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Executive summary

Report describing the developed design methods for net-aware centralized (MPC) controllers and
estimators, with the integrated distributed MPC and estimation algorithms of WP3 and the result of
the benchmark example. Robustness with respect to network unreliability in the form of uncertain
communication channels and aspects of reduction of the usage of network resources (e.g. battery
energy) will be taken into account.
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1 Introduction

This report describes the achievements of WP4 in the area of network-aware controller design. Fol-
lowing this short introduction, the report has 4 main topics:

• Network-Aware State-Feedback Control
• Network-Aware Estimation
• Network-Aware Observer-Based Control
• Benchmark Results.

We will shortly introduce the main contributions in each of these individual parts below.

Network-Aware State-Feedback Control

Section 2.1 presents a discrete-time model for networked control systems (NCSs) that incorporates
the network-induced phenomena: time-varying sampling intervals, packet dropouts and time-varying
delays that may be both smaller and larger than the sampling interval. Based on this model, construc-
tive LMI conditions for controller synthesis are derived, such that stabilizing state-feedback controllers
can be designed. Besides the proposed controller synthesis conditions a comparison is made be-
tween the use of Parameter-Dependent Lyapunov functions and Lyapunov-Krasovskii functions for
stability analysis. It is concluded that the newly developed approach based on Parameter-Dependent
Lyapunov functions is always less conservative than the existing approaches based on classical
Lyapunov-Krasovskii functions.

Section 2.2 presents an approach for synthesizing a set of decentralized regulators for discrete-time
linear systems subject to input and state constraints. Measurements and command signals are ex-
changed among a distributed set of sensors and actuators on a network where some links are subject
to packet dropout. The resulting closed-loop system is guaranteed to asymptotically reach the origin,
even if every local actuator can exploit only a (possibly time-varying) subset of state measurements.
A model of packet dropout based on a finite-state Markov chain is optionally introduced to exploit
available knowledge about the stochastic nature of the network. In this framework, an approach to
the synthesis of decentralized switching linear controllers is presented to guarantee mean-square sta-
bility of the overall controlled process under packet dropout and soft input and state constraints. The
proposed control techniques are compared with standard centralized linear controllers and simulation
results are reported.

Section 2.3 addresses the fact that new control design methodologies are needed to address the
energy-constrained nature of Wireless Sensor Networks (WSNs); in particular the discharge of bat-
teries of sensor nodes, which is mainly due to radio communications, must be taken into account.
In this work a novel transmission strategy for communication between controller and sensors is pre-
sented which is intended to minimize the data exchange over the wireless channel. Moreover, an
energy-aware control technique is presented for constrained linear systems based on explicit Model
Predictive Control (MPC), providing closed-loop stability in the presence of disturbances. The pre-
sented control schemes are tested and compared to traditional MPC techniques. The results show
the effectiveness of the proposed energy-aware approach, which achieves a profitable trade-off be-
tween energy savings and closed-loop performance.

Section 2.4 presents a decentralized model predictive control (DMPC) design approach for set-point
tracking under input constraints and possible loss of information packets for large-scale processes
whose dynamics can be represented as the interaction of several dynamically-coupled linear subsys-
tems. Following earlier results in [100, 101], the global model of the process is approximated as the
decomposition of several (possibly overlapping) smaller models used for local predictions. Sufficient
criteria are presented for asymptotic tracking of output set-points and rejection of constant measured
disturbances when the overall process is in closed loop with the set of decentralized MPC controllers,
under possible intermittent lack of communication of measurement data between controllers.

Section 2.5 presents a stochastic model predictive control (SMPC) approach for networked control
systems (NCSs) that are subject to time-varying sampling intervals and time-varying transmission
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delays. These network-induced uncertain parameters are assumed to be described by random pro-
cesses, having a bounded support and an arbitrary continuous probability density function. Assuming
that the controlled plant can be modeled as a linear system,a SMPC formulation is presented which is
based on scenario enumeration and quadratic programming that optimizes a stochastic performance
index and provides closed-loop stability in the mean-square sense. Simulation results are shown to
demonstrate the performance of the proposed approach.

Network-Aware Estimation

Section 3.1 presents novel approaches to state estimation under communication delay. State es-
timates can be used for control, optimization, process monitoring, fault detection, or whenever states
of the process are not accessible for direct measurement. The estimator uses the process output
observations as well as process model to infer the internal process states. Measured process data
are subject to noise corruption and process model is subject to uncertainty affecting the quality of
the state estimate. The state estimation techniques will support other tasks, such as distributed MPC
control, control over networks and real-time optimization as they often require information on the
internal process state. A particular attention will be paid to reducing computational complexity by
using gains pre-computed off-line and exploiting the particular problem structure. A reduced com-
plexity representation for the optimal Kalman filter has been developed. Furthermore, a suboptimal
approach was obtained which results in a particularly simple implementation that can be used in fast
control loops in the basic control layer for estimating process controlled values purged from measure-
ment noise and communication delays. Clearly, the obtained results contributes to integrating WSN
into Distributed Control Systems (DCSs) without compromising stability.

Section 3.2 considers a similar setting as in the previous section – state estimation for a linear, time-
invariant model disturbed by Gaussian noise, where measurements arrive with variable delay and
possibly out-of-order. It is further assumed that all measurements arrive within a maximum delay. It
was proven in our previous work in [53], under these conditions, that the Kalman filter converges to
a parameter-varying system, where the Kalman gain depends only on the set of missing samples.
However, it is shown that the number of gains that the control law requires grows exponentially with
the maximum delay which may result in storage problems when considering large delays. It is pos-
sible to use the technique proposed in the previous section to re-calculate the gains at each step,
however this results in an increased computational load. The proposed way to keep the filter very
simple is to resort to a sub-optimal filter. It is based on the technique of replacing a sample that
has not arrived in the due time by a ‘fake’ measurement and upon receiving the correct sample later,
canceling the effect of the wrong data and fusing the new information correctly. This results in restor-
ing optimality. A similar approach was proposed in [56] for time-varying systems with full non-steady
Kalman filter. Here, a solution is presented for time-invariant systems using a switched linear filter
with a moderate number of pre-computed gains.

Network-Aware Observer-Based Control

Section 4.1 provides an approach to analyze and design decentralized observer-based controllers
for large-scale linear plants subject to network communication constraints and varying sampling in-
tervals. Due to communication constraints, it is impossible to transmit all input and output data
simultaneously over the communication network that connects sensors, actuators and controllers. A
protocol orchestrates what data is sent over the network at each transmission instant. To handle
these communication constraints, it is fruitful to adopt a switched observer structure that switches
based on the transmitted information. By taking a discrete-time switched linear system perspective,
a general model is derived that captures all these aspects and provides insight into how they influ-
ence each other. Focusing on the class of so-called ‘periodic protocols’ (of which the well-known
Round Robin protocol is a special case), a method to assess robust stability using a polytopic over-
approximation and LMI-based stability conditions is presented. Although the design problem is in
general non-convex, a procedure to find stabilizing control laws by simplifying the control problem is
presented. The design of the controller exploits the periodicity of protocols and ignores the global
coupling between subsystems of the plant and variation of the sampling intervals. To assess the ro-
bust stability of the resulting closed-loop system including the ignored effects, an a posteriori analysis
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is conducted based on the derived LMIs.

Section 4.2 addresses recent progress in the field of event-based estimation. The main purpose of
event-based control, if compared to periodic control, is to minimize data transfer or processing power
in networked control systems. Currently existing methods have an (implicit) dependency between
triggering the events and the control algorithm. To decouple these two, an event-based state esti-
mator is introduced in between the sensor and the controller. The event-based estimator is used to
obtain a state estimate with a bounded covariance matrix in the estimation error at every synchronous
time instant, under the assumption that the set in the measurement-space that is used for event gen-
eration is bounded. The estimation error is then translated into explicit polytopic bounds that are fed
into a robust MPC algorithm. The resulting MPC closed-loop system is proven to be input-to-state
stable (ISS) to the estimation error. Moreover, whenever the network requirements are satisfied, the
controller could explicitly request for an additional measurement in case there is a desire for a better
disturbance rejection.

Benchmark Results

In this section the proposed decentralized model predictive control (DMPC) approach, as presented
in Section 2.4, is tested on the passenger railcar benchmark example. The test investigates the con-
vergence properties when dropouts are present and compares the DMPC solution to the centralized
solution. To simulate packet loss in the network, it is assumed that the probability of losing a packet
depends on the state of the Markov chain. Different simulation outcomes are investigated depending
on four ingredients: i) type of controller (centralized/decentralized), ii) packet-loss probability, iii)
change in reference values, iv) changes of external temperature (acting as a measured disturbance).

6



2 Network-Aware State-Feedback Control

2.1 Linear State Feedback
M.G.B. Cloosterman, L. Hetel, N. van de Wouw, W.M.P.H. Heemels, J. Daafouz, H. Nijmeijer

2.1.1 Introduction

The literature on modeling, analysis and controller design of networked control systems (NCSs) ex-
panded rapidly over the last decade [6, 65, 159]. The use of networks offers many advantages such
as low installation and maintenance costs, reduced system wiring (in the case of wireless networks)
and increased flexibility of the system. However, from a control theory point of view, the presence of
the network also introduces several disadvantages such as time-varying networked-induced delays,
aperiodic sampling or packet dropouts. To understand the impact of these network effects on control
performance several models have been developed. Roughly speaking, these NCS models can be
categorized in continuous-time and discrete-time models. A further discrimination can be given on
the basis of which network phenomena they include.

In the continuous-time domain, Fridman et al. [20] applied a descriptor system approach to model the
sampled-data dynamics of systems with varying sampling intervals in terms of (infinite-dimensional)
delay-differential equations (DDEs) and study their stability based on the Lyapunov-Krasovskii func-
tional method. In [23,82,83], this approach is used for the stability analysis of NCSs with time-varying
delays and constant sampling intervals, using (linear) matrix inequality-based techniques. The recent
results in [23] also involve H∞ controller designs based on linear matrix inequalities (LMIs). How-
ever, Mirkin [43] showed that the use of such an approach for digital control systems neglects the
piecewise constant nature of the control signal due to the zero-order-hold mechanism and that it
introduces conservatism when exploiting such modeling for stability analysis. More specifically, the
conservatism is introduced by the fact that the zero-order hold and delay jointly introduce a particular
linearly increasing time-varying delay within each control update interval (sometimes indicated by the
sawtooth behavior of the delay), whereas in the modelling approach mentioned above it is replaced
by an arbitrary bounded time-varying delay. Moreover, in [43] one indicated that less conservative
stability conditions are obtained using a robust parametric modeling of the delay operator as pro-
posed in [33]. An alternative approach, proposed in [47, 48], is based on impulsive delay differential
equations and does take into account the piecewise constant nature of the control signal due to the
zero-order-hold mechanism and has also been shown by [43] to be less conservative than the de-
scriptor approach. As also noted in [48], the usage of infinite-dimensional DDE models and Lyapunov
functionals to analyse the stability of essentially finite-dimensional sampled-data NCS does not seem
to offer any advantage. The approach in [47] is able to deal simultaneously with time-varying delays
and time-varying sampling intervals but does not explicitly include packet dropouts in the model (al-
though they might be considered as variations in the sampling intervals or delays). Moreover, the
stability analysis leads to bilinear matrix inequalities (BMIs), which are generally difficult to solve. As
a consequence, for the moment no effective control synthesis results exist within this framework.

The majority of NCS models are discrete-time formulations based on the exact discretization of the
continuous-time linear plant over a sample interval (see [12, 19, 22, 24, 40, 52, 57, 67, 76, 159] and
the references therein). Such models avoid the problem of an infinite dimensional state that is en-
countered in the continuous-time (DDE) models due to delays. Moreover, in these discrete-time
models the piecewise constant nature of the control signal due to the zero-order-hold is taking into
account exactly. Additionally, it has been shown in [67], that for systems with aperiodic sampling and
time-varying delay less than the sampling interval the use of discrete-time models for stability anal-
ysis gives less conservative characterization of stability than the use of (impulsive) delay differential
equations. On the other hand [67,68] shows that the modeling in terms of impulsive difference equa-
tions is favorable for ISS gain analysis for perturbed NCS. Under simplified assumptions, such that
the delay is a multiple of the sampling interval or it takes values in a finite set, the obtained models
lead to switched linear systems and corresponding stability conditions can be applied [40,51,78,84].
However, these models are not so realistic as in practice one typically encounters an infinite number
of possible values for the delay. Moreover, more realistic models should take into account that the
sampling periods might be aperiodic.
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For systems with time-varying sampling intervals, [19, 22, 57, 67] address the stability analysis and
control design using a discrete-time model. In [19], discrete difference inclusions are obtained for
the different values of the sampling interval and sufficient algebraic conditions for existence of quad-
ratic Lyapunov function are derived based on the construction of a solvable Lie algebra. A different
approach is given in [22, 57], where the authors used the gridding of the set of possible sampling
intervals to derive LMI-based stability conditions.

Several discrete-time approaches have been proposed for dealing with network-induced delays. In
this context, using the exact discretization over a sampling period, the obtained model is generally a
difference equation with time-varying delays in the input and unknown time-varying system matrices.
When the variation of the delay is smaller than the sampling period, the analysis/control design
problems can be addressed by using a lifted state vector and robust control methods for parametric
uncertainties [12, 24, 28] or by applying the Lyapunov-Krasovskii function (LKF) approach [54, 77,
80, 81] (for the LKF approach in discrete-time, see [21]). In this context, the main problems are the
conservatism inherent to the use of upper boundings in the increment of the LKF and the reduced
applicability of the results since they are able to deal only with delay variations smaller than the
sampling interval. Generalizing such models to the case of large delay variations, packet dropouts
and time-varying sampling intervals is not a trivial task.

In the literature, two ways of modelling network-induced uncertainties (such as time-varying delays
and sampling intervals and packet dropouts) can be distinguished. Firstly, in [22, 24, 40, 47, 49, 159]
and many other works, bounds are imposed on the delays, sampling intervals and the maximum
number of subsequent dropouts. Secondly, in e.g. [26,46,58,61], a stochastic modelling approach is
adopted. In this paper, we will adopt the first approach. Given bounds on delays, sampling intervals
and subsequent dropouts, we will formulate stability conditions and constructive controller synthesis
results independent of the probability distribution of the uncertain variables. So, such robust results
also apply in the stochastic setting and can be seen as ‘probability distribution-free’ results for the
stochastic case if the domain of the probability distribution function is bounded.

In the current paper, we propose a discrete-time NCS model that can deal simultaneously with packet
dropouts and time-varying delays smaller and larger than a possibly time-varying sampling inter-
val. This model is obtained using the exact discretization over a sampling interval and it takes into
account also the complicated case in which the delay variations may be larger than the sampling
interval. Moreover, the possibility of packet dropouts is modeled explicitly. Based on this model,
controller synthesis conditions in terms of LMIs will be derived, using both a common quadratic and
a parameter-dependent Lyapunov approach. Note that recently, in [29], a simplified event-based
discrete-time model has been proposed for taking into account the different implementation problems
in digital control systems. This model is obtained using the systems representation at both sam-
pling and actuation times. The advantage of the model presented in this paper in comparison to this
event-based model is that it generally leads to a discrete-time representation of a smaller dimension.
Moreover, it generalizes several of the models that exist in the literature to the case in which all the
network effects appear simultaneously. This enables the theoretical comparison with the existing ap-
proaches. A discussion on the stability characterization based on LKFs and on parameter-dependent
Lyapunov functions (PDLF) will be given. This discussion is inspired by the results in [30] in which a
comparison between LKFs and Lyapunov functions for switched system is presented in the case of
difference equations with time-varying delays in the state. The approach in [30] can deal only with
delays that are a multiple of the sampling time, and therefore it does not apply to continuous-time sys-
tems as the NCS studied here. We show that the stability analysis based on the most general LFK
of a quadratic type is always more conservative than the novel stability characterization presented
here. This result applies to the context of NCS in which we are faced with an interaction between
continuous-time systems and discrete-time controllers under different perturbing networked effects.
In particular, we will show that the existence of general LKFs as used in the literature, implies also the
existence of a Lyapunov function in our framework. It is important to note that all existing LKFs are
a particular case of the one proposed in this paper and our approach allows much more freedom in
the Lyapunov function than the typical LKFs adopted in the literature [54,77,80,81], which have rep-
etitions of terms. Stated differently, the Lyapunov function that we consider corresponds to a general
LKF for which LMI-based stability conditions never appeared in the literature before. In addition, it can
formally be proven that our approach is never more conservative than the LKF approach. Next to the
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stability characterization, we will also present LMI-based synthesis techniques for feedback based on
the state vector and on an augmented state vector that includes old inputs next to the system state.

In summary, the main contributions of the paper are as follows. Firstly, a model for NCSs includ-
ing three network-induced uncertainties (large delays, time-varying sampling intervals and packet
dropouts) is developed. Moreover, we present a procedure for the over-approximation of this model
to arrive at a polytopic model suitable for stability analysis and controller synthesis. Secondly, we
present a stability characterisation for NCSs using (parameter-dependent) quadratic Lyapunov func-
tions, which generalises stability characterisations using Lyapunov-Krasovskii functionals existing in
the literature. Thirdly, next to LMI-based stability conditions, we provide a solution to the (structured)
state feedback synthesis problem in terms of linear matrix inequalities for NCS models including all
the above network-induced uncertainties.

This paper is structured as follows: In Section II we present our NCS model. Section III is dedicated
to the theoretical comparison of stability characterizations. Section IV presents LMI control design
methods that are illustrated by numerical examples in Section IV. Section V closes with concluding
remarks.

2.1.2 NCS modeling

In this section, the discrete-time description of a NCS including delays larger than the uncertain, and
time-varying sampling interval and packet dropouts is presented. The NCS is depicted schematically
in Figure 1. It consists of a linear continuous-time plant

ẋ(t) = Ax(t) +Bu(t),

withA ∈ Rn×n andB ∈ Rn×m, and a discrete-time static time-invariant controller which are connected
over a communication network that induces network delays (τ sc and τ ca). The state measurements
(y(t) = x(t)) are sampled resulting in the sampling time instants sk:

sk =
k−1∑
i=0

hi ∀k ≥ 1, s0 = 0, (1)

which are non-equidistantly spaced in time due to the time-varying sampling intervals hk > 0. The
sequence of sampling instants s0, s1, s2, . . . is strictly increasing in the sense that sk+1 > sk, for all
k ∈ N. We denote by yk := y(sk) the kth sampled value of y and by uk the control value corresponding
to yk = xk. Packet drops may occur (see Figure 1) and is modeled by the parameter mk. This
parameter denotes whether or not a packet is dropped:

mk =

{
0, if yk and uk are received
1, if yk and/or uk is lost.

(2)

In (2), we make no distinction between packet dropouts that occur in the sensor-to-controller connec-
tion and the controller-to-actuator connection in the network. This can be justified by realizing that,
for static controllers, the effect of the packet dropouts on the control updates implemented on the
plant is the same in both cases. Indeed, for packet dropouts between the sensor and the controller
no new control update is computed and thus no new control input is sent to the actuator. In the case
of packet dropouts between the controller and the actuator no new control update is received by the

hk
sensor

controller

plantZOH

τscτ ca

uk u∗(t) yk

rk
mk = 1

mk = 0

Figure 1: Schematic overview of the NCS with variable sampling intervals, network delays and packet
dropouts
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actuator either. Finally, the zero-order-hold (ZOH) function (in Figure 1) is applied to transform the
discrete-time control input uk to a continuous-time control input u∗(t) being the actual actuation signal
of the plant.

In the model, both the varying computation time (τ ck), needed to evaluate the controller, and the
network-induced delays, i.e. the sensor-to-controller delay (τ sck ) and the controller-to-actuator delay
(τ cak ), are taken into account. We assume that the sensor acts in a time-driven fashion (i.e. sampling
occurs at the times sk defined in (1)) and that both the controller and the actuator act in an event-
driven fashion (i.e. responding instantaneously to newly arrived data). Furthermore, we consider
that not all the data is used due to packet dropouts and message rejection, i.e. the effect that more
recent control data is available before the older data is implemented and therefore the older data
is neglected. Under these assumptions, all three delays can be captured by a single delay τk :=
τ sck +τ ck +τ cak , see also [52], [159]. To include these effects in the continuous-time model, let us define
the parameter k∗(t) that denotes the index of the most recent control input that is available at time t
as k∗(t) := max{k ∈ N|sk + τk ≤ t ∧ mk = 0}. The continuous-time model of the plant of the NCS is
then given by:

ẋ(t) = Ax(t) +Bu∗(t)
u∗(t) = uk∗(t),

(3)

with A ∈ Rn×n and B ∈ Rn×m. Here, we assume that the most recent control input remains active in
the plant if a packet is dropped.

We assume that the variation in the delays is bounded by τmin and τmax, the variation in the sampling
interval is bounded by hmin and hmax and that the number of subsequent packet dropouts is upper
bounded by δ. The latter means that

k∑
v=k−δ

mv ≤ δ. (4)

as this guarantees that from the control inputs uk−δ, uk−δ+1, . . . , uk at least one is implemented. In
summary, the class S of admissible sequences {(sk, τk,mk)}k∈N can be described as follows:

S :=

{
{(sk, τk,mk)}k∈N| hmin ≤ sk+1 − sk ≤ hmax,

s0 = 0, τmin ≤ τk ≤ τmax,
k∑

v=k−δ

mv ≤ δ,∀k ∈ N
}
,

(5)

which includes variable sampling intervals, large delays, and packet dropouts.

Remark 1. In the modelling of the network-induced uncertainties, we impose bounds on the delays,
sampling intervals and the maximum number of subsequent dropouts as was also done in [22, 24,
40,47,49,159] and many other works. Given such bounds, we will formulate stability conditions and
constructive controller synthesis results independent of the probability distribution of the uncertain
variables. So, such robust results also apply in the stochastic setting and can be seen as probability
distribution-free results of the stochastic case if the domain of the probability distribution function is
bounded.

Next, the general description of the continuous-time control input u∗(t) in (3) is reformulated to in-
dicate explicitly which control inputs uk are active in the sampling interval [sk, sk+1). Such a refor-
mulation is needed to derive the discrete-time NCS model, which will ultimately be employed in the
controller synthesis methods.

Lemma 1. Consider the continuous-time NCS as defined in (3) and the admissible sequences of
sampling instants, delays, and packet dropouts as defined in (5). Define d := b τmin

hmax
c, the largest

integer smaller than or equal to τmin
hmax

and d := d τmax
hmin
e, the smallest integer larger than or equal to

τmax
hmin

. Then, the control action u∗(t) in the sampling interval [sk, sk+1) is described by

u∗(t) = uk+j−d−δ for t ∈ [sk + tkj , sk + tkj+1), (6)
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sk sk + tk1 sk + tk2 sk + tk3 sk + tk
d+δ−d

sk+1

uk−d−δ

uk−d−δ+1

uk−d−δ+2

uk−d

j = 0 j = 1 j = 2 j = d+ δ − d

= =

sk + tk0
sk + tk

d+δ−d+1

Figure 2: Graphical interpretation of tkj .

where the actuation instants tkj ∈ [0, hk] are defined as:

tkj =

min
{

max{0, τk+j−d−δ −
k−1∑

l=k+j−δ−d

hl}+mk+j−d−δhmax,

max{0, τk+j−d−δ+1 −
k−1∑

l=k+j+1−δ−d

hl}+mk+j−d−δ+1hmax,

. . . ,max{0, τk−d −
∑k−1

l=k−d hl}+mk−dhmax, hk

}
,

(7)

with tkj ≤ tkj+1 and j ∈ {0, 1, . . . , d + δ − d} (see Figure 2). Moreover, 0 = tk0 ≤ tk1 ≤ . . . ≤ tk
d+δ−d ≤

tk
d+δ−d+1

:= hk.

