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Robotic agents free humans from unpleasant

dangerous, and/or repetitive tasks in which

human performance would degrade over time
due to fatigue

Buildings consume 72% of

Efficiency and safety in cars depend on a network of
hundreds of ECUs (power train, ABS, stability control,
speed control, transmission, ...)
s Sensor Controller
! electricity, 40% of all energy,
and produce close to 50% of
U.S. carbon emissions

Controller

Network

(wired/wireless)

Remote Office Site

Central Control Room

Process control or power plant facilities often have
between several thousand of coupled control loops
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Example #1: Networked Control System ¥ engineering

A4

controller process

" sampling

U1 . Y1
hold 1 fimes
t
& shared —k/o

= hold 2 network o

process:  ip = Apxp + Cpu controller: ¢ = Aczc + Coj
y=Cpxp+ Dpu § = Cozc + Day
round-robin network access: {yl (tk)] & odd
. . |:@1 (tk>:| QQ(tI;)
g = bo(tk) |~ ) g (-
hold Ga(te) 1) L even
y2(ty )
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Example #1: Networked Control System ¥ engineering
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A4

controller process

N sampling

n . Y1
hold 1 fimes
t
& shared —k/o

7 hold 2 network o

process: ip = Apxp + Cpu controller:  z¢ = Acze + Cey
y = Cpxp + Dpu y = Ccxzc + Doy

e ; ; : :
What if the network is not available at a sample time # ?
15t wait until network becomes available

2"d send (old) data from original sampling of continuous-time output
or
2" send (latest) data from current sampling of continuous-time output

= intersampling times #+; — # typically become random variables
. J
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Example #1: Networked Control System

¥ engineering

A4

controller process

" sampling

U1 . Y1
hold 1 fimes
t
& shared —k/o

- hold 2 network T

Typical results:
Deterministic Modeling Stochastic Modeling
o {11 —tre[0,T], Vk ® tr.1 — t; iid random variables
e worst-case sequence ® {1 — tg unif. distri. in [0, 7]

e stability guaranteed for T < .0279 e stability guaranteed for T' < .112

(suff. condition for stability) (nec. & suff. condition for stability)
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Example #1: Networked Control System ¥ engineering
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Ny

A4

controller process

N sampling

n . Y1
hold 1 fimes
t
& shared —k/o

~—{hold 2 network T

How to model/analyze such systems?

Stochastic Hybrid Systems

Deterministic deling
o m————
o {111 —tre[0,T], Vk ® tr.1 — t; iid random variables
e worst-case sequence ® {1 — tg unif. distri. in [0, 7]

e stability guaranteed for T < .0279 e stability guaranteed for T < .112

(suff. condition for stability) (nec. & suff. condition for stability)
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Deterministic Hybrid Systems

W engineering

z — ¢1(x)
continuous /\
dynamics
T ¢3(x guard
conditions
x — ¢z
) > 07

reset-maps

q(t) € 9={12,...} = discrete state
x(t) € R" = continuous state
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Deterministic Hybrid Systems # engineering

x> ¢1(x)
continuous /\

dynamics
guard
conditions
x — ¢z
) > 07

reset-maps

90'—>¢3

q(t) € 9={12,...} = discrete state
x(t) € R" = continuous state
g(z) > 07

impulsive system
(single discrete mode) x — ¢(x)
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Stochastic Hybrid Systems (time-triggered) (,; engineering

, ta, t7 xH¢1()

continuous
dynamics ‘
to, t5, 1s,.
T — ¢3 K

t37 t67

transition times
tres1 — triid.

x — o) with given distribution

reset-maps

Also known as SHSs driven by renewal processes:

N(t) = # of transitions before time ¢

renewal process
(iid inter-increment times)

stochastic impulsive
system (SIS)
(single discrete mode) x> o)
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Stochastic Hybrid Systems (time-triggered) (,p engineering

, ta, f7 xH¢1()

continuous
dynamics ‘
to, t5, 1s,.
T — ¢3 K

t37 t67

transition times
tres1 — triid.

x — ¢o(x) with given distribution

reset-maps

Also knc( /;\—/
Special case: when #+; — # 1.i.d. exponentially distributed

N(t) =| @ called Markovian Jump Systems I

i ‘ri @ in this case x(¢) is a Markov Process
iid in
@ well developed theory (analysis & design)

[Costa, Fragoso, Boukas, Loparo, Lee, Dullerud]
\ J x> (x)
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Example #1: Networked Control System

v englneerlng

A4

controller process

" sampling

U1 . Y1
hold 1 fimes
t
& shared —k/o

~—{hold 2 network T
round-robin network access: |:.yl (tk)] k odd
G—0 {Z)l (tk)} D2ty
Yy = o (t = o
hold b{t) )| L even
ya(ty, )

