn$ n

lim
k→∞

E[�xk�2] = 0 (exp. fast in index k)

expectation w.r.t. ! = tk+1  –  tk
(cumulative distribution F )

For a given P = P � > 0

E[x�
k+1Pxk+1 | xk] = x�

k EF (∆)

�
eA

�∆J �PJeA∆
�
xk

\sbf\Delta

P > 0, EF (∆)

�
eA

�∆J �PJeA∆
�
< P

stochastic impulsive system
(single discrete mode)



tk+1  –  tk # i.i.d., with cumulative 
distribution function F(·)

Stability of Linear Time-triggered SIS

tk

ẋ = Ax

x �→ Jx

Mean-square exponential stability, i.e., 

Mean-square asymptotic stability, i.e., 

Mean-square stochastic stability, i.e., 

lim
t→∞

E[�x(t)�2] = 0

All stability notions require

the nec. & suff. conditions only differ on the requirements on the tail of distribution

lim
k→∞

�xk� = 0 exponentially fast

1− F (s) = P(tk+1 − tk > s)

� ∞

0
E[�x(t)�2]dt < ∞

lim
t→∞

E[�x(t)�2] exp. fast= 0

tk+1  –  tk # i.i.d., with cumulative 
distribution function F(·)

Stability of Linear Time-triggered SIS

tk

ẋ = Ax

x �→ Jx

Mean-square exponential stability, i.e., 

Mean-square asymptotic stability, i.e., 

Mean-square stochastic stability, i.e., 

Theorem:

lim
t→∞

E[�x(t)�2] = 0

All stability notions require

the nec. & suff. conditions only differ on the requirements on the tail of distribution

(versions of these results for multiple discrete modes are available)

lim
k→∞

�xk� = 0 exponentially fast

1− F (s) = P(tk+1 − tk > s)

⇔ ∃P > 0, EF (∆)

�
eA

�∆J �PJeA∆] < P and lim
s→∞

eA
�seAs

�
1− F (s)

�
= 0

⇔ ∃P > 0, EF (∆)

�
eA

�∆J �PJeA∆
�
< P and

� ∞

0
eA

�seAsF (ds) < ∞

� ∞

0
E[�x(t)�2]dt < ∞

lim
t→∞

E[�x(t)�2] exp. fast= 0

[Antunes et al, 2009]

P 0, EF ∆ eA ∆J PJeA∆ P and lim
s

eA seAs 1 F s
exp. fast

0
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So far time-driven SHSs...

q(t) ! Q={1,2,…}! " discrete state  
x(t) ! Rn ! " continuous state

continuous
dynamics q 1

x f1 x

q 2
x f2 x

q 3
x f3 x

transition times
tk+1 – tk i.i.d.

with given distribution

t1, t4, t7, ...

t2, t5, t8, ...

t3, t6, ... reset-maps



Stochastic Hybrid Systems

transition intensities
(probability of transition in 
small interval  (t, t+dt])

q(t) ! Q={1,2,…}! " discrete state  
x(t) ! Rn ! " continuous state

λ�(x)dt ≣ probability of transition in an “elementary” interval (t, t+dt]

≣ instantaneous rate of transitions per unit of timeλ�(x)
"

continuous
dynamics

Special case:
When all #! are constant ⇒ time triggered SHS with exponential tk+1" tk

Markovian jump system

q 1
x f1 x

q 2
x f2 x

q 3
x f3 x

reset-maps

Stochastic Hybrid Systems with Diffusion

reset-maps

q(t) ! Q={1,2,…}! " discrete state  
x(t) ! Rn ! " continuous state

stochastic 
differential eq.

transition intensities
(probability of transition in
small interval  (t, t+dt])

x f1 x

g1 x w

x f2 x

g2 x w

x f3 x

g3 x w



packet-switched
network

Example #2: Estimation through network

encoder decoder

white noise
disturbance

x

x(t1) x(t2)

process

encoder logic " determines when to send measurements to the network
decoder logic " determines how to incorporate received measurements  

state-estimator

for simplicity:
• full-state available
• no measurement noise
• no quantization
• no transmission delays

packet-switched
network

Stochastic communication logic

encoder decoder

white noise
disturbance

x

x(t1) x(t2)

process state-estimator

decoder logic " determines how to incorporate received measurements

for simplicity:
• full-state available
• no measurement noise
• no quantization
• no transmission delays

[related ideas pursued by Astrom, Basar, Hristu, Kumar, Tilbury]

encoder logic " determines when to send measurements to the network 

1. upon reception of x tk , reset x̂ tk to x tk



packet-switched
network

Error Dynamics

encoder decoder

white noise
disturbance

x

x(t1) x(t2)

process state-estimator

Error dynamics:

reset error to zero

prob. of sending data
in (t,t+dt] depends on 

current error e

for simplicity:
• full-state available
• no measurement noise
• no quantization
• no transmission delays

ODE " Lie Derivative

derivative
along solution

to ODE
Lf V

Lie derivative of V 

Basis of “Lyapunov” formal arguments to establish boundedness and stability…

remains bounded along trajectories !

dV
�
x(t)

�

dt
=

∂V
�
x(t)