Proof. The proof is given in Appendix 2.1.7.

Based on Lemma 1 and σ = {(sk, τk,mk)}k∈N ∈ S, the discrete-time NCS model can be defined as:

xk+1 = eAhkxk +

d+δ−d∑
j=0

∫ hk−tkj

hk−tkj+1

eAsdsBuk+j−d−δ, (8)

with tkj as defined in Lemma 1. The minimum and maximum values of the tkj parameters are described
in Lemma 2.

Lemma 2. Consider the time instants tkj as defined in (7), where sk+j−d−δ (with hk+j−d−δ = sk+j−d−δ+1−
sk+j−d−δ), τk+j−d−δ, and mk+j−d−δ are taken from the class S defined in (5). The minimum value of
tkj , j ∈ {0, 1, . . . , d+ δ − d}, is given by

tj,min =

{
min{τmin − dhmax, hmin} if j = d+ δ − d
0 if 1 ≤ j < d+ δ − d, (9)

and the maximum value of tkj , j ∈ {1, 2, . . . , d+ δ − d}, is given by

tj,max =


min{τmax − (d− j)hmin, hmax}

if 1 ≤ j ≤ d− d
hmax if d− d+ 1 ≤ j ≤ d+ δ − d.

(10)

Additionally, tk0 := 0 and tk
d+δ−d+1

:= hk, which gives for the minimum and maximum bound td+δ−d+1 ∈
[hmin, hmax].

Proof. The proof can be derived based on Lemma 1 if the bounds on the delay, sampling interval
and number of subsequent packet dropouts are taken into account. The interested reader is referred
to [13] for the detailed proof.
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Let θk denote the vector of uncertain parameters consisting of the sampling interval and the actuation
instants:

θk := (hk, t
k
1, . . . , t

k
d+δ−d). (11)

The description of θk does not include tk
d+δ−d+1

, as hk = tk
d+δ−d+1

, which is already included in θk.

Moreover, tk0 is not considered either, since it represents a constant term, tk0 = 0. Using the fact that
hk ∈ [hmin, hmax] and the bounds tj,min, tj,max on the actuation instants given in (9) and (10), we can
define the set

Θ = {θk ∈ Rd+δ−d+1 |hk ∈ [hmin, hmax],

tkj ∈ [tj,min, tj,max], 1 ≤ j ≤ d+ δ − d, (12)

0 ≤ tk1 ≤ . . . ≤ tkd+δ−d ≤ hk}.

Note that this set does not depend on k. System (8) represents a discrete-time system with multiple
delays in the input. Moreover, the system matrices are time-varying according to the uncertain pa-
rameters θk ∈ Θ. In the following section, we will show how to characterize the stability of this system
based on LMIs and compare this to the Lyapunov-Krasovskii Function (LKF) approach.

2.1.3 Stability characterizations and relations with the LKF theory

In this section we discuss the stability characterization for the NCS (3) with a state feedback of the
form

uk = −Kxk. (13)

We can without loss of generality assume that K has a full row rank. When K does not have a full
row rank, it is always possible to write the controller in the form

uk =

(
uak
ubk

)
=

(
I
G

)
Kaxk =

(
I
G

)
uak,

where Ka has full row rank (possibly after a permutation of the inputs) and we obtain a model similar

to (3) with Ka instead of K and B
(
I
G

)
instead of B that does satisfy the full row rank condition on

the feedback gain.

To render the model (8) with the feedback (13) suitable for analysis, we consider an equivalent delay-
free model, based on a lifted state vector

ξk =
(
xTk uTk−1 . . . uT

k−d−δ

)T
that includes past system inputs.

This leads to the lifted model
ξk+1 = Ã1(θk)ξk, (14)

where

Ã1(θk) =



Λ(θk) M̃d+δ−1(θk) M̃d+δ−2(θk) . . . M̃1(θk) M̃0(θk)

−K 0 0 . . . 0 0
0 I 0 . . . 0 0
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0 0

0 . . . . . . 0 I 0


with Λ(θk) = eAhk − M̃d+δ(θk)K and

M̃j(θk) =


∫ hk−tkj

hk−tkj+1

eAsdsB if 0 ≤ j ≤ d+ δ − d,

0 if d+ δ − d < j ≤ d+ δ.

(15)
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The goal of this section is to prove that characterizing the stability of the closed-loop NCS (8) using
the lifted model (14) and (parameter-dependent) quadratic Lyapunov functions is less (or, in the worst
case, equally) conservative than the methods available in the literature based on discrete-time LKF.

In order to show this, we will use an alternative lifted state space model as an intermediate step in

the proof. This model uses the state vector χk =
(
xTk x

T
k−1 . . . xT

k−d−δ

)T
, i.e.

χk+1 = Ã2(θk)χk, (16)

where

Ã2(θk) =


Λ(θk) −M̃d+δ−1(θk)K −M̃d+δ−2(θk)K . . . −M̃0(θk)K
I 0 0 . . . 0
0 I 0 . . . 0
...

. . .
...

0 . . . 0 I 0

 .

This second lifted model is important since it is easy to show that if there exists a LKF (even the most
general LKF that can be obtained using quadratic terms), then there exists a parameter-dependent
quadratic Lyapunov function for (16) as well. This relation will be described in detail at the end of
the section. First we will show that the existence of a parameter-dependent Lyapunov function for
(16) is equivalent to the existence of a parameter-dependent Lyapunov function for (14). This issue
is relevant since it would formally prove that we can base the stability analysis for the NCS (8) with
state feedback controller (13) on (14) without losing stability properties that could be obtained via
(16). Note that the state dimension of ξk in (14) is smaller than the dimension of χk in (16), which
clearly has modeling and numerical advantages.

Equivalence of stability characterizations for the two lifted models

Let us discuss the equivalence of the lifted models (16) and (14) with respect to stability and Lya-
punov functions in more detail. Clearly, for a given constant parameter θ, the stability of (16) is
equivalent to the stability of (14) and vice versa. Moreover, since for linear time-invariant systems
the existence of a quadratic Lyapunov is a necessary and sufficient stability condition, there exists a
quadratic Lyapunov function for (16) if and only if there exists one for (14) when θ is constant. How-
ever, assuming that there exists a quadratic Lyapunov function for one of the systems, (16) or (14),
there is no constructive method available in the literature for deducing a Lyapunov function for the
other one. We will provide such a constructive method, and moreover, we will even consider a more
complicated problem as (16) and (14) are uncertain systems that vary over time as θk is changing.
In this case, quadratic Lyapunov functions are known to be sufficient only for characterizing stability,
not necessary. The question is now whether, in the time-varying uncertain case, the existence of a
quadratic Lyapunov function for system (16) is equivalent to the existence of a quadratic Lyapunov
function for (14). In Theorem 1, we will answer this question and we will show that there exists a
quadratic-like Lyapunov function for system (14) if and only if there exists one for the alternative rep-
resentation (16). To prove this result for any parameter-dependent quadratic Lyapunov function, the
following lemma will be needed.

Lemma 3. Consider the matrix R ∈ Rq×p and the matrices A(θ) ∈ Rp×p that depend continuously on
θ ∈ Θ, where Θ ⊂ Rl is a compact set. Define the matrices

Ā(θ) =

(
A(θ) 0
R 0

)
∈ R(p+q)×(p+q), (17)

for θ ∈ Θ. The following statements are equivalent:

• There exist symmetric positive definite matrices P (θ) ∈ Rp+q×p+q, θ ∈ Θ such that

Ā(θ1)TP (θ2)Ā(θ1)− P (θ1) < 0, ∀ θ1, θ2 ∈ Θ. (18)

• There exist symmetric positive definite matrices Q(θ) ∈ Rp×p, θ ∈ Θ such that

A(θ1)TQ(θ2)A(θ1)−Q(θ1) < 0, ∀ θ1, θ2 ∈ Θ. (19)
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Moreover, there exists a common solution P (θ) = P > 0, for all θ ∈ Θ to (18) if and only if there exists
a common solution Q(θ) = Q > 0 to (19).

Proof. See the Appendix.

Theorem 1. Consider the NCS (8) with state feedback controller (13) and the two representations
(14) and (16). The following statements are equivalent :

• There exist symmetric positive definite matrices P (θ), θ ∈ Θ such that

ÃT1 (θk)P (θk+1)Ã1(θk)− P (θk) < 0, (20)

for all θk, θk+1 ∈ Θ, thus
V (ξk) = ξTk P (θk)ξk (21)

is a parameter-dependent Lyapunov function for system (14).

• There exist symmetric positive definite matrices Q(θ), θ ∈ Θ such that

ÃT2 (θk)Q(θk+1)Ã2(θk)−Q(θk) < 0, (22)

for all θk, θk+1 ∈ Θ, thus
V (χk) = χTkQ(θk)χk (23)

is a parameter-dependent Lyapunov function for system (16). Moreover, system (14) has a
common quadratic Lyapunov function V (ξk) = ξTk Pξk if and only if system (16) has a common
quadratic Lyapunov function V (χk) = χTkQχk.

Proof. Since the state feedback matrix K has full row rank there exists a matrix S ∈ R(n−m)×n such

that the matrix
(
K
S

)
is invertible. Define the matrices

Ã3(θk) =



Λ(θk) M̃d+δ−1(θk) . . . . . . M̃1(θk) M̃0(θk) 0 0

−K 0 . . . . . . 0 0 0 0

0 I 0 . . . 0 0 0 0
... 0

. . .
...

...
...

...
...

...
. . . 0

...
...

...
0 0 . . . 0 I 0 0 0

S 0 . . . . . . 0 0 0 0

0 0 . . . . . . 0 0 I 0


and

W =



I 0 . . . . . . 0 0

0 −K 0 . . . 0 0
... 0

. . .
...

...
...

...
. . . 0

...
0 0 . . . 0 −K 0

0 0 . . . . . . 0 −K
0 S 0 . . . 0 0
... 0

. . .
...

...
...

...
. . . 0

...
0 0 . . . 0 S 0

0 0 . . . . . . 0 S



∈ R(n+1)·(d+δ)×(n+1)·(d+δ).
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Notice that

Ã3(θk)W = WÃ2(θk) =



Λ(θk) −M̃d+δ−1(θk)K . . . . . . −M̃1(θk)K −M̃0(θk)K

−K 0 . . . . . . 0 0

0 −K 0 . . . 0 0
... 0

. . .
...

...
...

...
. . . 0

...
0 0 . . . 0 −K 0

S 0 . . . . . . 0 0

0 S 0 . . . 0 0
... 0

. . .
...

...
...

...
. . . 0

...
0 0 . . . 0 S 0



.

This implies that Ã3(θk) is similar to Ã2(θk). It is easy to show that (22) holds if and only if there
exists symmetric positive definite matrices P̃ (θk) = W−TQ(θk)W

−1 such that

ÃT3 (θk)P̃ (θk+1)Ã3(θk)− P̃ (θk) < 0.

Furthermore, notice that Ã3(θk) can be expressed as

Ã3(θk) =

 Ã1(θk) 0 0

S | 0 0 0

0 I 0

 .

Then, apply Lemma 3 with

A(θ) :=

(
Ã1(θk) 0

S | 0 0

)
and R :=

(
0 I

)
.

Next apply Lemma 3 again for

A(θ) := Ã1(θk) and R :=
(
S 0

)
in order to complete the proof.

Relations with the Lyapunov-Krasovskii stability characterization

For discrete-time uncertain systems with delay in the input such as (8), several stability results exist
based on Lyapunov-Krasovskii functions (LKFs). Using an adequate partition of the Lyapunov matrix

Q(θk) =


Q0,0(θk) Q0,1(θk) . . . Q0,d+δ(θk)

Q0,1(θk) Q1,1(θk)
. . .

...
...

. . .
. . .

...
Q0,d+δ(θk) . . . . . . Qd+δ,d+δ(θk)

 , (24)

it can be shown that the Lyapunov function (23) is equivalent to the LKF

V (xk, . . . , xk−d−δ) =

d+δ∑
i=0

d+δ∑
j=0

xTk−iQ
i,j(θk)xk−j , (25)

which is the most general LKF that can be obtained using quadratic forms. Any of the quadratic
LKFs found in the literature (see [54, 77, 80, 81] ) are a particular case of (25). As a consequence of
Theorem 1, we know that there exists a Lyapunov function (23) for (16) if and only if there exists one
of the form (21) for (14), i.e. if and only if the equations (20) are satisfied. Consequently, condition
(20) represents a necessary and sufficient condition for the existence of the most general form of
LKFs that can be obtained using quadratic terms as in (25). Hence, using a stability characterization
based on the model (14) is less (or, in the worst case, equally) conservative than the stability analysis
results based on quadratic LKF that are available in the literature [54,77,80,81].

In the next section, we will present a constructive LMI method for controller design using stability
characterizations based on parameter-dependent Lyapunov functions such as in (21).
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2.1.4 Controller synthesis

To render the model (8) suitable for controller synthesis, we rewrite it as:

ξk+1 = Ã(θk)ξk + B̃(θk)uk, (26)

where

Ã(θk) =


eAhk M̃d+δ−1(θk) M̃d+δ−2(θk) . . . M̃0(θk)

0 0 0 . . . 0
0 I 0 . . . 0
...

. . .
...

0 . . . 0 I 0

 , (27)

and
B̃(θk) =

(
M̃T
d+δ

(θk) I 0 . . . 0
)T

. (28)

This model is equivalent to (14) when the input is a state feedback of the form (13).

Let us now design a static state feedback controller of the form (13). The main difficulty to synthesize
a state feedback (13) is that it results in a structured control synthesis problem, i.e. we need to design
a control law of the form

uk = −Kξk (29)

with a specific structure in the feedback gain matrix: K =
(
K 0m×(d+δ)m

)
. A solution to this

structured controller synthesis problem is to apply the approach presented in [15]. Moreover, such
an approach allows for the use of a parameter-dependent Lyapunov function [14] that might result in
less conservative controller synthesis results than the use of a common quadratic Lyapunov function.

Remark 2. From the control synthesis point of view, when dealing with a system such as (26), a
natural alternative would be to design a state feedback controller of the form (29) using the full state
ξk of the underlying model (26). However, from the point of view of the NCS (3), this is equivalent to
using a dynamical controller of the form

uk = −K0xk −K1uk−1 . . .−Kd+δuk−d−δ. (30)

The use of such a dynamic control law requires a reconsideration of the assumption made earlier to
lump all the delays τ sck ,τ ck and τ cak in one parameter τ . Using a dynamic control law as in (30) actually
leads to more restrictive assumptions on the network modeling setup as yk = xk should always arrive
at the controller after the moment that uk−1 is sent to the actuator, i.e. sk+τ sck > sk−1 +τ sck−1 +τ ck−1 as
otherwise special precautions are needed to handle out-of-order arrival of measured outputs resulting
in longer delays. In addition, the adopted modeling setup and controller in (30) require that no packet
dropouts occur between the sensors and the controller. Namely, in the case of a packet dropout
between the sensor and controller, it is possible that yk = xk does not arrive at the controller and thus
uk cannot be computed; furthermore the controller (30) cannot be updated beyond the k-th update.
Therefore, a deadlock in the controller can occur and the worst case scenario would be not sending
control updates at all to the actuator. Although modeling dropouts alternatively as prolongations of
the sampling interval (see, e.g., the comparison in [69]) might alleviate these issues to some extent,
dropouts in the channel between the controller and the actuators introduce similar complications in
this case. We care to stress that a static state feedback as in (13) does not suffer from such problems
and additional assumptions, as explicated in above, are not needed, which greatly enhances its
applicability.

To derive the control synthesis conditions, the model (26) is rewritten using the real Jordan form of
the continuous-time system matrix A. Basically, we express the state matrix A = TJT−1 with J
the real Jordan form, and T an invertible matrix. Next, we compute all the integrals in (15) using
eAs = TeJsT−1 to obtain a model in which the uncertain parameters θk appear explicitly. This leads
to a generic model of the form

ξk+1 =

(
F0 +

ζ∑
i=1

αi(θk)Fi

)
ξk

+

(
G0 +

ζ∑
i=1

αi(θk)Gi

)
uk,

(31)
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with θk defined in (11) and ζ the number of time-varying functions αi(·) given by (d + δ − d + 1)ν,
with ν ≤ n, where n is the dimension of the state vector x. We have ν = n when the geometric
multiplicity of each distinct eigenvalue of A is equal to one and ν < n when the geometric multiplicity
of an eigenvalue is larger than one. A typical function αi(θk) is of the form eλ(hk−tkj ), with λ a real
eigenvalue ofA, and of the form ea(hk−tkj ) cos(b(hk−tkj )) or ea(hk−tkj ) sin(b(hk−tkj )) when λ is a complex
eigenvalue (λ = a+ bj) of A. For more details on the use of the Jordan form, including the case that
ν < n the reader is referred to Appendix B in [13].

Using bounds on the uncertain parameters θk = (hk, t
k
1, . . . , t

k
d+δ−d) described by the set Θ in equation

(12) this gives rise to the set of matrices

FG =

{(
F0 +

ζ∑
i=1

αi(θk)Fi, G0 +

ζ∑
i=1

αi(θk)Gi

)
|θk ∈ Θ

}
(32)

that contains all possible matrix combinations in (26) and (31). Based on this infinite set FG of
matrices we will derive a stabilizing controller of the form (13) for the NCS (3). To overcome the
infinite dimension of the set FG a convex overapproximation of the set is used. Denote the maximum
and minimum value of αi(θk), respectively, by

αi = max
θk∈Θ

αi(θk), αi = min
θk∈Θ

αi(θk), (33)

with Θ defined in (12). Then the set of matrices FG, given in (32), is a subset of co (HFG) with

HFG =

{(
(F0 +

ζ∑
i=1

αiFi), (G0 +

ζ∑
i=1

αiGi)

)
:

αi ∈ {αi, αi}, i = 1, 2, . . . , ζ

}
,

(34)

where ’co’ denotes the convex hull.

We will also write the set of vertices HFG as HFG = {(HF,j , HG,j) | j = 1, 2, . . . , 2ζ}. Using this
finite set of 2ζ vertices, a finite number of LMI controller synthesis conditions are given for the state-
feedback controller (13) in the following theorem.

Theorem 2. Consider the NCS model (3), (6), (7), (13), and its discrete-time representation (26), (13)
for sequences of sampling instants, delays, and packet dropouts σ ∈ S with S as in (5). Consider the
equivalent representation (31) based on the Jordan form of A and the set of vertices HFG defined in
(34).

If there exist symmetric positive definite matrices Yj ∈ R(n+(d+δ)m)×(n+(d+δ)m), a matrix Z ∈ Rm×n,

matrices Xj =

(
X1 0

X2,j X3,j

)
, with X1 ∈ Rn×n, X2,j ∈ R(d+δ)m×n, X3,j ∈ R(d+δ)m×(d+δ)m, j =

1, 2, . . . , 2ζ , and a scalar 0 ≤ γ < 1 that satisfy(
Xj +XT

j − Yj XT
j H

T
F,j −

(
Z 0

)T
HT
G,j

HF,jXj −HG,j

(
Z 0

)
(1− γ)Yl

)
> 0, (35)

for all j, l ∈
{

1, 2, . . . , 2ζ
}

, then the closed-loop NCS (3), (6), (7), (13) with K = Z X
−1
1 is globally

asymptotically stable.

Proof. To prove this theorem, we first note that, due to the convex overapproximation based on the
uncertain parameters αi(·), it holds for all θk ∈ Θ that

(
Ã(θk), B̃(θk)

)
∈ FG ⊂ co(HFG). Hence, for

the stability of (26) and (31) with the state feedback controller (13), it is sufficient to prove stability of
the system

ξk+1 =
2ζ∑
j=1

µkj (HF,j −HG,jK) ξk, (36)
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Figure 3: Feasibility regions for different transient response specifications.

where K =
(
K 0m×(d+δ)m

)
and µk1, µ

k
2, . . . , µ

k
2ζ
≥ 0, satisfy

∑2ζ

j=1 µ
k
j = 1, for all k ∈ N. Assume that

the inequalities (35) hold. Using the fact that KX1 = Z we have that(
Z 0

)
= K

(
X1 0

X2,j X3,j

)
,

and thus we obtain : (
Xj +XT

j − Yj XT
j (HF,j −HG,jK)T

(HF,j −HG,jK)Xj (1− γ)Yl

)
> 0. (37)

Applying Theorem 3 in [14] this inequality implies that the function

V (ξk) = ξTk P (µk1, µ
k
2, . . . , µ

k
2ζ )ξk, (38)

with P (µk1, µ
k
2, . . . , µ

k
2ζ

) =
∑2ζ

j=1 µ
k
jPj and Pj = Y −1

j , is strictly decreasing along the trajectories of
system (36). Consequently system (26), (13) is globally asymptotically stable. Using similar argu-
ments as in [28] it can be shown that the intersample behaviour is stable as well and, consequently,
that the NCS (3), (6), (7), (13) for all σ ∈ S is globally asymptotically stable.

Remark 3. This theorem shows that (38) is a parameter-dependent Lyapunov function for the system
(26) with the controller (13). Using the results from the previous section, this shows that if the
LMIs (35) are satisfied they imply the existence of a LKF of the form (25). Notice that using this
approach we avoid the conservative upper boundings in the difference of the LKF, which are usually
encountered in the literature to arrive at LKF-based stability conditions in LMI form.

The case of a common quadratic Lyapunov function (CQLF) V (ξ) = ξTk Pξk is a particular case of this
theorem by taking Yj = Y, ∀ j = 1, . . . , 2ζ , with P = Y −1.

If one is still interested in using an extended state feedback (29) despite the mentioned disadvan-
tages, then Theorem 2 can be modified by replacing the matrices Xj , ∀i 6= j with a constant matrix
X without a specific structure and using Z instead of

(
Z 0

)
. The extended controller is obtained

then by K = ZX−1.

In this paper we adopted an overapproximation of the NCS model using the Jordan form and leading
to (34). All the theory also applies if the overapproximation is obtained by other techniques (e.g.
[22,28] or any other).

2.1.5 Illustrative examples

Consider a NCS represented by (3), with A =

(
0 1
0 0

)
and B =

(
0
1

)
(double integrator). First, let

us show the applicability of the presented theory for time-varying sampling intervals and delays. We

18



0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26
0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

0.0135

0.014

0.0145

0.015

CQLF
PDLF

h

γ

Figure 4: Comparison between the CQLF and PDLF approaches.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.02

0.04

0.06

0.08

0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.4
−0.2

0
0.2
0.4
0.6
0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.005

0.01

γ
1

γ
2

γ
1

γ
2

Il Loco & the DJ

x
1
(t
)

x
2
(t
)

τ
(k
)

t

h = 0.01, τmin = 0, τmax = 0.01, γ1 = 0.09, γ2 = 0.24

Figure 5: Evolution from an arbitrary initial condition.

consider δ = 0 and we analyze the feasibility of the LMI conditions in Theorem 2 for various values
of τmax, hmax and γ (keeping hmin fixed, i.e. hmin = 0.01s). In order to use the same continuous-
time transient response specifications, the parameter γ used in the LMIs is scaled according to the
different values of hmax, i.e. we use γ = 1 − (1 − γ0)hmax/hmin where γ0 represents the value taken
for hmax = hmin = 0.01s. The delay is considered to be time-varying, and the LMIs are solved for
τmin = 0.1hmin and τmax in the interval [0.1hmin, 0.98hmin] . Note that in this case message rejection
can not occur since τmax < hmin. The tradeoff curves between transient performance (decay rate)
and robustness versus uncertainties (hmax,τmax), i.e. the regions for which Theorem 2 provides
a stabilizing state feedback, are depicted in Figure 3. We can remark that the feasibility of LMIs is
reduced as γ0 increases. This is due to the fact that if the parameter γ0 is increased, a faster transient
response is required. As an example, for the bounds hmin = 0.01s and hmax = 0.014s on the sampling
interval and time-varying delays characterized by τmin = 0.1hmin and τmax = 0.6hmin, the stabilizing
state-feedback controller with gain K =

(
0.622 1.089

)
is obtained using Theorem 2 with γ0 = 0. For

γ0 = 0.17 a faster transient response is obtained with the controller gain K =
(
164.837 22.64

)
.