® i1 — t; iid random variables

® {11 — t unif. distri. in [0, 7]
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Example #1: Networked Control System ¥ engineering

<
<
Ny

A4

controller process

N sampling

n . Y1
hold 1 fimes
t
& shared —k/o

—hold 2 network o

Y2

t.., — 1, ~ time-interval between successive transmissions
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Stability of Linear Time-triggered SIS

stochastic impulsive system

- (single discrete mode)
tk x— Jx

ti — tp ~ 1.i.d., with cumulative
distribution function F{-)

Defining x, := x(tx) Tyl = JeAltrr1—te)
state at jump times .
continuous

reset .
evolution
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Stability of Linear Time-triggered SIS @ engineering

stochastic impulsive system

- (single discrete mode)
tk x— Jx

ti — tp ~ 1.i.d., with cumulative
distribution function F{-)

Defining x, := x(tx) Tyl = JeAltrr1—te)
state at jump times confinuous
reset .
evolution

For a given P = P’ > 0
Elz) 1 Prgsr | 2] = 73, Epa) [eA,AJ'PJeAA}xk
N

expectation wrt. A=t — ¢
(cumulative distribution F')
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Stability of Linear Time-triggered SIS

W engineering

stochastic impulsive system
(single discrete mode)

-

e If there exists LMion P,
P>0, Epa)|e"2TPJer]| <P
then
Defining zj klggo E[|zx]|*] =0 (exp. fast in index k)
What about x(¢) between jumps?
\ J
For a given P =P’ >0
Elz) 1 Presr | 21] = ), Epa) [eA,AJ'PJeAA} Tk

expectation wrt. A=t — ¢

(cumulative distribution F')




Stability of Linear Time-triggered SIS (,\, ZC,,SQTEAQZI;‘E?,RQ

( )
All stability notions require klim |zk]| =0 exponentially fast
—00
the nec. & suff. conditions only differ on the requirements on the tail of distribution
1—F(s) =P(tgs1 —tr > 3)
\ J

@ Mean-square exponential stability, i.e., lim E[|z(t)||?] “"= sty
t—o00

@ Mean-square asymptotic stability, i.e., tlim E[||z(t)]|?] =
—00

o0
@ Mean-square stochastic stability, i.e., / E[||z(t)]|?]dt < oo
0

Stability of Linear Time-triggered SIS (,\, ZC,,SQTEAQZI;‘E?,RQ

~

All stability notions require klim |zk]| =0 exponentially fast
— 00

the nec. & suff. conditions only differ on the requirements on the tail of distribution
1—F(s) =P(tgs1 —tr > 3)

(versions of these results for multiple discrete modes are available)

\
Theorem:

J
@ Mean-square exponential stability, i.e., lim E[|z(t)||?] “"= sty
t—o00

< 3P >0, Epa) [6A,AJ/PJ6AA] < P and lim CA,SGAS(I — F(s)) exp_fast

S§—00

@ Mean-square asymptotic stability, i.e., tlim E[||z(t)]|?] =
—00

< dP >0, Epa) [eA/AJ/PJeAA] < P and lim eA/SeA"‘(l — F(,s)) =0
S5—00
@ Mean-square stochastic stability, i.e., / E[||z(t)]|?]dt < oo
0 00
< dP >0, Epa) [eA/AJ’PJeAA] < P and / GA/SCASF(dS) -~
0

[Antunes et al, 2009]
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@ Event-driven SHSs
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So far time-driven SHSs... ¥ engineering

, ta, f7 xqul()

continuous
dynamics ‘
t2: t51 t87
T — ¢3 K

t37 t67

transition times
thel — triind.

x — o) with given distribution

reset-maps

q(t) € Q={1.2,...} = discrete state
z(t) € R” = continuous state
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Stochastic Hybrid Systems W engineering

z — ¢1(x)
continuous /\
dynamics
i gs(z transition intensities
(probability of transition in
small interval (¢, t+dt])
x — ¢z
reset-maps
q(t) € Q={12,...} = discrete state
x(t) € R" = continuous state

Special case: Markovian jump system

When all A, are constant = time triggered SHS with exponential #41— #
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Stochastic Hybrid Systems with Diffusion (,; engineering

T ¢1(2)
stochastic /\
differential eq.
o (@ transition intensities
‘ (probability of transition in
small interval (¢, t+dt])
T o

reset-maps

q(t) € Q={1.2,...} = discrete state
z(t) € R” = continuous state
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process