�

∂x
f
�
x(t)

�

E.g., picking V (x) := �x�2

�x�2

Given scalar-valued function V : Rn → R

dV x t

dt

V

x
f x 0 V x t x t 2 x 0 2



Generator of a Stochastic Hybrid System

(extended)
generator of 

the SHS

where

Lie derivative

Reset term

Dynkin’s formula
(in differential form)

Diffusion term

instantaneous variation

intensity

x & q are discontinuous, 
but the expected value is 

differentiable

Given scalar-valued function V : Q× Rn → R

d

dt
E
�
V
�
q(t), x(t)

��
= E

�
(LV )

�
q(t), x(t)

��

(q, x) �→ φ�(q, x)

x fq x

gq x w

LV q, x
V

x
q, x fq x

m

� 1

λ� q, x V φ� q, x V q, x

1

2
trace gq x

2V

x2
gq x

λ� q, x dt

Lyapunov Analysis " SHSs

x �→ φ(x)

λ(x)dt
d

dt
E
�
V
�
x(t)

��
= E

�
(LV )

�
x(t)

��

almost sure (a.s.)
asymptotic stability

class-K functions:
(zero at zero & mon. increasing)

�
α1(�x�) ≤ V (x) ≤ α2(�x�)
LV (x) ≤ −α3(�x�)

probability of ||x(t)|| exceeding any given bound M, 
can be made arbitrarily small by making ||x0|| small

sa
m

pl
e-

pa
th

 
no

tio
ns

�
V (x) ≥ 0

LV (x) ≤ −W (x)

stochastic stability
(mean square when
                      )

� ∞

0
E
�
W

�
x(t)

��
dt < ∞

ex
pe

ct
ed

-v
al

ue
 

no
tio

ns

�
V (x) ≥ W (x) ≥ 0

LV (x) ≤ −µV + c
E
�
W

�
x(t)

��
≤ e−µtV (x0) +

c

µ

exponential stability
(mean square when
                      )

!

!

!

W (x) = �x�2

W (x) = �x�2

�
P
�
∃t : �x(t)� ≥ M

�
≤ α2(�x0�)

α1(M)

P
�
x(t) → 0

�
= 1

x f x

g x w



Example #2: Remote estimation

For constant rate: #(e) = $ (exp. distributed inter-jump times)

1. E[ e ] % 0 ! if and only if 
2. E[ || e ||m ] bounded! if and only if

For radially unbounded rate: #(e) (reactive transmissions)

3. E[ e ] % 0 ! (always)
4. E[ || e ||m ] bounded! & m

Moreover, one can achieve the same E[ ||e||2 ] with 
less communication than with a constant rate or 

periodic transmissions… 

Dynkin’s formulaerror dynamics
in remote estimation

ė = Ae+Bẇ

λ(e)dt

e �→ 0

(LV )(e) :=
∂V

∂e
Ae+ λ(e)

�
V (0)− V (e)

�
+

1

2
trace

�
B� ∂

2V

∂e2
B
�

d

dt
E
�
V
�
e(t)

��
= E

�
(LV )

�
e(t)

��

using V (e) = �e�2

using V (e) = e�Pe

[Xu et al, 2006]

γ � λi A , i

γ m� λi A , i

getting more moments 
bounded requires higher 

comm. rates

Back to Time-triggered SIS...

Can we pick an intensity #(·) to obtain the desired distribution for the tk ?
YES

tk

ẋ = f(x)

x �→ φ(x)

tk+1  –  tk # F(·)

λ(x)dt

ẋ = f(x)

x �→ φ(x)



Back to Time-triggered SIS...

t1 t2 t3 t

time since last reset

τ(t) = t− tkF �(τ)

1− F (τ)
dt

ẋ = f(x)

τ̇ = 1

x �→ φ(x)

τ �→ 0

the aggregate state (x,%) is a Markov process

This representation allows one to 
combine in the same SHS 

time- and event-triggered transitions!

tk

ẋ = f(x)

x �→ φ(x)

tk+1  –  tk # F(·)

Can we pick an intensity #(·) to obtain the desired distribution for the tk ?
YES

Converse Lyapunov Stability 

Lyapunov-like function 
quadratic on x for fixed %

(motivates choices for Lyapunov function for nonlinear systems)

tk

Theorem:

lim
t→∞

E[�x(t)�2] exp. fast= 0

"
System is mean-square exponentially stable, i.e.,

F �(τ)

1− F (τ)
dt

ẋ = f(x)

τ̇ = 1

x �→ φ(x)

τ �→ 0

tk+1  –  tk # F(·)

∃P (τ) such that defining V (x, τ) = x�P (τ)x

x �→ φ(x)

ẋ = f(x)
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Transport layer protocols

Most common (general purpose) protocols:

UDP
• no attempt at error correction
• no attempt to control data rate

TCP
• error correction

º all packets sent should be acknowledged by receiver
º lack of acknowledgement of packet n leads to retransmission of same packet 

after packet n + 3 (triple duplicate ack mechanism)
• congestion control

º packet drops are taken as a sign of congestion and lead to send rate decrease

high drop rates can lead to 
poor performance and 
eventually instability

delayed retransmissions are 
essentially useless; 

too much overhead in ack 
every packet



Illustrative 1-D problem

disc.-time processdead-beat controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

(it is also straightforward to 
compute a tight asymptotic 

bound on E[x(k)2])

The closed-loop is mean-square stable (i.e., E[ x(k)2 ] <')  if and only if

Intuition: ignoring the disturbance d

Illustrative 1-D problem

disc.-time processdead-beat controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

(it is also straightforward to 
compute a tight asymptotic 

bound on E[x(k)2])

But what if |a|>1 and the probability of drop is larger than this bound?