Next, a comparison between the use of a common quadratic (CQLF) and of a parameter-dependent
Lyapunov function (PDLF) is given in Figure 4 for a constant sampling interval and time-varying delays
characterized by τmin = 0 and τmax = h. The example illustrates the improvement of the transient
response specification (γ) with the PDLF approach. A simulation is given in Figure 5, for two different
values of γ with hmin = hmax = 0.01s and τmax = hmin. The controller gain used in this simulation
has been obtained using parameter-dependent Lyapunov functions.

Finally, we illustrate the situation with time-delays larger than the constant sampling interval h. In this
case τmax = 2.8h and τmin = 0. Note that the same results hold also for the situation with packet
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Figure 6: Time response with delay and packet-dropouts for h = 0.25, τmax = h and δ = 1.

dropouts δ = 1 and τmax = 1.8h or δ = 2 and τmax = 0.8h. This is generally true for our result as
long as d + δ = constant. In this case a stabilizing controller can be found for sampling intervals
up to h = 0.55s (e.g. for h = 0.55s a stabilizing controller is given by K =

(
0.0363 0.2525

)
). A

simulation with both delay and packet-dropouts using the latter controller gain is presented in Figure
6 for h = 0.25, τmax = h and δ = 1.

2.1.6 Conclusions

A discrete-time NCS model, based on an exact discretization of the continuous-time system at
the sampling instants, is presented. This model includes all relevant network phenomena: the
presence of time-varying delays that may be larger than the sampling interval, message rejection,
packet dropouts, and variations in the sampling interval. Next, a stability characterization based on
parameter-dependent Lyapunov functions is proposed. It is shown theoretically that the stability char-
acterization presented here is generally less conservative than the methods available in the literature
based on LKF. Based on the developed model and on the proposed stability characterization, con-
structive state feedback synthesis conditions are derived in terms of linear matrix inequalities (LMIs).
Simulations are presented that show the applicability and effectiveness of the obtained controller
synthesis results.

2.1.7 Appendix A: Proof of Lemma 1

To prove that uk−d−δ is the oldest control input that might be active during the sampling interval
[sk, sk+1), we consider, firstly, the case without packet dropouts, and secondly, the case with packet
dropouts. From the definition of d in Lemma 1, it follows that the control input uk−d is always available
at the plant before or exactly at sk, if uk−d is not dropped. To prove this, we use the relation sk =

sk−d +
∑k−1

l=k−d hl, which provides the upper and lower bounds on sk, given by sk−d + dhmin ≤ sk ≤
sk−d + dhmax. Combining the lower bound on sk and sk−d + τk−d ≤ sk−d + τmax gives: sk−d + τk−d ≤
sk−d + τmax ≤ sk − dhmin + τmax ≤ sk, due to the definition of d = d τmax

hmin
e. Hence, in case that

the control input uk−d is not dropped (i.e. mk−d = 0), it is available before or on sk and no older
control inputs uk+j−d, with j < 0 will be active in the sampling interval [sk, sk+1). To show that uk−d
can be active in the sampling interval [sk, sk+1), we need to show that uk−d+1 can become active
after sk, if no packets are dropped. To do so, note that d − 1 < τmax/hmin ≤ d and thus we have
that sk−d+1 + τmax > sk−d+1 + (d − 1)hmin. As the smallest value of sk = sk−d+1,

∑k−1
l=k−d+1

hl is
equal to sk−d+1 + (d − 1)hmin, and the largest implementation time of uk−d+1 is sk−d+1 + τmax, the
previous inequality shows that uk−d+1 might be available for implementation (strictly) after sk. As
a consequence, in the case without dropouts, uk−d+1 can indeed be active in the sampling interval
[sk, sk+1).
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To prove that in the case of packet dropouts uk−d−δ is the oldest control input that can possibly be ac-
tive in [sk, sk+1), note that, from (4), it follows that at least one of the control inputs uk−d−δ, uk−d−δ+1, . . . , uk−d
is not lost. If uk−d+1 is indeed implemented after sk (which is possible as just shown), then at least
one of the inputs uk−d−δ, uk−d−δ+1, . . . , uk−d will be active in the sampling interval [sk, sk+1). The fact
that the maximum number of subsequent packet dropouts equals δ implies that uk−d−δ is the oldest
control input that might be implemented in the sampling interval [sk, sk+1).

From the definition of d in Lemma 1, it follows that the input uk−d represents the most recent control
input that might be implemented during the sampling interval [sk, sk+1). To prove this, consider the
smallest time at which uk−d might be implemented that is given by sk−d+τmin. Based on the definition
of d, which gives that τmin < (d + 1)hmax, we can conclude that sk−d + τmin < sk−d + (d + 1)hmax.
Combining this with the tight bounds on sk+1, given by:

sk−d + (d+ 1)hmin ≤ sk+1 ≤ sk−d + (d+ 1)hmax

yields that it might hold that sk−d + τmin ≤ sk+1 as sk+1 may attain the value sk−d + (d + 1)hmax.
Consequently, uk−d might be implemented before sk+1.

To show that uk−d is the most recent data that can be active in [sk, sk+1), we prove that more recent
control inputs always arrive after sk+1. Consider j > d + δ − d. Then, we have that sk+j−d−δ + τmin

is the earliest time at which uk+j−d−δ might be implemented. To determine if this moment may occur
before sk+1, consider the upper bound on sk+1, in terms of sk+j−d−δ, given by sk+1 ≤ sk+j−d−δ +

(−j + d+ δ + 1)hmax for j > d+ δ − d. However, for j > d+ δ − d

sk+j−d−δ + τmin ≥ sk+j−d−δ + (−j + d+ δ + 1)hmax ≥ sk+1,

due to the definition of d = b τmin
hmax
c. This proves that uk−d is indeed the most recent control input that

can be active in the sampling interval [sk, sk+1).

So far we proved that uk+j−d−δ, j ∈
{

0, 1, . . . , d+ δ − d
}

are the only control values that can be
implemented in [sk, sk+1). Now, the times tkj with j ∈ {0, 1, . . . , d+ δ−d} will be constructed in such a
manner that [sk + tkj , sk + tkj+1) is the time interval in which the control input uk+j−d−δ is active in the
sampling interval [sk, sk+1). The time tk

d+δ−d (being the starting time of uk−d in the interval [sk, sk+1])
is given by

tk
d+δ−d = min

hk, τk−d − k−1∑
l=k−d

hl +mk−dhmax

 . (39)

Indeed, if mk−d = 0, then sk + τk−d −
∑k−1

l=k−d hl is the time at which uk−d is available at the plant. If
τk−d −

∑k−1
l=k−d hl > hk, then uk−d might be active after sk+1, but not in [sk, sk+1). Since we are only

interested in the interval [sk, sk+1), we take the minimum of this value and hk in (39). Note that, by the
definition of d, τk−d −

∑k−1
l=k−d hl ≥ 0. Finally, if uk−d is dropped, i.e. mk−d = 1, then the expression in

(39) gives hk, which means that the input uk−d is not used in [sk, sk+1).

Next, as uk−d−1 can only be active before uk−d is available, tk
d+δ−d−1

is given by

tk
d+δ−d−1

= min

[
tk
d+δ−d,max

0, τk−d−1 −
k−1∑

l=k−d−1

hl


+mk−d−1hmax

]
.

(40)

Similarly to tk
d+δ−d, if max{0, τk−d−1 −

∑k−1
l=k−d−1 hl} + mk−d−1hmax ∈ [0, tk

d+δ−d), then sk + τk−d−1 −∑k−1
l=k−d−1 hl is the time at which uk−d−1 is available at the plant. In case τk−d−1 −

∑k−1
l=k−d hl < 0,

then uk−d−1 might be active before sk. Since, we are only interested, here, in the interval [sk, sk+1),
we take the maximum of this value and zero in (40). For the other values of tkj , the recursion can be
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derived similarly, which leads to

tkj = min

[
tkj+1,max

0, τk+j−d−δ −
k−1∑

l=k+j−d−δ

hl


+mk+j−d−δhmax

]
,

for 0 ≤ j ≤ d+δ−d, mk+j−d−δ satisfying (4), and with tk
d+δ−d+1

:= hk. The evaluation of this recursive
relation yields the explicit characterization of (7).

2.1.8 Appendix B: Proof of Lemma 3

Suppose that (18) holds for some matrices P T (θ) = P (θ) > 0,∀θ ∈ Θ. Decompose the matrices as
follows:

P (θ) =

(
P1(θ) P2(θ)
P T2 (θ) P3(θ)

)
in accordance with the matrix Ā(θ). By expanding (18) we obtain for all θ1, θ2 ∈ Θ that


AT

(θ1)P1(θ2)A(θ1)− P1(θ1) + R
T
P2(θ2)A(θ1)

+ A
T
(θ1)P2(θ2)R + R

T
P3(θ2)R

 −P2(θ1)

−PT
2 (θ1) −P3(θ1)

 < 0.

This is equivalent (using the Schur complement lemma) to

AT (θ1)P1(θ2)A(θ1)− P1(θ1) +RTP2(θ2)A(θ1)+

AT (θ1)P2(θ2)R+RTP3(θ2)R+

P2(θ1)P−1
3 (θ1)P T2 (θ1) < 0.

Adding and subtracting
AT (θ1)P2(θ2)P−1

3 (θ2)P T2 (θ2)A(θ1)

to the previous inequality implies for all θ1, θ2 ∈ Θ that

AT (θ1)Q(θ2)A(θ1)−Q(θ1) +W (θ1, θ2) < 0,

where
Q(θ) = P1(θ)− P2(θ)P−1

3 (θ)P T2 (θ), ∀ θ ∈ Θ (41)

and

W (θ1, θ2) = (P2(θ2)A(θ1) + P3(θ2)R)T × P−1
3 (θ2)

× (P2(θ2)A(θ1) + P3(θ2)R) .

As W (θ1, θ2) ≥ 0 and Q(θ) > 0 (since P3(θ) > 0 and Q(θ) is the Schur complement of P (θ)), clearly
Q(θ), θ ∈ Θ, satisfy condition (19). Notice that when the matrices P (θ) are constant, i.e.

P (θ) = P =

(
P1 P2

P T2 P3

)
, ∀θ ∈ Θ,

the corresponding matrices Q(θ) as in (41) that satisfy (19) are constant as well:

Q(θ) = Q = P1 − P2P
−1
3 P T2 , θ ∈ Θ.

To prove the converse, assume that (19) holds. Then, due to the continuity of A with respect to θ and
to the compactness of Θ, there exists ε > 0 such that for all θ1, θ2 ∈ Θ(

AT (θ1)Q(θ2)A(θ1)−Q(θ1) + εRTR 0
0 −εI

)
< 0.
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This inequality shows that the matrices P (θ) defined as

P (θ) =

(
Q(θ) 0

0 εI

)
> 0, θ ∈ Θ

satisfy (18).

Clearly, when Q(θ) = Q, θ ∈ Θ, the common matrix

P (θ) = P =

(
Q 0
0 εI

)
> 0, θ ∈ Θ

satisfies the inequality (18), which completes the proof.

2.2 LMI-Based Synthesis of Decentralized Controllers
D. Barcelli, D. Bernardini, A. Bemporad

2.2.1 Introduction

Networked control systems (NCSs) are characterized by a topological distribution over the physical
space that sometimes prevents the use of centralized control solutions. In fact, the set of measure-
ments might not be available at each control instant, due for instance to temporarily or permanently
faulty sensors connections. A natural workaround is to define a set of controllers, each one in charge
of commanding only a subset of actuators. The underlying idea is that the information provided by
a subset of sensor measurements might be enough to control a subset of actuators satisfactorily. In
this case, a decentralized control scheme clearly reduces the communication traffic over the network,
allowing for a simpler network structure.

These considerations led, since the 70’s, to look with interest to decentralized control, mainly investi-
gating stability properties [87,111]. In the 90’s, the rise of convex optimization techniques allowed for
convex formulations of decentralized control problems [88, 89], achieving results for some particular
classes of systems, such as spatially invariant systems [90]. Decentralized estimation and control
schemes based on distributed convex optimization ideas have been proposed recently by means of
Lagrangian relaxations [91,108], where global solutions are achieved after a (possibly large) number
of inter-agent communications. Hence, looking at a real implementation, the sample time must be set
conservatively high in order to let all the agreements to conclude without having consequences on
the control action. Moreover, the need of mutual exchange of information between network agents
produces an overhead in the communication channel which must be taken into account when dealing
with network-related issues such as delay and packet loss.

In this work we present an approach for the off-line synthesis of a set of decentralized linear regulators
for discrete-time linear systems subject to input and state constraints. Measurements are provided
by a distributed set of sensors to a distributed set of actuators through a network connection, in
which some of the links are subject to random packet dropout. We aim at enforcing stability of the
closed-loop system for every possible combination of packet losses that can occur in the network
at every time step. Conservativeness of the resulting control law is reduced by using a different set
of local control laws for every possible network configuration, without the need of communication
among different controllers. Moreover, we take into account a model of packet dropouts based on a
finite-state Markov chain, in order to exploit available knowledge about the stochastic nature of the
network, and improve the closed-loop performance.

In the last years, mean-square stability of networked control systems (NCSs) has been often ana-
lyzed in literature. For example, in [92] a stabilizing controller for linear systems subject to random
but bounded delays in the feedback loop is designed by augmenting the state vector and modeling
the overall process as a Markov jump linear system. A NCS subject to communication constraints is
studied in [155], where a Markov model is used to represent the dynamics of the transmission update
times, and stability is guaranteed by means of a stochastic quadratic Lyapunov function. More re-
cently, a framework to analyze stability of stochastic linear NCSs subject to time-varying transmission
intervals, delays, packet dropouts and communication constraints by means of overapproximation
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methods has been proposed in [93]. Most of these works (if not all, and this work makes no excep-
tion) rely on convex optimization, and more specifically on the formulation of optimization problems
constrained by a set of linear matrix inequalities (LMIs) [94,95].

2.2.2 Control over ideal networks

Consider the discrete-time time-invariant linear system

x(t+ 1) = Ax(t) +Bu(t), (42)

where x = [x1, . . . , xn]′ ∈ Rn is the state, u = [u1, . . . , um]′ ∈ Rm is the input, t ∈ N0 is the time
index, and the matrices A ∈ Rn×n, B ∈ Rn×m. We assume that states and inputs are subject to the
constraints1

‖x(t)‖2 ≤ xmax, ‖u(t)‖2 ≤ umax, ∀t ∈ N0. (43)

The process we consider is a networked control system, where spatially distributed sensor nodes
provide measurements of the system state, and spatially distributed actuator nodes implement the
control action. More in detail, at every time step t every sensor s1, . . . , sn measures a component
xi(t) of the state vector, i = 1, . . . , n. Then, measurements are sent to actuators a1, . . . , am through a
user-defined networked connection. Given a process of the form (42) we define its network topology
by means of an adjacency matrix Λ ∈ {0, 1}m×n with elements

λij =

{
1 if sensor sj is linked to actuator ai,
0 otherwise.

(44)

for i = 1, . . . ,m and j = 1, . . . , n. In other words, λij = 1 if and only if the measurement xj(t) can
be exploited to compute the input signal ui(t), ∀t ∈ N0. We assume here that all the network links
are ideal (no packet dropout, delays, etc.); the decentralized control problem is extended to consider
packet dropouts in Section 2.2.3.

Linear controller synthesis

Our goal is to find a gain matrix K ∈ Rm×n such that the system (42) in closed-loop with

u(t) = Kx(t) (45)

is asymptotically stable. The desired control law must be decentralized, i.e., each actuator a1, . . . , am
can only exploit the measurements that are available in accordance with the network topology (44).
In other words, each row i of K can only have non-zero elements in correspondence with the state
measurements available to actuator ai, i = 1, . . . ,m. This imposes the following structure on K:

λij = 0 ⇒ kij = 0, i = 1, . . . ,m, j = 1, . . . , n, (46)

where kij is the (i, j)-th element of K.

Closed-loop stability is enforced through the condition

V (x(t+ 1))− V (x(t)) ≤ −x(t)′Qxx(t)− u(t)′Quu(t), (47)

where V : Rn → R is a Lyapunov function of the state x for the closed-loop system given by (42)
and (45), and Qx ∈ Rn×n, Qu ∈ Rm×m are weight matrices, with Qx = Qx

′ � 0, Qu = Qu
′ � 0. In the

following we consider quadratic Lyapunov functions, and define

V (x) , x′Px, (48)

with P ∈ Rn×n, P = P ′ � 0. It is well known that satisfaction of (47) for all time steps t ∈ N0 implies
asymptotical stability of the closed-loop system (see, e.g., [96]). If (47) is satisfied, then we can show
that

V (x(t)) ≥ J∞(t) ,
∞∑
i=0

(
x(t+ i)′Qxx(t+ i) + u(t+ i)′Quu(t+ i)

)
,

1Other kinds of constraints, such as element-wise bounds, can be considered in a similar fashion (see, e.g., [96]).

24



i.e., V (x(t)) is an upper bound of the infinite-horizon quadratic cost-to-go J∞(t) defined by Qx,
Qu [96]. Our goal is to find the smallest scalar γ > 0 such that

x(t)′Px(t) ≤ γ, ∀t ∈ N0, (49)

or, equivalently, x(t)′Q−1x(t) ≤ 1, ∀t ∈ N0, by substituting Q = γP−1. Clearly, the satisfiability of (49)
depends on the initial state x(0). Rather than finding the proper value of γ for a given initial state
x(0) ∈ Rn, we look for a γ which is valid for all x(0) ∈ X0 ⊂ Rn, where X0 , H(v1, . . . , vnv) is a
polytope with vertices v1, . . . , vnv , and H(·) denotes the convex hull operator, so that the controller
K that we are going to synthesize is valid for any initial condition x(0) ∈ X0. As noted in [95], by
making the standard substitution K = Y Q−1, Y ∈ Rm×n, we can obtain any desired structure for K
by imposing the same structure on Y and fixing the block-diagonal structure of Q

(λij = 0)⇒ yij = 0, i = 1, . . . ,m, j = 1 . . . , n, (50a)
(λij = 0) ∧ (λih = 1) ⇒ qhj = 0, qjh = 0, i = 1, . . . ,m, j = 1, . . . , n, h = 1, . . . , n, (50b)

where ∧ denotes logical “and”.

Theorem 3. Consider an ideal network with topology Λ ∈ {0, 1}m×n and let P = γQ−1, K = Y Q−1

be obtained by solving the semidefinite programming (SDP) problem

min
γ,Q,Y

γ (51a)

s.t.

 Q ? ? ?
AQ+BY Q ? ?

Q
1/2
x Q 0 γIn ?

Q
1/2
u Y 0 0 γIm

 � 0, (51b)

[
Q ?

AQ+BY x2maxIn

]
� 0, (51c)[

u2maxIm ?
Y Q

]
� 0, (51d)[

1 ?
vi Q

]
� 0, i = 1, . . . , nv, (51e)

Y ∈ Y, Q ∈ Q, (51f)

where In is the identity matrix in Rn×n, 0 is a matrix of appropriate dimension with all zero entries,

Q , {Q ∈ Rn×n : qhj = qjh = 0 if (λij = 0) ∧ (λih = 1), i = 1, . . . ,m, j = 1, . . . , n, h = 1, . . . , n},
Y , {Y ∈ Rm×n : yij = 0 if λij = 0, i = 1, . . . ,m, j = 1 . . . , n},

and qij , yij are the (i, j)-th elements of Q and Y , respectively. If problem (51) is feasible, then
system (42) with initial state x(0) ∈ X0 in closed-loop with the decentralized constant feedback control
law (45) is asymptotically stable and satisfies the constraints (43).

Proof. In the particular case where X0 = {x0} is a singleton (i.e., the initial state x(0) = x0 is
fixed), and Λ = 1m×n is a matrix with all one entries (i.e., the control law is centralized and we have
no constraints on the structure of K), asymptotical stability is a well known result that follows by
showing that V (x(t)) = x(t)′Px(t) is a Lyapunov function for the closed-loop system (see, e.g., [94,
96]). Substituting P = γQ−1, condition (47) is converted by means of Schur complements to the
LMI (51b). Using similar arguments, state and input constraints (43) are enforced by (51c) and (51d).
It remains to prove (i) that stability is retained for every initial state x(0) ∈ X0 when X0 has dimension
greater than 0, and (ii) that the control law u(t) = Kx(t), with K = Y Q−1, can be implemented in a
decentralized way, according to the network topology Λ. We see that (i) follows by convexity of the
ellipsoid EQ , {x ∈ Rn : x′Q−1x ≤ 1}. In fact, since EQ contains the vertices vi of X0 due to (51e),
then X0 ⊂ EQ. Regarding (ii), as the structure of diagonal blocks is preserved by matrix inversion,
Q block diagonal implies that Q−1 is also block-diagonal, and hence (50b) implies that q̃hj = 0 and
q̃jh = 0, for all i, j, h such that λij = 0 and λih = 1, where q̃hj is the (h, j)-th element of Q−1. Since
kij =

∑n
h=1 yihq̃hj , by (51f) it follows that the decentralized structure (46) is satisfied.
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2.2.3 Control over lossy networks

In this section we consider packet dropouts occurring in some of the links of the communication
network, referred to as lossy links. To account for the presence of lossy links in the network, we
extend the definition of the topology Λ ∈ {−1, 0, 1}m×n as follows

λij =


1 if ideal link between sj and ai,
−1 if lossy link between sj and ai,
0 if no link between sj and ai,

(52)

for i = 1, . . . ,m, j = 1, . . . , n. No probabilistic model of packet loss is considered here; this will be
introduced in Section 2.2.4.

We denote with li the number of lossy links connected with actuator ai, i = 1, . . . ,m (i.e., the number
of “-1” in the ith row of Λ), and with L =

∑m
i=1 li the total number of lossy links in the network.

Then, we can enumerate all the possible combinations of packet dropouts at a given time step t by
replacing every “-1” in Λ with either a “1” or a “0”. In this way we obtain a set of ` = 2L matrices
Λ̃h ∈ {0, 1}m×n, h = 1, . . . , `, which describes all the possible network configurations. We denote by
Λ̃(t) ∈

{
Λ̃1, . . . , Λ̃`

}
the network configuration at time t ∈ N0.

Switching controller synthesis

We want to design a set of gains Kh ∈ Rm×n, h = 1, . . . , `, to be used in the decentralized switching
feedback control law

u(t) =


K1x(t) if Λ̃(t) = Λ̃1,

K2x(t) if Λ̃(t) = Λ̃2,
...

...
K`x(t) if Λ̃(t) = Λ̃`.