& = Az + Bw| white noise

disturbance

Example #2: Estimation through network (

X
() z(ty) -
o« -— - decoder
——= ==, packet-switched —)

encoder logic = determines when to send measurements to the network
decoder logic = determines #ow to incorporate received measurements

¥ engineering

state-estimator

T = A2

network for simplicity:

« full-state available

* no measurement noise
* no quantization

* no transmission delays

. . . . ) UCSANTA BARBARA
Stochastic communication logic (

process

& = Az + Bw/| white noise

disturbance

X

x(ty) z(t,)
encoder -
I

decoder logic = determines Zow to incorporate received measurements
1. upon reception of x(tx), reset (tx) to x(ty)

encoder logic = determines when to send measurements to the network
1. keep track of remote estimate &
2. send measurements stochastically

3. probability of sending data increases as & deviates from x

W engineering

state-estimator

&= A
packet-switched

network for simplicity:

« full-state available

* no measurement noise
* no quantization

* no transmission delays

[related ideas pursued by Astrom, Basar, Hristu, Kumar, Tilbury]
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Error Dynamics w engineering

process state-estimator

& = Ax + Bw/| white noise &= A%
disturbance

X
() z(ty) -
o« -— - decoder
——= ==, packet-switched —)

network for simplicity:
« full-state available
* no measurement noise
* no quantization
* no transmission delays

A~

Error dynamics: e:=x — %
prob. of sending data
Ae)dt in (¢,t+dt] depends on
current error e

¢ = Ae + Buw

er— 0 reset error to zero

(’\ UC SANTA BARBARA
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ODE - Lie Derivative

= f(zx) reR"

Given scalar-valued function V : R® — R

dv (z(t)) _ oV (x(t))

t
dt ox f(a;( ))
derivative %/—)
along solution L.V
to ODE /

Lie derivative of V'

Basis of “Lyapunov” formal arguments to establish boundedness and stability...

E.g., picking V (x) := ||z

dV(cZ(t)) - aazf(ae) <0 = V(@) =z < |=(0)]

||| remains bounded along trajectories !
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Generator of a Stochastic Hybrid System (‘,) engineering

Ae(q, x)dt (¢, ) 7_@(%1:)

Given scalar-valued function V : @ x R* - R
x & g are discontinuous,
but the expected value is

d differentiable
= B|V(e®),2®)] = E[(ZV)(a(t),2()]
where
oV o
(LV)(% 95) ::7(% ﬂf)fq(l“) Lie derivative
or
(extended)
generator of m
the SHS + Z Ae(q, ) (V (¢e(q,x)) — V(q,;z;)) Reset term
(=1
1 2V ;
+ 5 trace (‘(/q(,I-‘)’(F\.).(/,[(,r)> Diffusion term
9 22
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W engineering

Lyapunov Analysis — SHSs

x — o(x)

probability of ||x(t)|| exceeding any given bound M,

classK functions: can be made arbitrarily small by making ||xo|| small

(zero at zero & mon. increasing)

{al(HIH) < V() < as(ll=l) {P (3t : llz(t)]] > M) < 22llzol)

LV (z) < —as(]|z]) P (:L‘(t) — 0) =1 almostsure (a.s.)
asymptotic stability

sample-path
notions

oo

V(x) >0 stochastic stability
(z) > = E [W(m(t))]dt < o0 (mean square when
LV (z) < -W(z) 0 W(z) = ||l|?)

o ¢ exponential stability
= = E [W(Ji(t))} < e "V (xo) + — (mean square when
LV(z) < —pV +c Bow) = Je)?)

expected-value
notions




. . & UCSANTA BARBARA
Example #2: Remote estimation (

W engineering
error dynamics

in remote estimation )\(e)dt d

= [v(e(t))} —E [(LV)(e(t))]

ov N Lo PV
(LV)(e) :—%Aem((,)(v (0) = V(e)) + 5 trac (B o B)

e— 0

For constant rate: (exp. distributed inter-jump times) using V' (e) = €' Pe

1. E[e] =0 if and only if v > R[\;(A4)], Vi
2. E[llellm] bounded if and only if v > m R[\;(A)], Vi

For radially unbounded rate: A(e) (reactive transmissions) using V (e) = ||e||?

3. E[e] =0 (always)

Moreover, one can achieve the same E[ llell2 ] with
4. E[llell™] bounded Vm

less communication than with a constant rate or
periodic transmissions...