The closed-loop is mean-square stable (i.e., E[ x(k)2 ] <')  if and only if



Redundant transmissions

disc.-time processdead-beat controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

The closed-loop is mean-square stable (i.e., E[ x(k)2 ] <')  if and only if

redundant transmissions " at each time step one sends N copies of x(k) through 
independent channels (time, frequency, or spatial 
diversity), each with drop probability p

any drop probability can be 
accommodated by choosing N 

sufficiently largebut transmission rate is N times larger

A simple “error-correction” protocol

disc.-time processdead-beat controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

The closed-loop is mean-square stable (i.e., E[ x(k)2 ] <')  if and only if

1.when a packet is lost, receiver sends a “negative acknowledgement” (nack)
2.transmitter generally sends one packet at each sampling time, however…
3.upon reception of nack, transmitter sends two copies of the following packet 

similar bound as if
always sending two packets

but average transmission rate is only 1+O(p) times larger 
[ACC’09]

this result assumes no 
drops in nacks



Even better!

disc.-time processdead-beat controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

For every p, a, and N, one can find a function v : N % N such that
• closed-loop is mean-square stable (i.e., E[ x(k)2 ] < ') 
• average transmission rate is only 1+O(pN) times larger
• requires at least N independent channels

stabilizes any system

arbitrarily small increase in 
the transmission rate

Pick a function v : N % N, with v(0) = 1
1.when a packet is lost, receiver sends a “negative acknowledgement” (nack)
2.transmitter keeps track of number !(k) of consecutive drops prior to time k

• transmitter sends v(!(k)) copies of each packet

all but one channel are rarely utilized

this result assumes no 
drops in nacks

Even better!

disc.-time processdead-beat controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

For every p, a, and N, one can find a function v : N % N such that
• closed-loop is mean-square stable (i.e., E[ x(k)2 ] < ') 
• average transmission rate is only 1+O(pN) times larger
• requires at least N independent channels

stabilizes any system

arbitrarily small increase in 
the transmission rate

Pick a function v : N % N, with v(0) = 1
1.when a packet is lost, receiver sends a “negative acknowledgement” (nack)
2.receiver keeps track of number !(k) of consecutive drops prior to time k

• transmitter sends v(!(k)) copies of each packet

this result assumes no 
drops in nacks

• can stabilize any system for any drop probability
• with arbitrarily small increase in the transmission rate
no (completely) free lunch…  E[ x(k)2 ] will be large 

E[ x(k)2 ]

E[ v(k) ]
(transmission rate)

achievable

1

all but one channel are rarely utilized



Optimal “error-correction” protocols

n-dim. processcert. equiv. controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

to minimize

(generalizable to
output-feedback)

state estimation error
(performance)

transmission rate
(communication)

choose v(k) " number of copies of x(k) to send at time instant k

average-cost optimal control of a Markov process on Rn 

Optimal “error-correction” protocols

n-dim. processcert. equiv. controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

Theorem: 
• optimal v(k) is generated by a memoryless policy of the form

• optimal policy &' can be computed using dynamic programming 
and value-iteration

(generalizable to
output-feedback)

transmitter must construct a state 
estimate to determine optimal v(k)

computationally difficult for large n



Example

send just one packet every time

optimal protocol using 
at most 3 independent channels

(different choices of #)

E[
x

2 ]

average communication rate

Optimal “simplified” protocols

n-dim. processcert. equiv. controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

to minimize

(generalizable to
output-feedback)

state estimation error
(performance)

transmission rate
(communication)

choose v(k) " number of copies of x(k) to send at time instant k

but transmitter must choose v(k) based only on # of consecutive drops (from nacks)



Optimal “simplified” protocols

n-dim. processcert. equiv. controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

Theorem: 
• optimal v(k) is generated by a memoryless policy of the form

• optimal policy &' can be computed using dynamic programming 
and value-iteration

(generalizable to
output-feedback)

transmitter only needs to keep track of
!(k) "  # of consecutive drops (from nacks)

computationally much easier
(optimization on countable-state 
MDP with size independent of n)

Example

send just one packet every time

simplified protocol using 
at most 3 independent channels

(different choices of #)

optimal protocol using 
at most 3 independent channels

(different choices of #)

E[
x

2 ]

average communication rate



Example

send just one packet every time

simplified protocol using 
at most 3 independent channels

(different choices of #)

optimal protocol using 
at most 3 independent channels

(different choices of #)

stochastic protocol using 
at most 3 independent channels

(different choices of #)

E[
x

2 ]

average communication rate
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