(53)

Note that in general the implementation of (53) requires the controllers to be aware of the whole
network status Λ̃(t). This hypothesis is obviously not realistic in a decentralized framework. Hence,
we impose an appropriate structure of the gains K1, . . . ,K`, so that every local actuator ai, i =
1, . . . ,m, needs only to know which local measurements have been lost, regardless of the links status
in the rest of the network. To accomplish this, we need to have a control law which univocally defines
ui(t), ∀i, for all the network configurations Λ̃h that have identical values in their ith row. Namely, [M ]i
being the ith row of a generic matrix M , we want to impose

[Λ̃h]i = [Λ̃j ]i ⇒ [Kh]i = [Kj ]i, (54)

for all h, j = 1, . . . , `, i = 1, . . . ,m. This relation greatly reduces the number of variables to be
considered in our optimization problem. In fact, we have only 2li possible values of [Λ̃(t)]i, i =
1, . . . ,m. We refer to these row vectors as Γi1, . . . ,Γ

i
2li

, where Γij ∈ {0, 1}1×n, ∀i, j. Hence, we look
for
∑m

i=1 2li local gains F i1, . . . , F
i
2li

which define the set of element-wise feedback control laws

ui(t) =


F i1x(t) if [Λ̃(t)]i = Γi1,

F i2x(t) if [Λ̃(t)]i = Γi2,
...

...
F i

2li
x(t) if [Λ̃(t)]i = Γi

2li
,

(55)

for all i = 1, . . . ,m. These local gains {F ij} are then combined to obtain the ` global gains {Kh} used
in (53). Our purpose is to guarantee the satisfaction of the stability constraint (47) in the presence
of random packet dropouts. We are looking for a robust kind of stability, where no information on the
dynamics regulating the evolution in time of Λ̃(t) are exploited. Hence, here we take V (x) in (48)
as a common Lyapunov function for the switching closed-loop dynamics x(t + 1) = (A + BKh)x(t),
h = 1, . . . , `. In order to compute K1, . . . ,K` we substitute

Kh = YhQ
−1, ∀h, (56)
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allowing a different matrix Yh ∈ Rm×n for every possible network configuration Λ̃h. However, since
we have a unique Q, it must hold

[YhQ
−1]i = [YjQ

−1]i, ∀i, j, h, (57)

in order to satisfy (54). In other words, the structure of Q needs to preserve the structure of every
Kh, h = 1, . . . , `.

Theorem 4. Consider a network with topology Λ ∈ {−1, 0, 1}m×n, and let Kh = YhQ
−1, h = 1, . . . , `,

be obtained by solving the SDP problem

min
γ,Q,{Y }

γ (58a)

s.t.

 Q ? ? ?
AQ+BYh Q ? ?

Q
1/2
x Q 0 γIn ?

Q
1/2
u Yh 0 0 γIm

 � 0, h = 1, . . . , `, (58b)

[
Q ?

AQ+BYh x
2
maxIn

]
� 0, h = 1, . . . , `, (58c)[

u2maxIm ?
Yh Q

]
� 0, h = 1, . . . , `, (58d)[

1 ?
vi Q

]
� 0, i = 1, . . . , nv, (58e)

[Λ̃h]i = [Λ̃j ]i ⇒ [Yh]i = [Yj ]i, h, j = 1, . . . , `, i = 1, . . . ,m, (58f)

Yh ∈ Ỹh, h = 1, . . . , `, (58g)

Q ∈ Q̃, (58h)

where

Q̃ , {Q ∈ Rn×n : qwj = qjw = 0 if (λ̃hij = 0) ∧ (λ̃hiw = 1), i = 1, . . . ,m, j, w = 1, . . . , n, h = 1, . . . , `},
Ỹh , {Yh ∈ Rm×n : yhij = 0 if λ̃hij = 0, i = 1, . . . ,m, j = 1 . . . , n},

yhij is the (i, j)-th element of Yh, and λ̃hij is the (i, j)-th element of Λ̃h, for all h = 1, . . . , `. If problem (58)
is feasible, then system (42) with initial state x(0) ∈ X0 in closed loop with the decentralized switching
feedback control law (53) is asymptotically stable and satisfies the constraints (43) for any possible
realization of packet dropout.

Proof. Constraints (58b), obtained by using (53), substituting Kh = YhQ
−1, h = 1, . . . , `, and taking a

Schur complement, are a sufficient condition to the satisfaction of (47) for every Λ̃(t) ∈ {Λ̃1, . . . , Λ̃`},
∀t. Hence robust asymptotical stability is provided for every possible realization of packet dropout.
Fulfillment of state and input constraints (43) and robustness with respect to the initial state x(0) ∈ X0,
which are respectively enforced by (58c)–(58d) and (58e), follow by similar arguments of Theorem 3.
It remains to prove that the resulting control law (53) can be implemented in a decentralized way as
a combination of (55), ∀i. We fix the structure of Yh to be equal to the structure of Kh, ∀h, by means
of (58g). Since Kh = YhQ

−1, we have khij =
∑n

w=1 y
h
iwq̃wj and we must enforce the counterpart

of (46) for the case of a switching control law, i.e., λ̃hih = 0 ⇒ khij = 0, or equivalently

λ̃hij = 0 ⇒
n∑

w=1

yhiwq̃wj = 0, ∀i, j, h. (59)

Being the structure of Yh assigned for a fixed h, a sufficient condition for the satisfaction of (59) is
given by

(λ̃hij = 0) ∧ (λ̃hiw = 1) ⇒ q̃wj = 0, ∀i, j, w, h,
which is enforced by (58h) noting that Q is symmetric and block-diagonal. Finally, constraint (58f)
together with (56) implies satisfaction of (57), which is a sufficient condition for (54) to hold. This
ensures the uniqueness of the local control law (55) to be implemented given [Λ̃(t)]i, ∀i, regardless
of the global value of Λ̃(t), and proves (53) to be a decentralized control law with the requested
structure.
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2.2.4 Stochastic control under packet dropout

The robust approach undertaken in the previous section can be conservative in some cases, as it
requires the existence of a common Lyapunov function which must be decreasing at every time step
for every possible network configuration. In this section we pursue a relaxed stability condition by
introducing a probabilistic model of the network and exploiting the possibly available stochastic infor-
mation on packet dropout. We consider stability in the mean-square sense, which in this framework
is equivalent to

lim
t→∞

E
[
‖x(t)‖2

]
= 0. (60)

In other words, we allow the closed-loop Lyapunov function to occasionally increase from one step
to another, as long as a decreasing condition of the form (47) is guaranteed to hold on average. The
expectation is taken with respect to the realizations of Λ̃(t), which is now modeled as a stochastic
process.

Stochastic network model

Following the model proposed in [97], we assume that the probability distribution of the network
configurations {Λ̃h} is modeled by a finite-state Markov chain with 2 states2, called Z1 and Z2. The
dynamics of the Markov chain are defined by a transition matrix

T =

[
q1 1− q1

1− q2 q2

]
(61)

such that tij = Pr[z(t + 1) = Zj | z(t) = Zi], and by an emission matrix E ∈ R2×2L such that
eij = Pr[Λ̃(t) = Λ̃j | z(t) = Zi], being tij and eij the (i, j)-th element of T and E, respectively. In order
to define the values in E we need to compute the probabilities of occurrence of Λ̃h, ∀h. We assume
that the occurrence of a packet dropout at a time step t in a given network link is an i.i.d. random
variable, for every state of the Markov chain. In particular, we denote with d1 and d2, 0 < d1 < d2 < 1,
the probabilities of losing a packet at time t if z(t) = Z1 and z(t) = Z2, respectively (for example, in
Z1 we have “few” dropouts, and in Z2 we have “many”, according to Gilbert’s model). Moreover, let
s1,h and s0,h be the total number of lossy links in Λ which are mapped as ideal links and as no links
in Λ̃h, respectively, i.e.,

s1,h =
∑

(i,j)∈I

λ̃hij , h = 1, . . . , `, (62a)

s0,h =
∑

(i,j)∈I

(1− λ̃hij), h = 1, . . . , `, (62b)

where I , {(i, j) ∈ {1, . . . ,m} × {1, . . . , n} : λij = −1}. Then, we can define the elements {eij} of E
as

eij = di
s0,j (1− di)s1,j , i = 1, 2, j = 1, . . . , `. (63)

2.2.5 Stochastic switching controller synthesis

Our goal is to design two sets of control gains K1,1, . . . ,K1,`, K2,1, . . . ,K2,`, one for every state of the
Markov chain, which define the switching control law

u(t) =



K1,1x(t) if z(t) = Z1, Λ̃(t) = Λ̃1,
...

...
K1,`x(t) if z(t) = Z1, Λ̃(t) = Λ̃`,

K2,1x(t) if z(t) = Z2, Λ̃(t) = Λ̃1,
...

...
K2,`x(t) if z(t) = Z2, Λ̃(t) = Λ̃`,

(64)

2More complex Markov chain models of packet loss could be considered here, such as the one used in [98].
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so that the closed-loop system is asymptotically stable in mean-square. Consider the stochastic
counterpart of the decreasing condition (47)

E [V (x(t+ 1))]− V (x(t)) ≤ −x(t)′Qxx(t)− E[u(t)′Quu(t)]. (65)

As shown in [156], fulfillment of (65) for all t ∈ N0 implies (60). Here V (x) is intended to be a switching
stochastic Lyapunov function for the closed-loop system, defined as

V (x(t)) ,

{
x(t)′P1x(t) if z(t) = Z1,
x(t)′P2x(t) if z(t) = Z2.

(66)

We assume that the state z(t) = Zj of the communication network is known3 at time t, with j ∈ {1, 2}.
Hence, the expectations in (65) are

E [V (x(t+ 1))] =
∑̀
h=1

2∑
l=1

ejhtjlx(t)′(A+BKj,h)′Pl (A+BKj,h)x(t), (67a)

E
[
u(t)′Quu(t)

]
=
∑̀
h=1

ejhx(t)′K ′j,hQuKj,hx(t). (67b)

In light of the above considerations, by using (64), (66) and (67), and substituting Pj = γQj
−1,

Kj,h = Yj,hQj
−1, ∀j, h, we can translate (65) to an appropriate LMI condition with standard methods,

as detailed in the following theorem.

Theorem 5. Consider a network with topology Λ ∈ {−1, 0, 1}m×n, where at each time step the packet
dropout realizations are driven by the Markov chain defined by (61)–(63), and let Kj,h = Yj,hQ

−1,
j = 1, 2, h = 1, . . . , `, be obtained by solving the SDP problem

min
γ,{Q},{Y }

γ (68a)

s.t.

 Qj ? ? ?

Q
1/2
x Qj γIn ? ?
Cj,1 0 Dj,1 ?
Cj,2 0 0 Dj,2

 � 0, (68b)

[
Qj ?

AQj+BYj,h x
2
maxIn

]
� 0, h = 1, . . . , `, (68c)[

u2maxIm ?
Yj,h Qj

]
� 0, h = 1, . . . , `, (68d)[

1 ?
vi Qj

]
� 0, i = 1, . . . , nv, (68e)

[Λ̃h]i = [Λ̃w]i ⇒ [Yj,h]i = [Yj,w]i, h, w = 1, . . . , `, i = 1, . . . ,m, (68f)

Yj,h ∈ Ỹj,h, h = 1, . . . , `, (68g)

Qj ∈ Q̃j (68h)

where j = 1, 2,

Q̃j , {Qj ∈ Rn×n : qjlw = 0, qjwl = 0 if (λ̃hiw = 0) ∧ (λ̃hil = 1), w, l = 1, . . . , n,

i = 1, . . . ,m, h = 1, . . . , `, }, j = 1, 2,

Ỹj,h , {Yj,h ∈ Rm×n : yj,hiw = 0 if λ̃hiw = 0, i = 1, . . . ,m, w = 1 . . . , n}, for all j = 1, 2, h = 1, . . . , `,

qjlw is the (l, w)-th element of Qj , y
j,h
iw is the (i, w)-th element of Yj,h, and

Cj,1 =



√
ej1tj1(AQj+BYj,1)

...√
ej`tj1(AQj+BYj,`)√
ej1tj2(AQj+BYj,1)

...√
ej`tj2(AQj+BYj,`)

 , Cj,2 =

√ej1(Q
1/2
u Yj,1)

...
√
ej`(Q

1/2
u Yj,`)

 ,

3In practice, one should estimate the state z(t) of the communication network, see, e.g., [99].
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Dj,1 = Blkdiag{Q1, . . . , Q1︸ ︷︷ ︸, Q2, . . . , Q2︸ ︷︷ ︸},
` times ` times

Dj,2 = Blkdiag{γIm, γIm, . . . , γIm︸ ︷︷ ︸}.
` times

If problem (68) is feasible, then system (42) with initial state x(0) ∈ X0 in closed-loop with the decen-
tralized switching feedback control law (64) is asymptotically stable in mean-square.

Proof. Constraints (68b), obtained by using (64), substituting Kj,h = Yj,hQ
−1, j = 1, 2, h = 1, . . . , `,

and taking a Schur complement, are a sufficient condition to the satisfaction of (65) for every Λ̃(t) ∈
{Λ̃1, . . . , Λ̃`}, ∀t, distributed as modeled by (61)–(63). Hence asymptotical closed-loop stability in
mean-square is provided. Robustness with respect to the initial state x(0) ∈ X0 and desired decen-
tralized structure of the switching feedback control law (64), which are respectively enforced by (68e)
and (68g)–(68h), follow by similar reasonings as in Theorems 3–4. The uniqueness of the switch-
ing feedback control law (64) is imposed by constraints (68f) for every state z(t) ∈ {Z1, Z2} of the
Markov chain, similarly to what proved in Theorem 4 for the case of a single Q and a single set of
gains {Yh}. Since by assumption the current Markov chain state z(t) at time t is known to every
actuator a1, . . . , am, the feedback control law is univocally determined by choosing u(t) = Kj,hx(t) if
z(t) = Zj , Λ̃(t) = Λ̃h, and this completes the proof.

As convergence to the origin provided by Theorem 5 is intended in mean-square sense, we can no
more refer to EQ1 , {x ∈ Rn : x′Q−1

1 x ≤ 1} and EQ2 , {x ∈ Rn : x′Q−1
2 x ≤ 1} as invariant ellipsoids

for the closed-loop system, as we did in sections 2.2.2–2.2.3. In fact, the decreasing condition (65)
only holds in expected value. Hence, even though mean-square stability is retained, we have that
x(t) ∈ EQi 6⇒ x(t+ 1) ∈ EQj , ∀t ∈ N0, i, j = 1, 2. In other words, constraints (68c)–(68d) do not imply
fulfillment of (43) at every time step, but only in an averaged sense.

2.2.6 Simulation results

In this section the proposed decentralized control schemes are tested on an open-loop unstable
system (42) with n = 8 states and m = 4 inputs. The matrices A, B in (42) are selected randomly4

and hence with a high chance that state dynamics are strongly mutually coupled. Measurements are
provided from sensors to actuators according to a topology Λ as in (52) with 8 ideal links and 4 lossy
links, defined as

Λ =

 1 1 1 0 0 −1 0 0
−1 1 0 1 1 0 0 0

0 0 1 0 0 1 1 −1
0 0 0 −1 1 0 1 1

 .
The network topology is schematized in Fig. 7. Because of the network structure, the decentralized

control law can only exploit a partial knowledge of the state value at each sample time. Since there
are L = 4 unreliable links, the number of possible network configuration is ` = 2L = 16. Packet
dropouts are modeled by a 2-states Markov chain defined by (61) with q1 = 0.8, q2 = 0.5, d1 = 0.1
and d2 = 0.5.

We run Nsim = 50 simulations of Tsim = 50 time steps each with constraints (43) defined by xmax =
25, umax = 3, weight matrices Qx = In, Qu = 10−2Im, and a random initial state x(0) ∈ X0, with
X0 = {xc}+ {x ∈ R8 : ‖x‖∞ ≤ 2} and xc = 7 ·18×1. Fig. 8 shows the behavior of the entire state and
input vectors under decentralized robust and stochastic control. Table 1 shows the results obtained by
the proposed decentralized techniques in comparison with a centralized controller which implements
the control law (45) without any restriction on the structure of K, or, in other words, which considers
a topology Λ = 1m×n where every actuator can exploit all the measurements. Performances are
evaluated using the cumulated stage cost

Ji =

Tsim∑
t=1

(‖Qxx(t)‖2 + ‖Quu(t)‖2)

4The MATLAB routine drss has been used to obtain the matrices A, B, modified to enforce one eigenvalue of A to be
equal to 1.05.
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Figure 7: Network topology used in simulations

Figure 8: Total (a) state and (b) input trajectories for robust (dashed line) and stochastic (solid line)
decentralized controllers

over the simulation horizon, where Ji refers to the ith run and µ(Ji), σ(Ji) are the mean and the
standard deviation of Ji over all the simulations. We can see that the stochastic decentralized con-
troller achieves a good closed-loop behavior, being less conservative than the robust controller and
still providing convergence to the origin. In Table 1 is also shown the computational time needed to
solve the SDP problems off-line on a 2.8GHz Intel processor with the MATLAB modeling language
YALMIP. Indeed, the complexity of the stochastic SDP problem (68), due mainly to the size of (68b),
requires a CPU time of an order of magnitude larger. However, this increased computational load
provides in turn a larger solution set, since the mean-square stability constraint (65) is less stringent
than the robust counterpart (47).

2.2.7 Conclusions

We proposed a method based on semidefinite programming for synthesizing decentralized linear
control laws for networked linear systems. Both the case of an ideal network, where sensors trans-
mit measurements to actuators without data loss, and the case of packet dropout in a subset of the
network communication links were considered. In the latter case, we also took into consideration a
stochastic description of the network, where packet loss is modeled as a random process driven by
a two-state Markov chain. The SDP problem formulation guarantees that the resulting switching con-
troller enforces mean-square stability of the closed-loop system. Simulation results on a numerical
example have shown that the performance deteriorates with respect to an ideal centralized controller,
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Table 1: Simulation results
µ(Ji) σ(Ji) CPU

Ideal network (off-line time)
Centralized control 41.0 0 2.8 s
Decentralized control 45.1 0 1.2 s
Lossy network (off-line time)
Dec. robust control 50.0 1.57 8.1 s
Dec. stochastic control 47.1 2.38 59.2 s

on average, by 15% in the case of stochastic decentralized control, and by 22% in the case of robust
decentralized control.

2.3 Energy-Aware MPC
D. Bernardini, A. Bemporad

2.3.1 Introduction

Wireless sensor networks (WSNs) is an emerging technology for collecting large amounts of mea-
surement data that were previously cost prohibitive. By deploying a large number of cheap, small,
and low-consumption sensors equipped with radios, wireless sensing in automation aims at reducing
the costs of cabling and their maintenance due to wear and tear. Another advantage of WSNs is the
possibility of rapidly reconfiguring the communications infrastructure in case of failures or additions
of new components [131].

On the other hand, compared to standard wired sensors, WSNs pose new challenges for control
design, such as energy consumption and channel reliability issues. While some interesting work has
been done for the latter, such as modeling packet dropouts and addressing time delays (see e.g.
[127–129]), energy-aware control is still a rather open problem. Energy budget is highly constrained
to maximize the expected lifetime of battery-operated sensor nodes, therefore preventing frequent
cumbersome and expensive maintenance for replacing batteries. Therefore the urge for developing
new control techniques that, aware of communication and power consumption aspects of the wireless
nodes, ensure an optimized controller-sensor operation.

In a wireless device the radio chip is the primary source of energy consumption; hence, radio usage
must be minimized for achieving a satisfactory network lifetime [125, 126]. In recent years some
work was done for addressing the energy problem from the point of view of both the communication
network and the system architecture, i.e., by proposing consumption-efficient routing protocols [123,
124], or dynamic power management techniques [122,130].

In this work we address the issue from the complementary angle of control design. We focus on con-
trol systems where feedback is provided by a WSN. Previous works related to this topic include [121],
where a properly tuned control law is designed to achieve real-time regulation of the network trans-
mission rate, and [120], where a predictive controller is proposed to optimize the trade-off between
power transmission and system performance, as a function of the estimated wireless channel relia-
bility. Moreover, communication between controller, sensors and actuators under nominal conditions
is addressed in [119], where the authors present a new network transmission strategy, model the
networked plant as a mixed logical dynamical (MLD) system [118], and formulate a nominal control
problem based on mixed-integer programming (MIP). With respect to this work, we wish to avoid the
need of on-line MIP to avoid excessive computation complexity, and to improve system performance
by exploiting two-way channel communication.

In our framework we take into account a few key aspects to obtain effective energy savings. First,
we consider the energy costs of both receiving and transmitting packets, which are usually very
similar [116, 117]. Second, we avoid idle listening as much as possible, i.e., the radio chip of the
sensor is completely turned off when no incoming packet is expected [126]. Finally, as common
wireless protocols have a relatively large fixed cost due to communication overheads [117], although
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Figure 9: Control loop scheme with feedback from a single wireless node

a single measurement acquisition can be stored in few bytes, the transmission of small packets has a
disproportionately high energy price compared to transmitting entire sets of measurements; for small
n, transmitting n measurements costs almost as transmitting a single measurement.

By taking into account the above aspects, we address the energy problem of WSNs together with
the optimal control problem of the global networked process. The main idea is to develop a network
transmission strategy where measurements are transmitted to the controller only when necessary,
and to design a control scheme aware of that transmission strategy, in order to allow a substantial
reduction of radio usage without excessively sacrificing closed-loop performance. In our framework
we assume the use of wireless sensors within “Class 2 - Closed-loop supervisory control” of the
taxonomy of the ISA-SP100 standard5, where information availability is often not safety-critical. Ac-
cordingly, we idealize the wireless communication channel, neglecting packet dropouts and delays,
under the assumption that latency and jitter issues (due for instance to packet retransmission after
a dropout) are not critical. Taking into account such practical aspects of real wireless networks is
beyond the scope of this work; a discussion on the extension of the presented results to the case of
real networks with delays and packet loss is given in Section 2.3.5.

We start in Section 2.3.3 by considering the case of noiseless state feedback, where a single wireless
node, possibly embedding several on-board sensors, is in charge of closing the control loop. Then, in
Section 2.3.4 we extend the approach to the case of uncertain state measurements, where feedback
is provided by a wireless network formed by a remote controller and a short range WSN, where
several sensors measure the same physical quantities to improve disturbance rejection. Finally,
results of closed-loop simulations are reported in Section 2.3.5, and conclusions are drawn in Section
2.3.6.

A preliminary version of this work has appeared in [114,115].

2.3.2 Notation

Hereafter, In is the n × n identity matrix and 0n is the null vector of Rn. Given a vector x ∈ Rn
and a matrix Q ∈ Rn×n, xT denotes the transpose of x, λi(Q), i = 1, . . . , n, are the eigenvalues
of Q, and ‖Q 1

2x‖22 , xTQx, ‖Qx‖1 ,
∑n

i=1 |(Qx)i|, ‖Qx‖∞ , maxi∈{1,...,n} |(Qx)i|, where (Qx)i
denotes the i-th element of Qx. Given two sets A and B, hull{A,B} is the convex hull of A ∪ B,
A⊕B , {a+ b : a ∈ A, b ∈ B} is the Minkowski sum of A and B, and d(x,A) , infy∈A ||x− y|| is the
distance of x form A. The set N0 is the set of nonnegative integer numbers.

2.3.3 Feedback from a single wireless node

Consider a control loop where a single node, which possibly embeds several sensors, collects and
transmit measurements to a controller through a wireless channel. The controller computes the input
signals and delivers them to the actuation device through a wired channel (see Figure 9). In the
following we focus on designing a control scheme that minimizes transmissions over the wireless
feedback link, while providing acceptable closed-loop performance.