[Xu et al, 2006]

Back to Time-triggered SIS... (\ UCSANTA BARBARA

W engineering

z > () A(z)dt - z = ¢(2)

tipr — tp~ F()

Can we pick an intensity A(*) to obtain the desired distribution for the # ?
YES
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Back to Time-triggered SIS... W engineering

This representation allows one to
combine in the same SHS
time- and event-triggered transitions!

b1 — T~ F()

Can we pick an intensity A(*) to obtain the desired distribution for the # ?
YES

time since last reset

F'(7) . )=t t
e LT Nt '/ //

the aggregate state (x ,T) is a Markov process

(’a\\ UC SANTA BARBARA
W engineering

Converse Lyapunov Stability

tk+l - tk ~ F()
Theorem:

System is mean-square exponentially stable, i.e., tlim E[||z(t )H ] P faSt
—00

. Lyapunov-like function
3P(r) such that defining V' (z,7) = 2'P(7)x  quadratic on z for fixed ©

al <P(1)<eld =V is positive definite
(LV)(z,7) < —€V(x,7T) = % E[V(z,7)] < —€E[V(x,7)]

(motivates choices for Lyapunov function for nonlinear systems)
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Three Key Ideas

@ engineering

Q
Q

@ (Stochastic) Control Tools for NCS Protocol-Design
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¥ engineering

Most common (general purpose) protocols:

high drop rates can lead to
poor performance and

UDP eventually instability

* no attempt at error correction

TCP
* error correction
° all packets sent should be acknowledged by receiver
¢ lack of acknowledgement of packet n leads to retransmission of same packet
after packet n + 3 (triple duplicate ack mechanism)

delayed retransmissions are
essentially useless;
too much overhead in ack
every packet
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¥ engineering

white noi
dead-beat controller disc.-time process distuerb;nzz
U= —azx zt=ar+u+d
shared
network

drops packets (iid)
with probability p

The closed-loop is mean-square stable (i.e., E[ x(k)? ] <oco) if and only if

< —_—
P=Tap

Intuition: ignoring the disturbance d

0 with probability 1 — p

Elz(k +1)%] = pla|” E[z(k)’
la|?x(k)?  with probability p ( V1 =plalEle(k)’]

x(k+1)* = {

= - ) UCSANTA BARBARA
lllustrative 1-D problem (D engineering
dead-beat controller disc.-time process (\;\?Qtlbibn;r:iz
U= —azx zt=ar+u+d
z(k)
shared
network

drops packets (iid)
with probability p

The closed-loop is mean-square stable (i.e., E[ x(k)? ] <oco) if and only if

< —_—
P=Tap

But what if |a|>1 and the probability of drop is larger than this bound?




Redundant transmissions ) P

dead-beat controller disc.-time process (\;\?rs]tlherbn;r:iz
U= —ax x+:ax+u+d
(k)
shared
network

drops packets (iid)
with probability p

redundant transmissions = at each time step one sends N copies of z(k) through
independent channels (time, frequency, or spatial

diversity), each with drop probability p

The closed-loop is mean-square stable (i.e., E[ z(k)? ] <oo) if and only if

N 1 1
p< T3 = p<—F
lal a| W any drop probability can be
accommodated by choosing N
but transmission rate is N times larger sufficiently large

A simple “error-correction” protocol (§ SaimaarinG

dead-beat controller disc.-time process (\;\?rs]tlherbn:r:iz
U= —ax x+:ax+u+d
(k)
shared
. network this result assumes no
drops packets (iid) drops in nacks

with probability p

1.when a packet is lost, receiver sends a “negative acknowledgement” (nack)
2.transmitter generally sends one packet at each sampling time, however...
3.upon reception of nack, transmitter sends two copies of the following packet

The closed-loop is mean-square stable (i.e., E[ z(k)? ] <oo) if and only if

1 similar bound as if
p< m always sending two packets

but average transmission rate is only /+O(p) times larger
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W engineering

dead-beat controller disc.-time process (\;\?Qtlbibn;r:iz
U= —ax a:+:ax+u+d
z(k)
shared
drops packets (iid) network this result assumes no
with probability p drops in nacks

Pick a function v : N — N, with v(0) = 1

1.when a packet is lost, receiver sends a “negative acknowledgement” (nack)
2.transmitter keeps track of number /(k) of consecutive drops prior to time &

* transmitter sends v(/(k)) copies of each packet

For every p, a, and NN, one can find a function v : N — N such that

« closed-loop is mean-square stable (i.e., E[ x(k)? ] < oo) stabilizes any system

* average transmission rate is only /+O(pV) times larger arbitrarily small increase in