5ISA-SP100.14 Wireless Networks Optimized for Industrial Monitoring, 2006, http://www.isa.org/filestore/

ISASP100 14 CFP 14Jul06 Final(2).pdf

33



Wireless transmission strategy

Consider a discrete-time linear system of the form

x(k + 1) = Ax(k) +Bu(k) + w(k) (69)

where x(k) ∈ Rnx is the state, u(k) ∈ Rnu is the input, w(k) ∈ W is an additive disturbance, and
k ∈ N0 is the time index. W ⊂ Rnx is a given polytope containing the origin. State and input vectors
are subject to the constraints

x ∈ X , u ∈ U (70)

where X , U are polyhedra containing the origin in their interior. We assume that full state mea-
surements are collected at every time step by nx sensors embedded in a single wireless node. We
define the following transmission strategy: At time step k, the wireless sensor node transmits the
measurement x(k) = [x1(k), x2(k), . . . , xnx(k)]T to the controller if and only if

∃i ∈ {1, 2, . . . , nx} : |xi(k)− x̂i(k)| > εi (71)

where ε = [ε1, ε2, . . . , εnx ]T is a vector of threshold values εi ≥ 0 for every component of the state
x. More compactly, condition (71) can be expressed by using a binary variable δ(k)

[δ(k) = 1]↔ [x(k)− x̂(k) 6∈ E ]

where E , {x ∈ Rnx : |xi| ≤ εi, i = 1, 2, . . . , nx} is the box defined by the threshold vector ε, and the
vector x̂(k) is a prediction of the measured value x(k) precalculated by the controller and transmitted
beforehand to the wireless node. Predictions are updated in a two-way communication as follows:
when δ(k) = 1 the sensor transmits the measurement x(k) to the controller, which computes a set
of M updated predictions {x̂(k + j)}Mj=1 = {x̂(k + 1), x̂(k + 2), . . . , x̂(k + M)}, and transmits them
to the sensor. Moreover, if the controller does not receive any measurement for M time steps, i.e.,
δ(k) = δ(k − 1) = . . . = δ(k −M + 1) = 0, a one-way communication from controller to sensor node
takes place to send M updated predictions {x̂(k + j)}Mj=1, computed using x̂(k) as an estimation of
the current state x(k). We refer to M as the estimation horizon and to {x̂(k+ j)}Mj=1 as the prediction
buffer.

Although the above network transmission strategy is introduced here for linear systems, it is very
general and can be implemented in a wide set of scenarios, since the values of the predictions x̂ can
be calculated with any estimation technique depending on the application at hand. The threshold ε is
an important tuning knob of the approach, as it trades off closed-loop performance versus traffic over
the wireless channel. Note that the threshold logic (71) allows one to gather information on measured
variables even when no measurement is received: if δ(k) = 0, then x(k) ∈ E ⊕{x̂(k)}. In other words,
from the controller’s point of view a non-measurement is a set-valued measurement and, with an
opportune choice of ε, this can be usefully exploited in set-membership estimation algorithms, as
detailed in Section 2.3.4.

The value of the estimation horizon M must be chosen according to a trade-off between energy con-
sumption and reliability of predictions. In fact, due to the presence of disturbances, the accuracy of the
predicted state values decreases with the horizon length, i.e., if δ(k) = δ(k + 1) = . . . = δ(k + j) = 0,
the difference |xi(k + j)− x̂i(k + j|k)|, in general, is likely to grow with j ∈ {0, 1, . . . ,M − 1}. Hence,
an overly large M will lead to unnecessary transmission of useless far-in-the-future predictions, that
will be discarded by the sensor node because of (71).

A notable consequence of the proposed transmission strategy is that idle listening is almost com-
pletely avoided. In fact, assuming clock synchronization between the sensor node and the remote
controller, the sensor node can wake up its radio chip only when a communications of next M pre-
dictions is expected to come.

Energy-aware controller design

Motivated by the search for a good trade-off between closed-loop performance and network transmis-
sion rate, we want to design a robust controller for (69) which guarantees asymptotical convergence
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of the state x to the origin despite disturbance and network-induced feedback error. Due to the pres-
ence of the threshold ε and of the persistent unknown disturbance w, clearly the state cannot be
directly regulated to the origin. Therefore, following the idea of dual mode MPC [134], we set up
an outer control mode, which drives the state x to a given set X0, and an inner control mode which
robustly keeps the state in X0. The set X0 is assumed to be robust positively invariant with respect to
additive disturbances, as from the following definition [132].

Definition 1. The set X0 ⊆ Rn is robust positively invariant (RPI) for a system of the form x(k + 1) =
f(x(k), w(k)), with x ∈ Rn and w ∈ W, if and only if ∀x(0) ∈ X0 and ∀w(k) ∈ W the solution
x(k) ∈ X0, ∀k ∈ N0.

Inner control mode

In the inner control mode we use a switching feedback control law, defined by the following lemma.

Lemma 4. Let K ∈ Rnu×nx and Ac , A + BK be such that |λi(Ac)| < 1, ∀i = 1, . . . , nx, and let
X0 ⊆ X be an RPI set for the system

x(k + 1) = Acx(k) + f(k) (72)

such that KX0 ⊆ U , where f(k) is an unknown but bounded disturbance such that

f(k) ∈ F , W ⊕ {−BKE} (73)

Let x be the state of (69)-(70) receiving feedback according to (71) and in closed loop with

u(k) =

{
Kx(k) if δ(k) = 1
Kx̂(k) otherwise

(74)

where

x̂(k + 1) =

{
Acx(k) if δ(k) = 1
Acx̂(k) otherwise

(75)

If x(k) ∈ X0, then x(k + t) ∈ X0, ∀t ∈ N0.

Proof. By combining (69), (74) and (75) we obtain the piecewise linear (PWL) system6

[
x(k + 1)
x̂(k + 1)

]
=


[
Acx(k) + w(k)
Acx(k)

]
if δ(k) = 1[

Ax(k) +BKx̂(k) + w(k)
Acx̂(k)

]
otherwise

(76)

From (76) we have that

x(k + 1) ∈ {Acx(k)} ⊕W ⊕ {−BK(x(k)− x̂(k))}

for all δ(k) ∈ {0, 1}, which is implied by

x(k + 1) ∈ {Acx(k)} ⊕ F

because of (71), noting that if at the current time step we have δ(k) = 0 then x(k)− x̂(k) ∈ E . Hence,
system (76) is over-approximated by

[
x(k + 1)
x̂(k + 1)

]
=


[
Acx(k) + w(k)
Acx(k)

]
if δ(k) = 1[

Acx(k) + f(k)
Acx̂(k)

]
otherwise

(77)

6The set of states [x(k), x̂(k)]T such that δ(k) = 1 is not convex. This description of (76) is kept for ease of notation
without loss of generality, as it is straightforward to build an equivalent PWL system with 2 modes and a partition of 2nx + 1
polyhedral sets.
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with f(k) as in (73). The dynamics of x̂ can now be neglected, as they are no more needed in mod-
eling the evolution of x in (77). Focusing on x only, sinceW ⊆ F we have that (77) is conservatively
approximated by (72), which is nominally asymptotically stable by hypothesis. Hence, as X0 is RPI
for (72), it is RPI also for (76). Fulfillment of constraints (70) follows by X0 ⊆ X and KX0 ⊆ U .

We can use known results on RPI sets for linear systems to design X0, see e.g. [132–134]. A less
conservative computation of X0 considers the RPI property with respect to (77) instead of (72), as
shown in [114].

Outer control mode

To design the outer control mode we propose an algorithm based on explicit Model Predictive Con-
trol. MPC is widely spread in industry for control design of highly complex multivariable processes
under constraints on input and state variables [135–138]. The idea behind MPC is to solve at each
sampling time an open-loop finite-horizon optimal control problem based on a given prediction model
of the process, by taking the current state of the process as the initial state. Only the first sample
of the sequence of future optimal control moves is applied to the process. At the next time step, the
remaining moves are discarded and a new optimal control problem based on new measurements
is solved over a shifted prediction horizon. An alternative approach to evaluate the MPC law was
proposed in [103]: rather then solving the optimization problem on line for the current state vector,
by employing techniques of multiparametric programming the problem is solved off line for all state
vectors within a given range, providing the explicit dependence of the control input on the state and
reference, which is piecewise affine (PWA) and continuous. For a survey on explicit MPC the reader
is referred to [139].

In our framework, an explicit formulation of MPC is a natural choice for many reasons: primarily, it
can handle constraints and can be formulated to achieve robust control in presence of disturbances.
Moreover, it allows the cheap computation of the prediction buffer {x̂(k + j)}Mj=1, by evaluating the
future evolution of a simple closed-loop PWA system.

We present a scheme derived from min-max MPC [134,140,141], where the goal is to steer the state
to a target set while minimizing a performance index over the worst-case disturbance realization. The
basic idea of our approach is to include the knowledge of the transmission strategy (71) in the MPC
optimization problem, so that the dynamics of the predicted state x̂ can be coherently modeled into
the optimizer.

Let {w`k+j|k}N−1
j=0 denote the `-th sequence of disturbance realizations over a prediction horizon of

N steps given the state measurement at time k, ` ∈ L (for simplicity of notation, since now on
we will drop the subscript j=0 and superscript N−1). Further, let {u`k+j|k} denote the sequence of
control moves associated with the `-th realization, and {x`k+j|k} the corresponding state sequence.
By ignoring the transmission strategy and assuming state feedback at every sampling instant, the
min-max MPC problem at time k is expressed as in [134]

min
{u`
k+j|k}

max
`∈L

N−1∑
j=0

L(x`k+j|k, u
`
k+j|k) (78a)

s.t. (69), (78b)

x`k+j|k ∈ X , (78c)

u`k+j|k ∈ U , (78d)

x`k+N |k ∈ XT , (78e)

x`1k+j|k = x`2k+j|k ⇒ u`1k+j|k = u`2k+j|k, (78f)

j = 0, . . . , N − 1, ∀`, `1, `2 ∈ L,

where N is the control horizon, (78c)-(78d) are the state and input constraints, (78e) is the target set
constraint, and (78f) is the causality constraint, which enforces a single control input for each state,
reducing the freedom on the control sequence and making the control law independent of the path
taken to reach that state.
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Assumption 1. The stage cost L(x, u) is convex over X × U and such that

L(x,Kx) ≤ L(y, u), ∀x ∈ XT , ∀y 6∈ XT , ∀u ∈ U (79a)

L(x, u) ≥ α(d(x,XT )), ∀x 6∈ XT , ∀u ∈ U (79b)

where α is a K-function.

The following Lemma shows constructively how Assumption 1 can be satisfied.

Lemma 5. Let X0 = {x ∈ Rnx : A0x ≤ b0}, A0 ∈ Rnr×nx , b0 ∈ Rnr . For i = 1, 2, . . . , nr, let

c0,i = min
x,s

s (80a)

s.t. s ≥ ‖Qxx‖∞, (80b)

Ai0x = bi0, (80c)

and define
c0 = min

i∈{1,2,...,nr}
c0,i (81)

with Ai0 the i-th row of A0 and bi0 the i-th element of b0. Then the set

XT ,
{
x ∈ Rnx :

[
Qx
−Qx

]
x ≤ c0

[ 1
...
1

]}
(82)

is such that XT ⊆ X0, and the stage cost

L(x, u) = ‖Qxx‖∞ (83)

satisfies Assumption 1.

Proof. By (80), (81) and (82) it follows that XT is the largest level set of ‖Qxx‖∞ such that XT ⊆ X0.
By construction, ∀y 6∈ XT , ‖Qxy‖∞ > c0, since

∃i ∈ {1, 2, . . . , nx} : (Qixy > c0) ∨ (Qixy < −c0)

where Qix is the i-th row of Qx, which proves (79a). Define d(y,XT ) = infx∈XT ‖Qx(y − x)‖∞. As
0 ∈ XT , by definition of inf, d(y,XT ) ≤ ‖Qx(y − 0)‖∞. By letting α(φ) = φ, (79b) follows. Hence,
Assumption 1 is satisfied.

Note that the input u is not taken into account in (83). This is not likely to have a major impact on the
closed-loop behavior of the process, because usually in the outer mode the state x is relatively far
from the origin, and u saturates irrespective to the choice of the stage cost L. Note also that the stage
cost (83) is only used in the outer mode: as soon as x(k) enters X0, a constant feedback control loop
of the form u(k + j) = Kx(k + j) is applied for all j ∈ N0 (see next Theorem 6), where the gain K
can be designed with arbitrary (yet stabilizing) performance criteria.

Under the hypothesis of exact state feedback, the optimal input sequence resulting from the solution
of problem (78) ensures the asymptotical convergence of the state x of (69) to the target set XT (see
proof in [134]). By solving N mp-LPs as in [141], and by using L(x, u) = ‖Qxx‖∞, this solution is
obtained in state-feedback piecewise affine form

u∗(x) = Fix+ gi if x ∈ Ri (84)

where Fi ∈ Rnu×nx , gi ∈ Rnu and Ri = {x ∈ Rnx : Cix ≤ di}, i ∈ I , {1, 2, . . . , r}.
Now we need to reintroduce the proposed transmission strategy into our control scheme. Rewrit-
ing (69) to include the transmission strategy (71), we obtain the PWL system

[
x(k + 1)
x̂(k + 1)

]
=


[
Ax(k) +Bu(k) + w(k)
Ax(k) +Bu(k)

]
if δ(k) = 1[

Ax(k) +Bu(k) + w(k)
Ax̂(k) +Bu(k)

]
otherwise

(85)
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Suppose to apply the feedback control law derived from (84) to (85)

u(k) =

{
Fix(k) + gi if δ(k) = 1
Fj x̂(k) + gj otherwise

(86)

where x(k) ∈ Ri and x̂(k) ∈ Rj . We can see that if δ(k) = 1, then u(k) = u∗(x(k)). Otherwise, if
δ(k) = 0, i.e. the exact value of x(k) is not known, the difference between the optimal input obtained
by (84) with full state knowledge and the input (86) actually applied to the system is

u(k)− u∗(x(k)) = Fj x̂(k) + gj − Fix(k)− gi

Hence the dynamics of (85) in closed loop with (86) can be recast as[
x(k + 1)
x̂(k + 1)

]
=


[

(A+BFi)x(k) +Bgi + w(k)
(A+BFi)x(k) +Bgi

]
if δ(k) = 1[

(A+BFi)x(k) +Bgi + w(k) + q(k)
(A+BFj)x̂(k) +Bgj

]
otherwise

(87)

where
q(k) = B(Fj x̂(k) + gj − Fix(k)− gi) (88)

is the error made with respect to the optimal trajectory achieved with (84) due to the lack of information
on the exact value of x(k).

The basic idea of our approach is to consider q(k) as an additional unknown but bounded disturbance
within a set Q, with

Q , {q ∈ Rnx : q = B(Fj x̂+ gj − Fix− gi),
x, x̂ ∈ Rnx , x− x̂ ∈ E} (89)

and to find a control law which is robust with respect to q(k). We cannot directly set up a multipara-
metric optimization problem including q, since the polytope Q is dependent on {Fi}i∈I and {gi}i∈I
which are nonlinear functions of x. To overcome this issue, we propose to an iterative algorithm. At
every step h of the algorithm, the updated set Qh, the gains {Fi}hi∈I , {gi}hi∈I and the partition {Ri}hi∈I
are computed as a function of the previous setQh−1. The algorithm (to be executed off line) is defined
in Algorithm 1, and is based on the linear system

x(k + 1) = Ax(k) +Bu(k) + w(k) + q(k) (90)

and the associated min-max MPC problem

min
{u`
k+j|k}

max
`∈L

N−1∑
j=0

L(x`k+j|k, u
`
k+j|k) (91a)

s.t. (78c), (78d), (78e), (78f), (90), (91b)

together with its explicit solution in state feedback form.

Algorithm 1 Iterative explicit min-max MPC, single node case
1: set h = 1, Q0 = ∅, Q1 = {0nx};
2: while Qh 6⊆ Qh−1 do
3: solve (91) with q ∈ Qh;
4: get the explicit solution data {Fi, gi, Ri}h, ∀i;
5: set Qh+1 = hull{Qh+1

ij , ∀i, j ∈ I}, where
6: Qh+1

ij , {q ∈ Rnx : x− x̂ ∈ E , x ∈ Rhi , x̂ ∈ Rhj ,
7: q = B(F hj x̂+ ghj − F hi x− ghi )};
8: end while
9: set {Fi, gi, Ri} = {Fi, gi, Ri}h−1, ∀i ∈ I.
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The transmission strategy (71) must be slightly modified in order to deal with the proposed dual mode
MPC coherently. In addition to (71), the wireless sensor node is required to transmit the measurement
also when the state x(k) and its prediction x̂(k) lie in different control mode sets, i.e.,

[δ(k) = 0] ↔ [x(k)− x̂(k) ∈ E ] ∧[
[x(k) ∈ X0, x̂(k) ∈ X0] ∨ [x(k) 6∈ X0, x̂(k) 6∈ X0]

]
(92)

to avoid erroneous switches from outer to inner control mode.

We can finally define the Robust Energy-Aware MPC (REA-MPC) wireless feedback strategy in Al-
gorithm 2 and state its properties in the following theorem.

Algorithm 2 Robust Energy-Aware MPC (REA-MPC)
1: Offline:
2: run Algorithm 1 and get {Fi, gi, Ri}, ∀i ∈ I;
3: compute K, X0 and XT .

4: At k = 0:
5: receive x(0) from the wireless node;
6: set x̂(0) = x(0);
7: set x̂(j + 1) = (A+BFi)x̂(j) +Bgi, x̂(j) ∈ Ri,
8: j = 0, . . . ,M − 1;
9: transmit {x̂(j)}Mj=1, X0 and ε to the wireless node.

10: for all k > 0 do
11: if x(k) is received (because (92) is satisfied), then
12: set δ(k) = 1, otherwise δ(k) = 0;
13: end if
14: if δ(k) = 1 then
15: if x(k) ∈ X0 then
16: set u(k) = Kx(k);
17: else
18: set u(k) = B(Fix(k) + gi), x(k) ∈ Ri;
19: end if
20: else
21: if x̂(k) ∈ X0 then
22: set u(k) = Kx̂(k);
23: else
24: set u(k) = B(Fix̂(k) + gi), x̂(k) ∈ Ri;
25: end if
26: end if
27: if δ(k) = 1 or x̂(k + 1) has not yet been computed then
28: if x(k) ∈ X0 then
29: set x̂(k + j + 1) = (A+BK)x̂(k + j),
30: j = 0, . . . ,M − 1;
31: else
32: set x̂(k + j + 1) = (A+BFi)x̂(k + j) +Bgi,
33: x̂(k + j) ∈ Ri, j = 0, . . . ,M − 1;
34: end if
35: transmit {x̂(k + j)}Mj=1 to the wireless node.
36: end if
37: end for

Theorem 6. Let Algorithm 1 admit a solution. Then the state x of (69) receiving feedback according
to (92) and controlled by REA-MPC converges asymptotically to the target set XT while satisfying
constraints (70). If x(k) ∈ X0 at any time step k, then x(k + j) ∈ X0, ∀j ∈ N0.
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Figure 10: Control loop scheme with feedback from multiple wireless nodes

Proof. The outer mode explicit control law defined by Algorithms 1-2 is designed to be robust with
respect to the additive disturbance w and the feedback error q, induced by the transmission strat-
egy (92). Moreover, x ∈ XT if and only if ‖Qxx‖∞ ≤ c0. Then, ∀x(k) 6∈ XT , ∀` ∈ L, ‖Qxx`k|k‖∞ −
‖Qxx`k+N |k‖∞ ≥ 0. Hence, the outer mode stage cost can be shown to be non-increasing in time,
and the proof of asymptotical convergence to XT follows in a similar fashion of the proof of Theorem
1 in [134]. Once the controller switches to the inner control mode, robust invariance of closed-loop
trajectories with respect to X0 follows by Lemma 4.

2.3.4 Feedback from multiple wireless nodes

In this section we extend the results of Section 2.3.3 to the case of noisy state measurements. We
consider a control loop where feedback is provided by a wireless network with several sensor nodes,
where every node collects a noisy measurement of the state vector (see Figure 10). Redundancy is
exploited here in order to mitigate output measurement errors. Sensor nodes communicate among
them using low power (short-range) transmission, and determine whether to send (wide-area) the
measurement to the remote controller (and which value to send) by means of an estimation algorithm.

Wireless transmission strategy

In the following we consider a system of the form (69) subject to state and input constraints (70),
where we remove the hypothesis of exact state measurements. Instead, we assume that measure-
ments are provided by a local WSN of m nodes, indexed by i = 1, . . . ,m, each one measuring the
state vector x(k). The current measurement given by the i-th node is defined as

yi(k) = x(k) + vi(k) (93)

where vi ∈ V i is an unknown but bounded disturbance, and

V i = {v ∈ Rnx : |vj | ≤ vij,max, j = 1, . . . , nx} (94)

The vectors vimax = [vi1,max, . . . , v
i
nx,max], i = 1, . . . ,m, are assumed to be known to every node.

We define the transmission strategy as follows: At time step k let h = 1 +
(⌊

k
n

⌋
mod m

)
. We refer to

the h-th node as the master node. The positive integer parameter n represents the number of con-
secutive time steps for which the master node does not change. Then, a short range communication
transmitting the value yi(k) takes place from all the nodes i 6= h, called slave nodes, to the master
node. Once all the measurements are delivered, the master node performs a simple set-membership
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estimation by computing the box set

Y(k) =
m⋂
i=1

Y i(k)

= {x : bj,min ≤ xj ≤ bj,max, j = 1, . . . , nx} (95)

where

bj,min = max
i∈{1,...,m}

yij(k)− vij,max (96a)

bj,max = min
i∈{1,...,m}

yij(k) + vij,max (96b)

and
Y i(k) = {x : |yi(k)− x| ≤ vimax}, i = 1, . . . ,m (97)

are all the feasible sets of states according to each node’s measurements. Finally, the master node
transmits Y(k) to the controller through a long range wireless communication if and only if

∃j ∈ {1, . . . , nx} :

[bj,min − x̂j(k) < −εj ] ∨ [bj,max − x̂j(k) > εj ] (98)

where x̂(k) ∈ Rnx is a prediction of the current state value x(k), as in Section 2.3.3. Condition (98) is
equivalent to

Y(k) 6⊆ E ⊕ {x̂(k)} (99)

where E = {x : |xj | ≤ εj , j = 1, . . . , nx}. We represent the transmission condition (99) with [δ(k) = 1],
where δ is a binary variable.

Note that the predictions x̂ are exploited at every time step only by the current master node. Let
hk = 1 +

(
b knc mod m

)
and hk−1 = 1 +

(
bk−1

n c mod m
)
. At time k, if hk 6= hk−1, then the hk−1-th

node (the previous master) is required to transmit, along with the measurement, also the prediction
buffer to the hk-th node (the current master). We adopt a time-varying master node in order to
distribute long-range transmissions among all the sensor nodes, so to have uniform battery discharge.
Other scheduling policies may be possible, for instance in case only one node is equipped with a
communication device for the wide-area network.

Here we assume that the m nodes are spatially close to each other, so that the energy cost for a short
range transmission is very small with respect to a wide-area transmission, and the communication
activity between sensor nodes can be neglected. However, it is easy to extend the approach by using
a threshold logic also for local transmissions, and having slave sensor nodes send the measurements
to the master only when they are sufficiently far from a predicted value.

State estimation algorithm

Due to the output disturbance v, an exact state measurement is unavailable to the controller, either if
the measurements have been transmitted or not. Hence we need to estimate the actual state value
in order to feed the optimizer with an initial condition. It is easy to see that the transmission strategy
(71) is such that the state x(k) is always subject to a known set-membership relation, regardless of
the master node’s decision to forward the data. In particular, we have

x(k) ∈
{
Y(k) if δ(k) = 1
E ⊕ {x̂(k)} otherwise

(100)

Hence, in the absence of packet dropouts, information on the measured variables is gathered even
when no feedback is provided (i.e., when δ(k) = 0). We propose to use an algorithm based on set-
membership estimation [144], which takes into consideration this feature to reduce the uncertainty
on the state.
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Let Z(k|k) and Z(k + 1|k) be the sets of all the possible values of the state x at time k and k + 1,
respectively, given the feedback information at time k. The set Z(k + 1|k) is defined by the prediction
step

Z(k + 1|k) = AZ(k|k)⊕B {u(k)} ⊕W (101)

and the set Z(k|k) is obtained by means of the correction step

Z(k|k) = Z(k|k − 1) ∩
{
Y(k) if δ(k) = 1
E ⊕ {x̂(k)} otherwise

(102)

The estimation x̄(k|k) of the actual state x(k), given the feedback information at time k, is defined as
the centroid of Z(k|k), computed as

x̄(k|k) = c
(
Z(k|k)

)
,

1

nz

nz∑
i=1

zi (103)

where nz is the number of the vertices z1, z2, . . . , znz of Z(k|k).

This kind of set-membership algorithm can lead to very complex representations of Z (i.e., a high
number of vertices). In order to lower the computational burden and preserve the implementability
of the control scheme, in the simulations presented in Section 2.3.5 we use a sub-optimal estimation
algorithm derived from [145], where outbounding parallelotopes are used to approximate the actual
state set Z(k|k).

Energy-aware controller design

In the case of noisy state measurements we have to deal with three sources of uncertainty: the ad-
ditive disturbance w, the feedback error due to the transmission strategy (98), and the measurement
noise vi, i = 1, . . . ,m. In the rest of this section, we present an extension of the dual mode robust
MPC proposed in Section 2.3.3 to the case of uncertain feedback from multiple sensor nodes.

Inner mode

Lemma 6. Let K ∈ Rnu×nx and Ac , A+ BK be such that |λi(Ac)| < 1, ∀i = 1, . . . , nx. Let f(k) be
an unknown but bounded disturbance such that

f(k) ∈ Fh = W ⊕ {−BKhull{E ,V}} (104)

with V , ⋂m
i=1 V i. Let X0 ⊆ X be an RPI set for the system

x(k + 1) = Acx(k) + f(k) (105)

such that KX0 ⊆ U . Let x be the state of (69)–(70) and (93) receiving feedback according to (98)
and in closed-loop with

u(k) = Kx̄(k|k) (106)

If x(k) ∈ X0, then x(k + t) ∈ X0, ∀t ∈ N0.

Proof. Follows by similar arguments of Lemma 4. By combining (69), (93) and (106) we obtain

x(k + 1) = Ax(k) +BKx̄(k|k) + w(k) (107)

Moreover, note that (93), (94), (98), (101), (102) and (103) imply

x(k)− x̄(k|k) ∈ F(k) ,

{
V if δ(k) = 1
E otherwise

(108)

and, conservatively, x(k) − x̄(k|k) ∈ hull{V, E}, ∀δ(k). Hence, system (107) is over-approximated
by (105), which is nominally stable by hypothesis. Being X0 RPI for (105), it is RPI also for (107).
Fulfillment of constraints (70) follows by X0 ⊆ X and KX0 ⊆ U .
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Outer mode

Following the same lines of reasoning as in Section 2.3.3, consider again the explicit solution (84)
of the exact state-feedback min-max problem (78). In order to take into account the transmission
strategy (98) and the output noise (93), we consider the feedback control law

u(k) = Fj x̄(k|k) + gj (109)

where x̄(k|k) ∈ Rj . Now, let x(k) ∈ Ri. The difference between the optimal input (84) and the actual
input (109) is

u(k)− u∗(x(k)) = Fj x̄(k|k) + gj − Fix(k)− gi
Hence, the evolution of the system (69)-(93) in closed-loop with (109) can be recast as

x(k + 1) = (A+BFi)x(k) +Bgi + w(k) + q(k) (110)

where
q(k) = B

(
Fj x̄(k|k) + gj − Fix(k)− gi

)
(111)

models the input error due to the nonlinear transmission policy and the uncertain measurements. We
consider q(k) ∈ Q as an additional unknown but bounded disturbance, where

Q , {q ∈ Rnx : q = B
(
Fj x̄+ gj − Fix− gi, x, x̄ ∈ Rnx , x− x̄ ∈ Fh} (112)

and our goal is to obtain a robust control law with respect to both w and q. Similarly to previous
Algorithm 1, we set up Algorithm 3 to compute this control law in explicit form, based on the linear
system

x(k + 1) = Ax(k) +Bu(k) + w(k) + q(k) (113)

and the associated min-max MPC problem

min
{u`
k+j|k}

max
`∈L

N−1∑
j=0

L(x`k+j|k, u
`
k+j|k) (114a)

s.t. (78c), (78d), (78e), (78f), (113). (114b)

Algorithm 3 Iterative explicit min-max MPC, multiple node case
1: set h = 1, Q0 = ∅, Q1 = {0nx};
2: while Qh 6⊆ Qh−1 do
3: solve (114) with q ∈ Qh;
4: get the explicit solution data {Fi, gi, Ri}h, ∀i;
5: set Qh+1 = hull{Qh+1

ij , ∀i, j ∈ I}, where
6: Qh+1

ij , {q ∈ Rnx : x− x̄ ∈ Fh, x ∈ Rhi , x̄ ∈ Rhj ,
7: q = B(F hj x̄+ ghj − F hi x− ghi )};
8: end while
9: set {Fi, gi, Ri} = {Fi, gi, Ri}h−1, ∀i ∈ I.

The proposed algorithm for Robust Energy-Aware MPC with Noisy measurements (REAN-MPC) is
described in Algorithm 4. Note that since the actual value of the state x(k) is not known, the controller
is supposed to switch from outer to inner mode at time k if and only if

Z(k|k) ⊆ X0 (115)

which ensures that x(k) ∈ X0. Moreover, we know that the terminal set X0 is RPI with respect to the
closed-loop system; hence, we can reduce conservativeness in the estimation algorithm by using the
prediction step

Z(k + 1|k) = (AZ(k|k)⊕B {u(k)} ⊕W) ∩ X0 (116)

instead of (101), if at time k the inner control mode is active.
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Algorithm 4 Robust Energy-Aware MPC with Noisy measurements (REAN-MPC)
1: Offline:
2: run Algorithm 3 and get {Fi, gi, Ri}, ∀i ∈ I;
3: compute K, X0 and XT as in Section 2.3.4-2.3.4.

4: At k = 0:
5: receive Y(0) from the master node;
6: set Z(0|0) = Y(0);
7: set x̄(0|0) = c(Z(0|0));
8: set u(0) = B(Fix̄(0|0) + gi), x̄(0|0) ∈ Ri;
9: set Z(1|0) = AZ(0|0)⊕B {u(0)} ⊕W;

10: set x̂(0) = x̄(0|0);
11: set x̂(j + 1) = (A+BFi)x̂(j) +Bgi, x̂(j) ∈ Ri,
12: j = 0, . . . ,M − 1;
13: transmit {x̂(j)}Mj=1 and ε to the master node.

14: for all k > 0 do
15: if Y(k) is received (because (98) is satisfied) then
16: set δ(k) = 1, otherwise δ(k) = 0;
17: end if

18: set Z(k|k) = Z(k|k − 1) ∩
{

Y(k) if δ(k) = 1,
E ⊕ {x̂(k)} otherwise;

19: set x̄(k|k) = c
(
Z(k|k)

)
;

20: if Z(k|k) ⊆ X0 then
21: set u(k) = Kx̄(k|k);
22: set Z(k + 1|k) = (AZ(k|k)⊕B {u(k)} ⊕W) ∩ X0;
23: else
24: set u(k) = B(Fix̄(k|k) + gi), x̄(k|k) ∈ Ri;
25: set Z(k + 1|k) = AZ(k|k)⊕B {u(k)} ⊕W;
26: end if
27: if δ(k) = 1 or x̂(k + 1) has not yet been computed, then
28: set x̂(k) = x̄(k|k);
29: if Z(k|k) ⊆ X0, then
30: set x̂(k + j + 1) = (A+BK)x̂(k + j),
31: j = 0, . . . ,M − 1;
32: else
33: set x̂(k + j + 1) = (A+BFi)x̂(k + j) +Bgi,
34: x̂(k + j) ∈ Ri, j = 0, . . . ,M − 1;
35: end if
36: transmit {x̂(k + j)}Mj=1 to the master node.
37: end if
38: end for
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Theorem 7. Let Algorithm 3 admit a solution. Then the state x of (69)-(93) receiving feedback
according to (98) and controlled by REAN-MPC converges asymptotically to the target set XT while
satisfying constraints (70). If Z(k|k) ⊆ X0 at any time step k, then x(k + j) ∈ X0, ∀j ∈ N0.

Proof. Follows by similar arguments as in Theorem 6, noting that the outer mode explicit control law
defined by Algorithms 3-4 is designed to be robust with respect to the additive disturbance w and
the feedback error q, induced by the noisy measurements (93) and the transmission strategy (98).
Once the controller switches to the inner control mode, because (115) is satisfied, robust invariance
of closed-loop trajectories with respect to X0 follows by Lemma 6

2.3.5 Simulation results

To evaluate the performance of the proposed techniques we consider the open-loop unstable sys-
tem (69)-(70), with

A =

[
0.21 −0.39
−0.39 0.82

]
B =

[
0
1

]
X = {x ∈ R2 : |xi| ≤ 2, i = 1, 2}

U = {u ∈ R : |u| ≤ 1}
W = {w ∈ R2 : |wi| ≤ 0.06, i = 1, 2}

and threshold vector ε = [0.1, 0.1]T. For the case of uncertain state measurements, we assume that
the output noise is defined as (93)-(94) with vimax = [0.06, 0.06]T, ∀i, and that m = 3 sensor nodes
provide feedback to the controller.

The presented energy-aware control schemes are compared to “traditional” robust MPCs, which do
not take into account the minimization of transmissions over the wireless channel. In this case, no
predictions are sent the sensor nodes, and the collected measurements are simply transmitted to
the controller at every time step, regardless of any threshold logic. We refer to R-MPC as the robust
MPC controller in the exact state feedback framework investigated in Section 2.3.3, and to RN-MPC
as the robust MPC controller in the case of noisy measurements as described in Section 2.3.4. Note
that R-MPC and RN-MPC algorithms are special cases of REA-MPC and REAN-MPC, respectively,
where E = ∅ and M = 0.

We run Ns = 50 simulations of T = 10 time steps each, randomly choosing the initial states x(0) ∈ X .
The weight matrices used to compute the outer and the inner controllers are Qx = I2, Qu = 0.1. The
control horizon is N = 5 and the estimation horizon is M = 10. The constant gain used in the inner
control mode is K = [0.3794, −0.7931]. The terminal set X0, target set XT , and threshold set E used
in simulations for REAN-MPC are shown in Figure 11 (corresponding sets for other controllers are
analogous). By running Algorithms 1 and 3, we obtain an explicit control law for outer controllers in
REA-MPC and REAN-MPC schemes, respectively, defined over 7 polyhedral partitions of the state
space (see Figure 12).

As a benchmark index to compare the performance of the energy-aware schemes we consider two
quantities: the rate of data transmission over the wireless channel, computed assuming equal power
consumption in transmitting and receiving packets, as usual for short range wireless nodes [116], and
the cumulated cost function

J iexp ,
T∑
k=1

(
‖Qxxi(k)‖∞ + ‖Quui(k)‖∞

)
(117)

where i indexes the i-th simulation. The average results are reported in Table 2, where

Javg ,
1

Ns

Ns∑
i=1

J iexp

A comparison of the data exchange over the wireless channel in the different control schemes is
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Figure 11: Terminal set X0, target set XT , and threshold set E used in simulations for REAN-MPC
controller

Table 2: Energy-Aware MPC: simulation results
Javg Tx. rate

Exact measurements
R-MPC 2.606 100.0%
REA-MPC 2.687 47.2%
Noisy measurements
RN-MPC 2.632 100.0%
REAN-MPC 2.724 54.0%

shown in Figure 13. Figures 14 and 15 show histograms of Jexp and radio utilization, respectively, for
REA-MPC and REAN-MPC controllers. Data are given as percentage of analogue values obtained
from R-MPC and RN-MPC.

REA and REAN model predictive controllers achieve a good trade-off between performance and
transmission rate: REA-MPC grants a reduction in radio utilization by 52.8%, with a 3.1% loss in the
experimental cost function, with respect to R-MPC; REAN-MPC obtains similar results, with a 46.0%
saving in transmissions, and a loss of 3.5% in performance, compared to RN-MPC.

We can see from Figure 13 that with the proposed energy-aware approach a relevant part (' 50%)
of the total wireless communications is spent to deliver updated predictions to the sensor nodes. In
some frameworks, e.g. when the calculation of the control law does not require external information
and nodes have sufficient computation capabilities, it could be possible to let the predictions be
computed locally by the sensor nodes. In this way one would avoid the need of having transmissions
from the controller, dramatically cutting the overall radio power consumption further.

Robust control schemes based on min-max optimization problems like those presented here can
lead to conservative control action sometimes, since stability with respect to every possible distur-
bance realization sequence is required. In such cases nominal controllers can be adopted, which
in general provide less conservative system performance at the expenses of lack of stability and
constraint fulfillment properties. In particular, in this energy-aware framework it is straightforward to
derive nominal counterparts of REA-MPC and REAN-MPC as explicit MPCs obtained by solving (91)
and (114), respectively, with W = Q = {0nx} and XT = Rnx . Comparisons between robust and
nominal energy-aware control schemes are reported in [114,115].
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Figure 12: State space partition of explicit control law in REAN-MPC outer controller

Figure 13: Comparison of traffic over the wireless channel

Discussion on network model

In the following we revise the assumptions made on the wireless network model (i.e., no delay nor
packet loss can occur) and present considerations on how to extended the previous results if these
assumptions are removed.

As mentioned in Section 2.3.1, the presence of delays in the network is not a crucial aspect to be
explicitly considered in our framework, as they are often negligible if the sampling time is sufficiently
large. Moreover, common delay compensation techniques can be implemented independently of the
higher-level energy-aware control scheme, e.g., by augmenting the process model with the maximum
estimated delay [142,143].

On the contrary, the presence of packet loss in the controller-sensors wireless link needs to be
properly addressed. Dropouts can occur in the forward channel (transmission of predictions from
controller to sensors), or in the backward channel (transmission of measurements from sensors to
controller). Data loss in the forward channel can be handled safely with minor modifications to the
proposed control scheme. Namely, if at time k the sensor nodes do not receive an updated prediction
buffer as expected, they simply transmit the new measurements to the controller at the next time step
k + 1, regardless of the threshold logic. Hence, forward dropouts only affect the transmission rate
over the wireless link, preserving convergence of the closed-loop system. Instead, packet dropouts
in the backward channel may introduce stability issues if not properly managed. Let us consider the
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Figure 14: Histograms of J iexp for (a) REA-MPC and (b) REAN-MPC, normalized with respect to
J (R−MPC)i
exp and J (RN−MPC)i

exp , respectively.

case of feedback from multiple noisy sensors as described in Section 2.3.4 (exact state feedback
can be handled with similar arguments). The absence of packet loss is assumed in the inner mode
design (definition of F in (108)), in the outer mode design (definition of Q in (112)), and in the state
estimation algorithm (correction step (102)). In particular, if transmitted measurements can be lost,
then in general x(k) − x̄(k|k) ∈ E does not hold, and it is necessary to obtain an analogous relation
in order to preserve the control scheme functioning. Assuming a maximum number of consecutive
packet dropouts p, this can be done by imposing a communication horizon c, defined as the maximum
allowed time interval between a correctly delivered measurement transmission and the next sensors
transmission: If the controller receives the last measurements packet at time k, then the sensors are
required to transmit updated measurements at time k + c regardless of the threshold logic. Then,
c + p is the maximum time interval between two consecutive measurements acknowledged by the
controller. Based on this time bound, it is possible to compute a set Ẽ such that x(k) − x̄(k|k) ∈ Ẽ ,
by means of an iterative algorithm where the closed-loop system is considered to receive feedback
every c+ p time steps.

2.3.6 Conclusions

We presented an energy-aware design approach for control systems based on feedback from battery-
operated wireless sensors. We investigated both a single-node scenario where exact state measure-
ments are available, and a multiple-node scenario where measurements are affected by noise and
multiple redundant wireless nodes are used to mitigate the effects of disturbance. We proposed a
novel WSN transmission strategy intended to save sensors battery by minimizing the communica-
tions over the wireless channel. This strategy is based on a threshold logic where the value of the
threshold can be opportunely designed to tune the trade-off between closed-loop performance and
transmission rate. Moreover, we presented two robust control schemes based on explicit model pre-
dictive control with guaranteed convergence and constraint fulfillment properties. Simulation results
have shown that a substantial reduction in radio utilization (' 50%, which roughly corresponds to dou-
bling the life of the wireless sensor nodes) can be achieved with a narrow loss in system performance
(' 3%).
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Figure 15: Histograms of radio utilization for (a) REA-MPC and (b) REAN-MPC.

2.4 DMPC of Dynamically-Coupled Linear Systems
D. Barcelli, A. Bemporad

2.4.1 Introduction

Ideas for decentralizing and hierarchically organizing the control actions in industrial automation sys-
tems date back to the 70’s [111], but were mainly limited to the analysis of stability of decentralized
linear control of interconnected subsystems, so the interest faded. Decentralized control and estima-
tion schemes based on distributed convex optimization ideas based on Lagrangean relaxations have
been proposed recently by various authors, see e.g. [108]. Here global solutions can be achieved
after iterating a series of local computations and inter-agent communications.

Large-scale multi-variable control problems, such as those arising in the process industries, are often
dealt with model predictive control (MPC) techniques. In MPC the control problem is formulated
as an optimization one, where many different (and possibly conflicting) goals are easily formalized
and state and control constraints can be included. Many results are nowadays available concerning
stability and robustness of MPC, see e.g. [103] and references therein. However, centralized MPC
is often unsuitable for control of large-scale networked systems, mainly due to lack of scalability and
to maintenance issues of global models. The idea of decentralized MPC (DMPC) is to replace the
original large size optimization problem by a number of smaller and easily tractable ones that work
iteratively and cooperatively towards achieving a common, system-wide control objective. The goal
of the decomposition is twofold: first, each subproblem is much smaller than the overall problem, and
second, each subproblem is coupled to only a few other subproblems. Along with the benefits of a
decentralized design, inherent issues in ensuring stability and feasibility of the system must be faced
due to the mismatch of predictions that neighboring subsystems make about each other.

A few contributions have appeared in recent years in the context of DMPC. In [104] the system under
control is composed by a number of unconstrained linear discrete-time subsystems with decoupled
input signals and closed-loop stability is enforced through contractive constraints. In [112] the authors
propose a cooperation-based distributed MPC algorithm based on a process of negotiations among
DMPC agents, where the model considered for the subsystems only admits coupling through the
control inputs. In [106] the authors consider the control of dynamically decoupled subsystems, whose
state vectors are only coupled by a global performance objective. Closed-loop stability is ensured by
constraining the state trajectory predicted by each agent close enough to the trajectory predicted
at the previous time step that has been broadcasted. Dynamically decoupled submodels are also
considered in [109]. Closed-loop stability is achieved by including sufficient stability conditions based
on prediction errors in each DMPC subproblem.
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A DMPC design approach was also proposed in [100] for process models that are not necessarily
dynamically decoupled. The decoupling assumption only appears in the prediction models used by
different MPC controllers. The degree of chosen decoupling represents a tuning knob of the ap-
proach. Sufficient criteria for the asymptotic stability of the process model in closed loop with the set
of decentralized MPC controllers were given. A comparison of the above strategy with other decen-
tralized strategy is reported in [105] on a problem of distributed power network control. Moreover, to
cope with the case of a communication channel among neighboring MPC controllers which is faulty, a
sufficient condition for ensuring closed-loop stability of the overall closed-loop system when a certain
fixed number of packets containing state measurements may be lost was suggested in [101].

This work extends and generalizes the latter results and handles the case of tracking of constant
output references, proposing a strategy to achieve offset-free tracking despite the decentralization.
More general stability conditions are given for decentralized MPC in the presence of packet drops.
The above are tested on a realistic simulation example of decentralized temperature control in a
railcar.

2.4.2 Problem setup

We recall the MPC problem setup of [100].

Centralized model predictive control

Consider the problem of regulating the discrete-time linear time-invariant system{
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t)
(118)

to the origin while fulfilling the constraints

umin ≤ u(t) ≤ umax (119)

at all time instants t ∈ Z0+, where Z0+ is the set of nonnegative integers, x(t) ∈ Rn, u(t) ∈ Rm and
y(t) ∈ Rp are the state, input, and output vectors, and the pair (A,B) is stabilizable.

Assumption 2. Matrix A in (118) has all its eigenvalues strictly inside the unit disc.

Assumption 2 restricts the strategy and stability results to processes that are open-loop asymptotically
stable, leaving to the controller the mere role of optimizing the performance of the closed-loop system.

Consider the following finite-horizon optimal control problem

V (x(t)) = min
U

x′t+NPxt+N +

N−1∑
k=0

x′kQxk + u′kRuk (120a)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1 (120b)
yk = Cxk, k = 0, . . . , N (120c)
x0 = x(t) (120d)
umin ≤ uk ≤ umax, k = 0, . . . , Nu − 1 (120e)
uk = 0, k = Nu, . . . , N − 1 (120f)

where, at each time t, U , {u0, . . . , uNu−1} is the sequence of future input moves, xk denotes
the predicted state vector at time t + k, obtained by applying the input sequence u0, . . . , uk−1 to
model (118), starting from x(t). In (120) N > 0 is the prediction horizon, Nu ≤ N is the input horizon,
and “≤” denotes component-wise inequalities. In (120) we assume that Q = Q′ ≥ 0, R = R′ > 0,
P = P ′ ≥ 0 are square weight matrices defining the performance index, and P solves the Lyapunov
equation P = A′PA+Q.

Problem (120) can be recast as a quadratic programming (QP) problem (see e.g. [103,110]), whose
solution U∗(x(t)) , {u∗0 . . . u∗Nu−1} ∈ Rm×Nu is a sequence of optimal control inputs. Only the first

50



input u(t) = u∗0 is actually applied to system (118), as the optimization problem (120) is repeated at
time t+ 1, based on the new state x(t+ 1).

Decentralized prediction models

In general the matrices A, B in (118) have a certain number of zero or negligible components corre-
sponding to a partial dynamical decoupling of the process, or are even block diagonal in case of total
dynamical decoupling.

Let M be the number of decentralized control actions that we want to design, for example M = m
in case each individual actuator is governed by its own controller. For all i = 1, . . . ,M , we define
xi ∈ Rni as the vector collecting a subset Ixi ⊆ {1, . . . , n} of the state components,

xi = W ′ix = [ xi1 ··· xini ]′ ∈ Rni

where Wi ∈ Rn×ni collects the ni columns of the identity matrix of order n corresponding to the
indices in Ixi, and, similarly, ui = Z ′iu = [ ui1 ··· uimi ]′ ∈ Rmias the vector of input signals tackled by the
i-th controller, where Zi ∈ Rm×mi collects mi columns of the identity matrix of order m corresponding
to the set of indices Iui ⊆ {1, . . . ,m}. Note that

W ′iWi = Ini , Z
′
iZi = Imi , ∀i = 1, . . . ,M (121)

where I(·) denotes the identity matrix of order (·). By definition of xi we obtain

xi(t+ 1) = W ′ix(t+ 1) = W ′iAx(t) +W ′iBu(t) (122)

An approximation of (118) is obtained by changing W ′iA in (122) into W ′iAWiW
′
i and W ′iB into

W ′iBZiZ
′
i, therefore getting the new prediction model of reduced order

xi(t+ 1) = Aix
i(t) +Biu

i(t) (123)

where matrices Ai = W ′iAWi ∈ Rni×ni and Bi = W ′iBZi ∈ Rmi×mi are submatrices of the original A
and B matrices, respectively, describing in a possibly approximate way the evolution of the states of
subsystem #i.