» requires at least N independent channels the transmission rate
all but one channel are rarely utilized

%) UCSANTA BARBARA
Even better... @ cngineering
- - white noise
dead-beat controller disc.-time process disturbance
| — =L 1 —
* can stabilize any system for any drop probability
» with arbitrarily small increase in the transmission rate
no (completely) free lunch... E[ z(k)? ] will be large
ult assumes no
E[ 2(k)? ] ps in nacks
Pick a fi |
1.when § achievable hack)
2.receiv k
* transm
For ever 1 E[ v(k) ]
. closed (transmission rate) ~ fny system
¢ average transmission rate 18 only /+0O(p¥) times larger arbitrarily small increase in
* requires at least NV independent channels the transmission rate

all but one channel are rarely utilized




Optimal “error-correction” protocols @§ Jcsam s

v engmeerlng

white noise
cert. equiv. controller n-dim. process _ disturbance
u= K= | lat = Az + Bu+d
shared o (k)
~ network (generalizable to
drops packets (iid) output-feedback)

with probability p
choose v(k) = number of copies of z(k) to send at time instant k

to minimize
N—

[asy

1
fim (B[ 2 lath) —a®IF] ) +3( 58| 3 o0
Jim (5 Znac) s07] ) A (5 B[ 2 o)
\ » k=0
~ I
state estimation error transmission rate
(performance) (communication)

average-cost optimal control of a Markov process on R»

Optimal “error-correction” protocols @§ Jcsam s

v engmeerlng

white noise
cert. equiv. controller n-dim. process _ disturbance
u= K= | lat = Az + Bu+d
shared o (k)
~ network (generalizable to
drops packets (iid) output-feedback)

with probability p

Jim (5 [an ) - 2(0P] ) + (%E[N_:vw)})

k=

Theorem:
 optimal v(k) is generated by a memoryless policy of the form
transmitter must construct a state
v(k) =7" (m(k:) — i(k:)) estimate to determine optimal v(k)
« optimal policy m* can be computed using dynamic programming
and value-iteration
computationally difficult for large n
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W engineering

' _ v _ t=2z4+u+w
6.5} send just one packet every time 1 w ~ N(0,3)

p=.15

optimal protocol using

| at most 3 independent channels
5l (different choices of A)
0
E‘ 45
4,
3.5¢

1 1 1 A<
1 15 2 25

average communlcat|on rate

Optimal “simplified” protocols  (§ ucsamarm

W engineering

white noise
cert. equiv. controller n-dim. process _ disturbance
u= K= | lat = Az + Bu+d
shared o (k)
~ network (generalizable to
drops packets (iid) output-feedback)

with probability p
choose v(k) = number of copies of z(k) to send at time instant k

to minimize

JANER STt NEYERS) STy

)_l

k=0 k=0
— _/
I Y
state estimation error transmission rate
(performance) (communication)

but transmitter must choose v(k) based only on # of consecutive drops (from nacks)




Optimal “simplified” protocols  (§ ucsamarm

W engineering

white noise
cert. equiv. controller n-dim. process _ disturbance
u= K= | lat = Az + Bu+d
shared o (k)
~ network (generalizable to
drops packets (iid) output-feedback)

with probability p

N-1

o (ko 0] (35 )

* optimal v(k) is generated by a memoryless policy of the form

ok transmitter only needs to keep track of
v(k) =7 ( (k)> ((k) = # of consecutive drops (from nacks)
« optimal policy m* can be computed using dynamic programming

and value-iteration computationally much easier
(optimization on countable-state
MDP with size independent of n)

Exam P le (\ UC SANTA BARBARA

W engineering

' _ _ t=2rtutw
6.5} send just one packet every time : w ~ N(0,3)
p=.15
simplified protocol using

5.5} at most 3 independent channels
(different choices of A)

7 15 - 25 :
average communlcat|on rate

optimal protocol using
at most 3 independent channels
(different choices of A)
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Example (

W engineering

| _ _ et =2z +u+w
6.5} send just one packet every time 1 w ~ N(0,3)

p=.15

simplified protocol using
5.5} at most 3 independent channels 1
(different choices of A)

stochastic protocol using
| at most 3 independent channels
(different choices of A)

K 15 : 25 :

average communication rate
optimal protocol using

at most 3 independent channels

(different choices of A\)
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Three Key Ideas (,;) engineering

@ Importance of Stochastic Modeling versus Worst Case in NCSs
@ Analysis & Design Results Available for Stochastic NCSs

@ Time-driven SHSs

¢ Lyapunov-based methods

@ (Stochastic) Control Tools for NCS Protocol-Design
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