The choice of the pair (Wi, Zi) of decoupling matrices (and, consequently, of the dimensions ni, mi

of each submodel) is a tuning knob of the DMPC procedure.

We want to design a controller for each set of moves ui according to the prediction model (123) and
based on feedback from xi, for all i = 1, . . . ,M . Note that in general different states xi, xj and
different ui, uj may share common components. To avoid ambiguities on the control action provided
to the process, we impose that only a subset I#

ui ⊆ Iui of input signals computed by controller #i is
actually applied to the process without ambiguity, and for the sake of simplicity of notation since now
on we assume that M = m, i.e., that controller #i only controls the ith input signal.

Decentralized optimal control problems

Let the following assumption be satisfied:

Assumption 3. Matrix Ai has all its eigenvalues strictly inside the unit disc, ∀i = 1, . . . ,M .

Assumption 3 restricts the degrees of freedom in choosing the decentralized models (if Ai = A
for all i = 1, . . . ,M is the only choice satisfying Assumption 3, then no decentralized MPC can be
formulated within this framework). For all i = 1, . . . ,M consider the following infinite-time constrained
optimal control problems

Vi(x(t)) = min
{uik}

∞
k=0

∞∑
k=0

(xik)
′W ′iQWix

i
k + (uik)

′Z ′iRZiu
i
k =

min
ui0

(xi1)′Pix
i
1 + xi(t)′W ′iQWix

i(t) + (ui0)′Z ′iRZiu
i
0 (124)

s.t. xi1 = Aix
i(t) +Biu

i
0 xi0 = W ′ix(t) = xi(t) (125)

uimin ≤ ui0 ≤ uimax uik = 0, ∀k ≥ 1 (126)
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where Pi = P ′i ≥ 0 is the solution of the Lyapunov equation

A′iPiAi − Pi = −W ′iQWi (127)

that exists by virtue of Assumption 3. Problem (126) corresponds to a finite-horizon constrained
problem with control horizon Nu = 1 and linear stable prediction models. Note that only the local
state vector xi(t) is needed to solve Problem (126).

At time t, each controller MPC #i measures (or estimates) the state xi(t) (usually corresponding to
local and neighboring states), solves problem (126) and obtains the optimizer u∗i0 = [u∗i10 , . . . , u∗ii0 , . . . ,

u∗imi0 ]′ ∈ Rmi . In the simplified case M = m and I#
ui = i, only the i-th sample of u∗i0 , ui(t) = u∗ii0

will determine the i-th component ui(t) of the input vector actually implemented to the process at
time t. The inputs u∗ij0 , j 6= i, j ∈ Iui to the neighbors are discarded, their only role is to provide a
better prediction of the state trajectories xik, and therefore a possibly better performance of the overall
closed-loop system.

The collection of the optimal inputs of all the M MPC controllers,

u(t) = [u∗11
0 . . . u∗ii0 . . . u∗mm0 ]′ (128)

is the actual input commanded to process (118). The optimizations (126) are repeated at time t+ 1,
based on the new states xi(t + 1) = W ′ix(t + 1), according to the usual receding horizon control
paradigm.

The degree of coupling between the DMPC controllers is dictated by the choice of the decoupling
matrices (Wi, Zi). Clearly, the larger the number of interactions captured by the submodels, the
more complex the formulation (and, in general, the solution) of the optimization problems (126) and
hence the computations performed by each control agent. Note also that a higher level of information
exchange between control agents requires a higher communication overhead.

Convergence properties of decentralized MPC

The stability theorem proved in [100] provides closed-loop convergence results of the proposed
DMPC scheme using the cost function V (x(t)) ,

∑M
i=1 Vi(W

′
ix(t)) as a Lyapunov function for the

overall system. It is useful to recall here some quantities introduced in [100]

∆ui(t) , u(t)− Ziu∗i0 (t), ∆xi(t) , (I −WiW
′
i )x(t)

∆Ai , (I −WiW
′
i )A, ∆Bi , B −WiW

′
iBZiZ

′
i

(129)

and

∆Y i(x(t)) , WiW
′
i (A∆xi(t) +BZiZ

′
i∆u

i(t)) + ∆Aix(t) + ∆Biu(t) (130)
∆Si(x(t)) ,

(
2(AiW

′
ix(t) +Biu

∗i
0 (t))′ + ∆Y i(x(t))′Wi

)
PiW

′
i∆Y

i(x(t)) (131)

2.4.3 Decentralized MPC under arbitrary packet loss

In the previous section we assumed that the communication model among neighboring MPC con-
trollers was faultless, so that each MPC agent could successfully receive the information about the
states of its corresponding submodel. However, one of the main issues in networked control systems
is the unreliability of communication channels, which may result in data packet dropout. In this sec-
tion we derive a sufficient condition for ensuring convergence of the DMPC closed-loop in the case
packets containing measurements are lost for an arbitrary but upper-bounded number N of consec-
utive time steps. The results shown here are based on formulation (126) and rely on the open-loop
asymptotic stability Assumptions 2 and 3. The issue is still non-trivial, as if a set of measures for
subsystem i is lost, this would affect not only the trajectory of subsystem i because of the improper
control action ui, but, due to the dynamical coupling, also the trajectories of subsystems j ∈ J , where
J = {j | i ∈ Ixj ∪ Iuj}, and thus the closed-loop stability of the overall system may be endangered.
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By relying on open-loop stability, setting u(t) = 0 is a natural choice for backup input moves when no
state measurements are available because of a communication blackout. The next theorem proves
asymptotic closed-loop stability of decentralized MPC under packet loss. The proof of the theorem
generalizes and unifies the results of [100,101].

Theorem 8. Let N be a positive integer such that no more than N consecutive steps of channel
transmission blackout can occur. Assume u(t) = 0 is applied when no packet is received. Let
Assumptions 2, 3 hold and ∀i = 1, . . . ,M define Pi as in (127), ∆ui(t), ∆xi(t), ∆Ai, ∆Bi as in (129),
∆Y i(x(t)) as in (130),

∆Sij(x) , [2(AiW
′
ix+Biu

∗i
0 (x))′W ′i + ∆Y i(x)′](Aj−1)′WiPiW

′
iA

j−1∆Y i(x) (132)

and let ξi(x) , AiW ′ix+Biu
∗i
0 (x). If the condition

(i)

M∑
i=1

(
x′WiW

′
iQWiW

′
ix+ ξi(x)′(Pi −W ′i (Aj−1)′WiPiW

′
iA

j−1Wi)ξi(x)−∆Sij(x)
)
≥ 0,

∀x ∈ Rn, ∀j = 1, ..., N (133a)

is satisfied, or the condition

(ii)

M∑
i=1

(
x′WiW

′
iQWiW

′
ix+ ξi(x)′(Pi −W ′i (Aj−1)′WiPiW

′
iA

j−1Wi)ξi(x)−∆Sij(x) + u∗i0 (x)′Z ′iRZiu
∗i
0 (x)

)
− αx′x ≥ 0, ∀x ∈ Rn, ∀j = 1, ..., N (133b)

is satisfied for some scalar α > 0, then the decentralized MPC scheme defined in (126)–(128) in
closed loop with (118) is globally asymptotically stable under packet loss.

Proof. Let {tk}∞k=0 be the sequence of sampling steps at which packet information is received, and
let jk = tk+1 − tk the corresponding number of consecutive packet drops, 1 ≤ jk ≤ N . We
want to examine the difference Vi(x(tk+1)) − Vi(x(tk)), where Vi(x(t)) is the optimal cost of sub-
problem (126) at time t. As the backup input u(tk + h) = 0 is applied from time tk to tk+1 − 1
(h = 0, . . . , jk − 1), we have x(tk+1) = Ajk−1(Ax(tk) + Bu(tk) ) = Ajk−1(∆Y i(x(tk)) + Wiξ(x(tk))).
Since xi(tk+1) = W ′ix(tk+1), at time tk+1 the optimal cost Vi(x(tk+1)) of subproblem (126) can be
rewritten as Vi(x(tk+1)) = (W ′ix(tk+1))′W ′iQWiW

′
ix(tk+1) + (AiW

′
ix(tk+1) + Biu

∗i
0 (tk+1))′Pi(AiW ′ix(tk+1) +

Biu
∗i
0 (tk+1)) + u∗i0 (tk+1)′Z ′iRZiu

∗i
0 (tk+1), where Pi is defined as in (127) and is such that xi0Pix

i
0 =∑∞

k=0(xik)
′W ′iQWix

i
k with xik+1 = Aixk. Hence, considering that ui0(tk+1) = 0 is a feasible suboptimal

choice for problem (126), we obtain the following inequality

Vi(x(tk+1)) ≤ x′(tk+1)WiPiW
′
ix(tk+1) ≤ (Ajk−1(∆Y i(x(tk)) +

Wiξ(x(tk))))
′WiPiW

′
iA

jk−1(∆Y i(x(tk)) +Wiξ(x(tk))) =

∆Y (x(tk))
′(Ajk−1)′WiPiW

′
iA

jk−1∆Y (x(tk)) + 2ξ(x(tk))
′ ·

W ′i (A
jk−1)′WiPiW

′
iA

jk−1∆Y (x(tk)) + ξ(x(tk))
′W ′i (A

jk−1)′

WiPiW
′
iA

jk−1Wiξ(x(tk)) =

∆Sijk(x(tk)) + ξ(x(tk))
′W ′i (A

jk−1)′WiPiW
′
iA

jk−1Wiξ(x(tk)) (134)

Since Vi(xi(tk)) = (W ′ix(tk))
′(W ′iQWi)W

′
ix(tk) + ξ(x(tk))

′Pi· ξ(x(tk)) + u∗i0 (tk)
′Z ′iRZiu

∗i
0 (tk) we get

Vi(x(tk+1))− Vi(xi(tk)) ≤ ∆Sijk(x(tk)) + ξ(x(tk))
′W ′i (A

jk−1)′WiPiW
′
iA

jk−1Wiξ(x(tk)) +

−((W ′ix(tk))
′(W ′iQWi)W

′
ix(tk) + ξ(x(tk))

′Piξ(x(tk))u
∗i
0 (tk)

′Z ′iRZiu
∗i
0 (tk))

≤ ∆Sijk(x(tk))− u∗i0 (tk)
′Z ′iRZiu

∗i
0 (tk)− x(tk)

′Wi(W
′
iQWi)W

′
ix(tk) +

−ξ(x(tk))
′(Pi −W ′i (Ajk−1)′WiPiW

′
iA

jk−1Wi)ξ(x(tk)) (135)

Let V (x(t)) ,
∑M

i=1 Vi(W
′
ix(t)). If (133a) holds, then it follows that V (x(tk)) is a decreasing function

of k lower-bounded by zero, and therefore converges as k →∞, which proves limk→∞ V (x(tk+1))−
V (x(tk)) = 0. This in turn implies that limk→∞ u

i∗
0 (tk)

′Z ′iRZiu
i∗
0 (tk) = 0. As R > 0 and Zi are
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full-column-rank matrices, it follows that Z ′iRZi > 0 and hence that limk→∞ u(tk) = 0. If (133b)
holds, then in a similar way it is immediate to see that limk→∞ x(tk) = 0 which again implies
limk→∞ u(tk) = 0, as around the origin u(tk) is a linear function of x(tk) (corresponding to the
unconstrained solution of problem (126)). Since in the presence of packet drop u(t) = 0, the in-
put sequence . . . , 0, 0, u(tk), 0, . . . , 0, u(tk+1), 0, . . . , 0, u(tk+2), . . . is actually applied to the process,
clearly limt→∞ u(t) = 0. As asymptotically stable linear systems are also input-to-state stable [107],
it immediately follows that limt→∞ x(t) = 0.

Note again that around the origin the conditions in (133) become a quadratic form to be checked
positive semidefinite, so local stability of (126)–(128) in closed loop with (118) under packet loss can
be tested for any arbitrary fixed N .

Note also that conditions (133) are a generalization of the result of [100], as for j = 1 (no packet
drop) matrix Pi −W ′i (Aj−1)′WiPiW

′
iA

j−1Wi = Pi − Pi = 0.

2.4.4 Extension to set-point tracking

Consider the following discrete-time linear global process model{
z(t+ 1) = Az(t) +Bv(t) + Fd(t)

h(t) = Cz(t)
(136)

where z ∈ Rn is the state vector, v ∈ Rm is the input vector, y ∈ Rp is the output vector, Fd ∈ Rd is
a vector of measured disturbances. Let A satisfy Assumption 2 and assume Fd is constant. We aim
at solving a set-point tracking problem so that h tracks a given reference value r ∈ Rp, despite the
presence of Fd. In order to recast the problem as a regulation problem, assume steady-state vectors
zr ∈ Rn and vr ∈ Rm exist solving the static problem{

(I −A)zr = Bvr + Fd
r = Czr

(137)

and let x = z − zr and u = v − vr. Input constraints vmin ≤ v ≤ vmax are mapped into constraints
vmin − vr ≤ u ≤ vmax − vr7.

Proposition 1. Under the global coordinate transformation (137), the process (136) under the de-
centralized MPC law (126)–(128) is such that h(t) converges asymptotically to the set-point r, under
the assumption of Theorem in [100] or, in the presence of packet drops, of Theorem 8.

Note that problem (137) is solved in a centralized way. Defining local coordinate transformations vir,
zir based on submodels (123) would not lead, in general, to offset-free tracking, due to the mismatch
between global and local models. This is a general observation one needs to take into account in
decentralized tracking. Note also that both vr and zr depend on Fd as well as r, so problem (137)
should be solved each time Fd or r change.

2.5 MPC of Stochastic Networked Control Systems
D. Bernardini, M.C.F. Donkers, A. Bemporad, W.M.P.H. Heemels

2.5.1 Introduction

In recent years, a vast literature has been produced on modeling, analysis and control design of
Networked Control Systems (NCSs) (see, e.g., [146,148,154,159] and references therein). Besides
the many advantages offered by NCSs, such as increased system flexibility and low installation and

7In case vr 6∈ [vmin, vmax], perfect tracking under constraints is not possible, and an alternative is to set

[ zrvr ] = arg min
∥∥[ I−A −B

C 0

]
[ zrvr ]− [ Fd

r ]
∥∥

s.t. vmin ≤ vr ≤ vmax
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Figure 16: NCS overview scheme

maintenance costs, the presence of a network also introduces sources of uncertainty that need to be
properly managed. These uncertainties are caused by time-varying delays, time-varying sampling
intervals, and packet dropouts. A traditional approach to deal with such phenomena is to attribute
deterministic bounds to them, neglecting any available statistical information. However, network-
induced disturbances can be often, and more accurately, modeled as random processes described
by a probability distribution. A common way to tackle such stochastic disturbances which have a
probabilistic description is to assume that they can take only a finite or countable number of values,
assigning a realization probability to every possible value (see, e.g, [155, 158]). Nonetheless, with
this approach nothing can be concluded about the stability of the closed-loop system if the uncertain
parameters have a continuous, uncountable domain.

In this work, we consider a linear plant and propose a control scheme to stabilize the NCS system in
the presence of time-varying sampling intervals and time-varying delays, which are modeled as ran-
dom processes described by continuous probability density functions (PDFs). For stability analysis of
such systems given a controller and dealing with continuous PDFs two lines of research can be dis-
tinguished. First there is the approach of [147], based on the modeling of continuous-time impulsive
systems. Alternatively, [152] use a NCS model in the discrete-time domain, in such a way that the
statistical properties of the network model are preserved in a suitable sense. As here the objective is
controller synthesis based on Model Predictive Control (MPC) for NCS, we will exploit the approach
of [152] since MPC is typically suitable for discrete-time models.

The basic idea of MPC is to obtain the control input by solving at each sampling time an open-loop
finite-horizon optimal control problem based on a given prediction model of the process, by taking the
measured (or estimated) state as the initial state. Recently stochastic MPC (SMPC) control schemes
were formulated, where the available statistical information on the disturbance is exploited in order
to minimize a stochastic performance index (see, e.g., [151, 157], and references therein). In this
work we adopt a formulation derived from [149] based on scenario enumeration, which exploits ideas
from multi-stage stochastic optimization to possibly improve closed-loop performances with respect to
standard deterministic MPC algorithms. Integrating the NCS models of [152] with the SMPC of [149]
offers a general framework for MPC control of stochastic NCSs.

This work is organized as follows. The considered NCS model subject to stochastic uncertainty is
introduced in Section 2.5.2. In Section 2.5.3, an overapproximation method intended to make the
NCS model amenable for control synthesis, without removing the modeled stochastic information is
proposed. Relying on the approximated model, a stabilizing stochastic MPC control scheme based
on scenario enumeration is described in Section 2.5.4. Simulation results for a numerical example
are shown in Section 2.5.5, and conclusions are drawn in Section 2.5.6.

2.5.2 NCS Model and Problem Statement

In the following we describe a NCS that includes unknown time-varying sampling intervals and un-
known time-varying delays. A schematic of the considered NCS is shown in Fig. 16. It consists of a
linear continuous-time plant

ẋ(t) = Ax(t) +Bu(t) (138)

with A ∈ Rnx×nx and B ∈ Rnx×nu , and a discrete-time controller, connected over a communication
network that induces network delays, namely the sensor-to-controller delay τ sc and the controller-to-
actuator delay τ ca. A complete measurement of the state vector x(t) is assumed to be available at
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the sampling time instants

sk =
∑k−1

i=0
hi ∀k ≥ 1, s0 = 0, (139)

which may not be equidistantly spaced in time due to the time-varying sampling intervals hk > 0.
The sequence s0, s1, s2, . . . is assumed to be strictly increasing, i.e., sk+1 > sk, for all k ∈ N. We
denote by xk = x(sk) the kth sampled value of the state x and by uk the corresponding control value.
The zero-order-hold (ZOH) function in Fig. 16 transforms the discrete-time control input uk to the
continuous-time control input u(t) applied to the plant.

In the presented model both the variable computation time τ ck , needed to evaluate the control law, and
the time-varying network-induced delays, i.e., the sensor-to-controller delay τ sck and the controller-to-
actuator delay τ cak , are taken into account. We assume that the sensor acts in a time-driven fashion
(i.e., sampling occurs at the times sk defined in (139)), and that both the controller and the actuator
act in an event-driven fashion (i.e., they respond instantaneously to newly arrived data). Under these
assumptions, all three delays can be captured by a single delay τk = τ sck + τ ck + τ cak (see, e.g., [159]).
Considering this total delay τk, the continuous-time input signal u(t) can be defined as

u(t) = uk if t ∈ [sk + τk, sk+1 + τk+1), ∀k ∈ N. (140)

Furthermore, we assume that both the sampling intervals and the delays are bounded, with the
delays equal or smaller than the sampling intervals, i.e., τk ≤ hk, for all k ∈ N. We also assume that
the realizations of hk and τk are driven by an Independent and Identically Distributed (IID) random
process, characterized by a given PDF, in accordance with the following assumption.

Assumption 4. There exists a hmax such that, for each k ∈ N, the sampling interval hk and the
network delay τk are described by an IID random process, characterized by a PDF p : R2 → R+, with
p(h, τ) = 0 for all (h, τ) 6∈ Θ, where

Θ =
{

(h, τ) ∈ R2 | h ∈ (0, hmax] ∧ τ ∈ [0, h]
}
. (141)

By discretizing the linear plant (138) at the sampling times sk, k ∈ N, we obtain

xk+1 = eAhkxk +

∫ hk−τk

0
eAsdsBuk +

∫ hk

hk−τk
eAsdsBuk−1.

Using now the lifted state vector ξk =
[
xTk uTk−1

]T, that includes the current system state and past
system input and whose dimension is nξ = nx + nu, the NCS is formulated as the stochastically
parameter-varying discrete-time system

ξk+1 =

[
eAhk

∫ hk
hk−τk e

AsdsB

0 0

]
︸ ︷︷ ︸ ξk +

[∫ hk−τk
0 eAsdsB

I

]
︸ ︷︷ ︸uk.

=: Ãhk,τk =: B̃hk,τk (142)

The problem studied in this work is to design a control scheme for the NCS model given by sys-
tem (142), in where the sampling intervals and transmission delays satisfy Assumption 4. The pur-
pose of the control action is optimize a given performance index while guaranteeing mean-square
closed-loop stability, according to the following definition.

Definition 2. System (142) is said to be Uniformly Globally Mean-Square Exponentially Stable
(UGMSES) if there exist c ≥ 0 and 0 ≤ λ < 1 such that for any initial condition ξ0 ∈ Rnξ it holds
that

E[‖ξk‖2] ≤ c‖ξ0‖2λk, ∀k ∈ N. (143)

2.5.3 Overapproximation of NCS Model

Direct controller synthesis based on (142) is difficult, due to the infinite number of possible values
of the sampling intervals and delays (hk, τk) ∈ Θ, and to the nonlinear appearance of these uncer-
tain parameters in the matrices Ãhk,τk , B̃hk,τkof the discrete time NCS model. A way to make the
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system (142) amenable for controller synthesis is to overapproximate it by a system in which the
uncertainties appear in a polytopic and/or additive manner. This can be achieved by using one of the
available overapproximation methods (see [153] for an overview and thorough comparison of all the
existing overapproximation techniques). Here, we take a method derived in [150], that is based on
the real Jordan form of the continuous-time system matrix A, although other techniques can be used
as well. In the following this method is briefly summarized.

Let the state matrix A = TJT−1, with J the real Jordan form of A, and T an invertible matrix. The
integrals in (142) are computed by substituting eAs = TeJsT−1, in order to obtain a model in which
the uncertain parameters hk and τk appear explicitly. This leads to a model of the form

ξk+1 = Ãhk,τkξk + B̃hk,τkuk, (144)

with (hk, τk) ∈ Θ, for all k ∈ N, where we can rewrite Ãhk,τk and B̃hk,τk in (142) as

Ãhk,τk = F0 +
∑2ν

i=1
αi(hk, τk)Fi,

B̃hk,τk = G0 +
∑2ν

i=1
αi(hk, τk)Gi.

(145)

In (145), 2ν is the number of the functions αi(·, ·) due to the two time-varying parameters hk and
τk, with ν ≤ nx. We have ν = nx when each distinct eigenvalue of A corresponds to one Jordan
block only, and ν < nx otherwise. The functions αi(hk, τk) are typically of the form hj−1

k eλhk or
(hk − τk)

j−1eλ(hk−τk), j = 1, 2, . . . , r, if λ is a real, nonzero eigenvalue of A, and hj−1
k or (hk −

τk)
j−1, j = 2, 3, . . . , r + 1, if λ = 0. When λ corresponds to a pair of complex conjugate eigenvalues

(λ = a ± b
√
−1) of A, the functions αi(hk, τk) take the form hj−1

k eahk cos(bhk), h
j−1
k eahk sin(bhk),

(hk − τk)j−1ea(hk−τk) cos(b(hk − τk)) or (hk − τk)j−1ea(hk−τk) sin(b(hk − τk)), j = 1, 2, . . . , r, where r is
the size of the largest Jordan block corresponding to λ.

Now using the assumption that the sampling intervals and delays are bounded and contained in the
set Θ, as in (141), we obtain the following set of pairs of matrices

F =
{(
Ãhk,τk , B̃hk,τk

)
| (hk, τk) ∈ Θ

}
that contains all possible matrix combinations in (144). The set F is still not a finite set, due to the
infinite number of values that (hk, τk) can take. Hence, we compute a convex overapproximation of
the set F in the form of a convex matrix polytope, i.e., of the convex hull of a finite number of vertex
matrices. Contrarily to [150], we will not compute a single overapproximation intended to be valid
for all (hk, τk) ∈ Θ, as this would remove all information about the probability distribution of hk and
τk. Instead, following the approach presented in [152], we partition the set Θ in polygons θm ⊆ Θ,
m ∈ {1, 2, . . . , S}, assign a probability p̃m =

∫∫
θm
p(h, τ)dhdτ to each polygon, and make for every θm

a different overapproximation of the pair
(
Ãhk,τk , B̃hk,τk

)
.

Let θ1, . . . , θS be a collection of polygons satisfying

∪Sm=1 θm = Θ, intθi 6= ∅, intθi ∩ intθj = ∅, (146)

for all i, j ∈ {1, 2, . . . , S} and j 6= i. Then, we have F = ∪Sm=1Fm, where

Fm =
{(
Ãhk,τk , B̃hk,τk

)
| (hk, τk) ∈ θm

}
. (147)

The minimal and maximal values of all functions αi over every polygon θm can be computed as

αi,m = inf
(h,τ)∈θm

αi(h, τ), αi,m = sup
(h,τ)∈θm

αi(h, τ),

for all i ∈ {1, 2, . . . , 2ν} and m ∈ {1, 2, . . . , S}. Since each αi(h, τ) ∈ [αi,m, αi,m] for all (h, τ) ∈ θm,
the sets of matrices Fm can be individually overapproximated by co{Hm}, i.e.,

Fm ⊆ co{Hm}, m = 1, 2, . . . , S, (148)
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where

Hm =

{(
F0 +

2ν∑
i=1

αiFi, G0 +

2ν∑
i=1

αiGi

)
| αi ∈ {αi,m, αi,m}, i = 1, 2, . . . , 2ν

}
,

and thus it also holds that F ⊆ ∪Sm=1co{Hm}. For enumeration purposes we also write

Hm =
{

(HF,m,j , HG,m,j) | j = 1, 2, . . . , 22ν
}
. (149)

Moreover, we define the set of all possible combinations of S elements, obtained taking one element
from each of the sets Hm, m ∈ {1, 2, . . . , S}, as V = H1 ×H2 × . . .×HS . We will also write V as

V = {((VF,1,j , VG,1,j), (VF,2,j , VG,2,j), . . . ,

(VF,S,j , VG,S,j)) | j = 1, 2, . . . , 22νS
}
. (150)

Hence, the procedure described above approximates the continuous PDF by a “discretized” version
that takes the probability Pr[(h, τ) ∈ θm] =

∫∫
θm
p(h, t)dhdτ for (h, τ) being contained in θm, and at

the same time we overapproximate the system (142) on each of these polygons θm, m = 1, 2, . . . , S,
in the sense that Fm ⊆ co{Hm} for m = 1, 2, . . . , S. The more refined the partitioning of Θ into
θ1, θ2, . . . , θm (at costs of more regions and then higher S, resulting in a higher computational com-
plexity), the closer both the approximation of the continuous PDF p(h, τ) become and the tighter the
overapproximation.

Remark 4. In the special case that there exists hnom such that p(h, τ) = 0 for all h 6= hnom, i.e., the
sampling interval is constant, the proposed overapproximation procedure has to be slightly modified.
This is because we proposed to form polygons θm ⊆ Θ ⊂ R2, m ∈ {1, . . . , S}, having the property
that intSm 6= ∅, which is not useful anymore. In this case, we propose to form line segments θm
defined as θm = co{(hnom, τ̃m,1), (hnom, τ̃m,2)}, for each m ∈ {1, . . . , S}, where (hnom, τ̃m,l), l ∈ {1, 2},
denote the vertices of the line segment θm. All other properties of θm, m ∈ {1, . . . , S} still hold and
the remainder of the procedure can be applied mutatis mutandis. Note that in this case the number
of vertices in (149) is 2ν . A similar adjustment is needed where there exists τnom such that p(h, τ) = 0
for all τ 6= τnom, i.e., the delay is constant.

2.5.4 Stochastic MPC design

The overapproximation described in Section 2.5.3 is used here to design a SMPC controller that
exploits the measurements received at every time step to improve closed-loop performance, while
guaranteeing stability. This control policy is derived from the approach presented by [149], and relies
on a decoupling between stability enforcement and performance optimization. Offline, a Lyapunov
function and a feedback control law which provide mean-square stability are obtained by exploiting the
NCS convex overapproximation. Online, a stochastic MPC controller based on scenario enumeration
is applied to optimize the performance by relying on the current state measurements and on the
available stochastic information on the network uncertainty, while retaining stability. Hereafter, the
different steps of the proposed control strategy design are given.

Lyapunov function synthesis

Our first goal is to compute a Lyapunov function and a control law which render the closed-loop NCS
system UGMSES. Here we consider quadratic Lyapunov functions of the form V (ξk) = ξTk Pξk, and
assume that the control law is given by a constant matrix gain K, i.e., uk = Kξk, for all k. The
Lyapunov matrix P will then serve to enforce a stability constraint in the online control problem, while
the existence of the gain K will be used to prove the recursive feasibility of the receding horizon
policy.
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Theorem 9. Suppose there exist polygons θ1, θ2, . . . , θS satisfying (146), and an overapproximation
of the NCS model (142) defined by the set of vertices V as in (150) such that (148) holds. Assume
that the matrices Q ∈ Rnξ×nξ , W ∈ Rnξ×nξ , Y ∈ Rnu×nξ , such that Q = QT � 0, W = WT � 0, are
given by the solution of the semidefinite programming problem

min
Q,W,Y

trace(W ) (151a)

s.t. trace(Q) = 1 (151b)
W �W0 (151c) Q Q MT

j

Q W 0

Mj 0 Q̃

 � 0, ∀j ∈ {1, 2, . . . , 22νS}, (151d)

where

Mj =


√
p̃1(VF,1,jQ+ VG,1,jY )√
p̃2(VF,2,jQ+ VG,2,jY )

...√
p̃S(VF,S,jQ+ VG,S,jY )

 ,
p̃m =

∫∫
θm
p(h, τ)dhdτ , Q̃ = Diag {Q, . . . , Q︸ ︷︷ ︸

S times

}, and W0 � 0. Then, the closed-loop NCS (142) with

uk = Kξk and K = Y Q−1 is UGMSES.

Proof. We will show that V (ξk) = ξTk Pξk, P = Q−1, is a Lyapunov function for system (142) with
uk = Kξk. Using (144) and letting Ch,τ = Ãh,τ + B̃h,τK, we have that

E [V (ξk+1)] = E
[
ξTk C

T
hk,τk

PChk,τkξk

]
=

∫∫
Θ
ξTk C

T
hk,τk

PCT
hk,τk

ξkp(hk, τk)dhkdτk

≤
S∑

m=1

p̃m max
(hk,τk)∈θm

ξTk C
T
hk,τk

PChk,τkξk. (152)

According to Lemma 1 in [156], UGMSES is implied by requiring that, for some L = LT � 0,

E[V (ξk+1)]− V (ξk) ≤ −ξTk Lξk,

for all k ∈ N, which, given (152) is satisfied, holds when

P − L−
S∑

m=1

p̃mC
T
hm,τmPChm,τm � 0 (153)

for all (hm, τm) ∈ θm, m = 1, 2, . . . , S. Since (153) still yields an infinite number of LMIs (due to
the fact that (hm, τm) can take an infinite number of values), we use the convex overapproximation
of (142) and the collections of pairs of matrices Hm, m = 1, 2, . . . , S, that satisfy (148). Hence,
Chm,τm in (153) for (hm, τm) ∈ θm can be written as Chm,τm =

∑22ν

j=1 λm,j (HF,m,j +HG,m,jK), for

some λm,j ≥ 0, j = 1, 2, . . . , 22ν , with
∑22ν

j=1 λm,j = 1. Therefore, by convexity we have that (153) is
satisfied if

P − L−
S∑

m=1

p̃mC̃
T
m,jPC̃m,j � 0, (154)

for all j ∈ {1, 2, . . . , 22νS}, where C̃m,j = VF,m,j + VG,m,jK. By substituting P = Q−1, L = W−1 � 0,
K = Y Q−1, pre- and post-multiplying by Q, and taking a Schur complement, we have that (154)
is equivalent to (151d). Hence, the solution of (151) satisfies (153), and the closed-loop system is
UGMSES.
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NCS prediction model

Although for (mean-square) stabilization purposes one could just apply the constant state-feedback
control law uk = Kξk, ∀k ∈ N, we want to design a SMPC controller based on an approximated
model of the NCS dynamics (142) to also optimize a certain performance criterion. We introduce a
new set of s polygons φ1, φ2, . . . , φs, which partition the set Θ such that properties analogous to (146)
hold. Then, as prediction model we use the collection of the averaged dynamics of the NCS model
for every polygon φn, i.e., the switching linear system defined as

ξk+1 =


Ā1ξk + B̄1uk if (hk, τk) ∈ φ1,
Ā2ξk + B̄2uk if (hk, τk) ∈ φ2,

...
...

Āsξk + B̄suk if (hk, τk) ∈ φs,

(155)

where
Ān =

∫∫
φn

Ãh,τp(h, τ)dhdτ, B̄n =

∫∫
φn

B̃h,τp(h, τ)dhdτ,

for all n ∈ {1, 2, . . . , s}, with Ãh,τ and B̃h,τ as in (142). Since we assumed that (h, τ) is given by an
IID random process, the realization probabilities of every dynamical mode of (155) are taken to be
p̄n =

∫∫
φn
p(h, τ)dhdτ , for all n ∈ {1, 2, . . . , s} and k ∈ N. As model (155) will only be used to improve

closed-loop performance w.r.t. the constant state-feedback uk = Kξk, the accuracy of the (MPC)
prediction model will not affect stability. The use of a different partition φ1, φ2, . . . , φs of the set Θ for
prediction purposes has the main goal to increase the decoupling of performance optimization from
stability properties, which are solely based on the overapproximation computed over the polygons
θ1, θ2, . . . , θS . Further details on the partitions tuning are given in Section 2.5.5.

Optimization tree design

The formulation of the online SMPC control problem is based on a maximum likelihood approach,
where at every time step k an optimization tree is built using the updated information on the aug-
mented system state ξk. Each node of the tree represents a future state which is taken into account
in the optimization problem. Starting from the root node, which is defined by the current available
measurement ξk =

[
xTk uTk−1

]T, a list of candidate nodes is generated by considering all the s pos-
sible dynamics in (155) and their probabilities p̄n, n = 1, 2, . . . , s. Then, the node with maximum
probability is added to the tree. This procedure is repeated until a desired number of nodes nmax is
reached: at every iteration new candidates are generated as children nodes of the last node added to
the tree, and the one with the biggest realization probability is selected (these realization probabilities
are formally defined in the following). Hence, every node is identified by a distinct trajectory of the
network uncertain parameters (h, τ), and by a distinct input sequence, which is a variable of the op-
timization problem. This procedure leads to a “multiple-horizon” control problem, where different tree
paths have in general different prediction horizons. Causality of the resulting control law is enforced
by allowing one, and only one, control move for every node, except leaf nodes (i.e., nodes with no
successor). Moreover, since the tree structure depends only on the distribution p̄n, n = 1, 2, . . . , s, it
can be computed off-line, thus keeping the computational burden low. More details on the tree design
procedure can be found in [149].

Control problem formulation

The objective function to be minimized in the proposed SMPC problem is an approximation of the
expected value of the finite-horizon closed-loop performance

E
[N−1∑
j=0

(
ξTk+jQξξk+j + uTk+jQuuk+j

)
+ ξTk+NQξξk+N

]
(156)

for a given horizon N > 0 and weight matrices Qξ, Qu. In order to define the stochastic optimal
control problem associated with the SMPC policy, let us introduce the following quantities:
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Figure 17: Optimization tree diagram

- T = {T1, T2, . . . , Tn}: the set of the tree nodes. Nodes are indexed progressively as they are
added to the tree (i.e., T1 is the root node and Tn is the last node added).

- ξN , uN : the state and the input, respectively, associated with node N .

- pre(N ): the predecessor of node N .

- succ(N , j): the successor of nodeN generated with dynamics of mode j in (155), j ∈ {1, 2, . . . , s}.

- δ(N ) ∈ {1, 2, . . . , s}: the mode leading to node N .

- πN : the realization probability of node N , i.e., the probability of reaching node N from T1,
recursively computed as πsucc(N ,j) = p̄jπN , with πT1 = 1.

- S ⊂ T : the set of the leaf nodes, defined as S , {Ti ∈ T | succ(Ti, j) 6∈ T , j = 1, 2, . . . , s}.

In Fig. 17 an illustrative optimization tree is shown to exemplify the notation. With a slight abuse of
notation, in the following the abbreviate forms ξi, ui, πi, δ(i), pre(i), will be used to denote ξTi , uTi ,
πTi , δ(Ti), pre(Ti), respectively. The SMPC problem at the time step k is formulated as

min
{ui}

∑
i∈T \T1

πiξ
T
i Qξξi +

∑
j∈T \S

πju
T
j Quuj (157a)

s.t. ξ1 = ξk (157b)
ξi = Āδ(i)ξpre(i) + B̄δ(i)upre(i), ∀i ∈ T \ {T1} (157c)
S∑

m=1

p̃mG
T
m,jPGm,j ≤ ξT1 (P − L)ξ1,

∀j ∈ {1, 2, . . . , 22νS}, (157d)

where Gm,j = VF,m,jξ1 +VG,m,ju1. Note that (157a) tends to (156) with N →∞ if nmax →∞. Hence,
the expected value of the closed-loop performance (156) can be approximated with arbitrary accuracy
at the expense of a higher computational load. Problem (157) is a quadratically constrained quadratic
problem (QCQP). Provided that (151) has solution, this problem is always feasible, as shown below.

Remark 5. In the borderline case where T is a complete tree, i.e., an s-ary tree in which all the leaf
nodes are at some depth N and all nodes but the leaf nodes have exactly s successors, we have that
minimizing the performance index (157a) at time step k is equivalent to minimizing (156). Otherwise,
if the tree is not complete, (157a) is an approximation of (156), where the nodes related to the cut
branches can be seen as terms in the cost function with null weight.

Theorem 10. Suppose there exist polygons θ1, θ2, . . . , θS and φ1, φ2, . . . , φs satisfying (146), and
an overapproximation of the NCS model (142) defined by the set of vertices V as in (150) such
that (148) holds. Assume that the matrices Q, W are given from the solution of (151). Then, the
closed-loop NCS (142) where uk = uT1 and uT1 is given by the receding horizon solution of (157),
with P = Q−1 and L = W−1, is UGMSES.
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Proof. By similar reasonings as in Theorem 9, we have that mean-square stability is provided by
the receding-horizon satisfaction of condition (157d), which now depends explicitly on the measured
state ξk and on the decision variable uk. We only need to show that the control problem (157) is
recursively feasible at every time step. This follows by noting that (151d) implies (157d) if a state-
feedback structure is imposed on the input uk. Hence, ui = Kξi, ∀i ∈ T \ S, is always a feasible
solution for (157), where K = Y Q−1 is obtained by solving (151).

2.5.5 Illustrative example

In this section we test the performance of the proposed approach using a numerical example, where
the controlled plant is modeled by the second-order continuous-time linear system (138), with A =[

1 15
−15 1

]
and B = [ 0.2

0.8 ]. This system is open-loop unstable and has two complex eigenvalues. In
order to define the network model, we assume that the sampling interval hk is constant and equal to
hnom = 0.1, i.e., p(h, τ) = 0 for all h 6= hnom. We define the set Θ in (141) as

Θ =
{

(h, τ) ∈ R2 | h = hnom ∧ τ ∈ [0.02, 0.1]
}
. (158)

Moreover, we assume that the PDF modeling the realizations of the delay τk is given by a truncated
(and normalized) normal distribution with mean µ = 0.04 and standard deviation σ = 0.012.A plot of
the considered PDF is shown in Fig. 18.
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Figure 18: Probability density function p(τ) for h = 0.1

In order to satisfy the conditions of Theorem 9, we first compute an overapproximation of the NCS
as described in Section 2.5.3. Then, according to Remark 4, we construct S = 4 line segments
to partition the set of possible values of τk, defined as θ1 = {hnom} × [0.02, 0.033], θ2 = {hnom} ×
[0.033, 0.046], θ3 = {hnom} × [0.046, 0.06], and θ4 = {hnom} × [0.06, 0.1]. This allows us to find a
feasible solution of problem (151), and to obtain a stabilizing controller of the form uk = Kξk for the
closed-loop system (142). With the aim at improving the performance of the SMPC controller, we
perform a finer partition for prediction purposes, using s=8 line segments defined as φn = {hnom} ×
[0.02+0.008(n−1), 0.02+0.008n], n = 1, 2, . . . , 7, and φ8 = {hnom}×[0.076, 0.1]. The weight matrices
in problem (157) are set as Qξ = Diag{1, 10, 10−3}, Qu = 10−3, and a number of nodes nmax = 15 is
used to design the optimization tree.

A set ofNs = 100 simulations was run of Ts = 15 time steps each, with random initial state, comparing
the proposed SMPC control scheme with a constant state-feedback controller which provides robust
convergence to the origin. Such a deterministic controller can be obtained as a special case of the
stochastic one, by solving problem (151) with S = 1 and θ1 = Θ. Since a feasible solution could not
be found with (hk, τk) ∈ Θ as in (158), we restricted to consider τk ∈ [0.02, 0.09] when solving the
robust control synthesis problem.

To evaluate the performance achieved by the considered controllers, we define the experimental cost
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Table 3: Simulation results
Controller µ(Ji) σ(Ji)

Robust state-feedback 884.34 382.19
Stochastic MPC 678.01 134.74
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Figure 19: Example of trajectories obtained with SMPC (solid line) and robust state-feedback (dashed
line)

function

Ji =

Ts∑
k=1

(
ξTk,iQξξk,i + uTk,iQuuk,i

)
,

where i ∈ {1, 2, . . . , Ns} indexes the values related to the ith simulation. Table 3 shows numerical
results in terms of mean µ(Ji) and standard deviation σ(Ji) of the experimental cost function Ji over
all the simulations. A comparison between the different closed-loop trajectories is shown in Fig. 19.
As we can see from the results, the proposed SMPC policy provides an improved control action with
respect to the robust controller. From a computational point of view, the CPU time needed to solve an
instance of the SMPC online control problem on a 2.4GHz MacBook running Matlab 7.8 and Cplex 11
was 29 ms on average, with a maximum value of 41 ms.

In real applications several parameters can be tuned to make the trade-off between the desired
closed-loop performance and the complexity of the resulting on-line control problem. As long as
problem (151) remains feasible, the partition {θm}Sm=1 can be made coarser to decrease the number
of quadratic constraints to be imposed online. Independently, the partition {φn}sn=1 can be refined to
improve the approximation of the continuous distribution p(h, τ) by the discretization Pr[(h, τ) ∈ φn] =
p̄n, n = 1, 2, . . . , s, and the number of tree nodes nmax can be increased to have a more accurate
prediction model, and thus better performances.

2.5.6 Conclusions

We presented a stochastic model predictive control approach for networked control systems that are
subject to time-varying sampling intervals and time-varying delays. These uncertain parameters are
assumed to be bounded, but modeled by a continuous PDF. The proposed control policy relies on a
stochastic control Lyapunov function approach and consists of two steps. Offline, a Lyapunov func-
tion which provides mean-square stability is obtained by computing a discrete approximation of the
continuous PDF, constructing a convex overapproximation of the NCS model, and solving an SDP
problem. Online, a SMPC formulation based on scenario enumeration optimizes a quadratic per-
formance by exploiting the current measurements and the stochastic information on the uncertain
parameters, while retaining stability. The complexity of the proposed receding horizon control prob-
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lem may grow with the number of partitions in which the set Θ is divided. However, an opportune
design of the partitions can minimize the number of constraints to be imposed online. Moreover, the
computational load could be substantially reduced by solving the SMPC control problem explicitly
using multiparametric programming techniques, which is a current topic of research investigations.
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3 Network-Aware Estimation

3.1 Optimal Kalman filter for systems with communication delays
L. Baramov, D. Pachner and V. Havlena

3.1.1 Motivation

The contributions of HPL to WP4 are novel approaches to state estimation under communication
delay. State estimates can be used for control, optimization, process monitoring, fault detection,
e.t.c., whenever states of the process are not accessible for direct measurement. The estimator
uses the process output observations as well as process model to infer the internal process states.
Measured process data are subject to noise corruption and process model is subject to uncertainty
affecting the quality of the state estimate. Techniques developed under our effort in T4.2 will support
other WIDE tasks, namely distributed MPC control, control over networks, real-time optimization.
A particular attention was paid to reducing computational complexity by using gains pre-computed
off-line and exploiting the particular problem structure. We have developed a reduced complexity
representation for the optimal Kalman filter; further, a suboptimal approach was obtained which is
of a particularly simple implementation that can be used in fast control loops in the basic control
layer for estimating process controlled values purged from measurement noise and communication
delays. Thus, it contributes to integrating WSN into Distributed Control Systems (DCSs) without
compromising stability.

3.1.2 State of the art

Standard approaches to control and estimation consider an ideal point-to-point connection between
the process and the controller and the estimator. A significant development in the estimation over net-
works has occurred since mid-1990’s upon the emergence of networked control systems. A classical
approach to state estimation is Kalman filtering that produces optimal estimates for linear process
models and Gaussian noise; a classical reference is [5]. State estimation, and particularly Kalman
filtering, which can handle correctly network delays, can separate control design, using the certainty
equivalence principle, from handling communication delays from sensors. Kalman filter that takes
into account variable communication delays can be used not only with control algorithms using pro-
cess states explicitly, but also with output feedback algorithms as PID, for which Kalman filter supplies
estimates of the undelayed process output.

A great deal of literature deals with lossy measurements – cases when data arrive either on time
or never – see e.g., Wu and Chen (2007), Smith and Selier (2003), and Liu and Goldsmith (2004).
There is also a number of papers dealing with variable delay considering delayed data arriving in
arbitrary order (e.g., Schenato (2007), Pachner and Havlena (2008), and Challa et al (2002)). The
optimal way to handle these problems in the linear—Gaussian framework is using Kalman filter for
the augmented process model with time-varying parameters. The drawback of this optimal estimator
is its need for an extensive computational effort. Hence, the recent research has concentrated on
developing approximations of Kalman filter that are easy to implement and have low demands on
on-line computations: for instance, observers with scheduled and/or switched injection gains were
proposed, with proven stability (see, e.g., Schenato (2008), Smith and Selier (2003), and Liu and
Goldsmith (2004)). Some of these approaches need a stochastic model for delay/loss distribution.
An suboptimal approach to an approximate Kalman filter is in Larsen et al (1998). Pachner and
Havlena (2008) proved that the optimal Kalman filter can be implemented as a switched observer
with a finite number of injection gains (pre-computed off-line) on condition that all data are delivered
within a maximum delay.

We have considered Kalman filtering over communication networks, where measured process data
are subject to random communication delays and/or packet losses. We have assumed the discrete
time settings; further, communication delays are assumed to be integer multiples of the sampling
interval. We have further assumed that the communication protocol assigns a time stamp to each
process value transmitted and hence, the time delay is known to the estimator. Naturally, the data
may arrive out of order, and possibly in bursts when several measurements with different time stamps
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arrive at a time. The time stamp availability requires clock signals to be available on both transmit-
ter and receiver sides. This assumption is fairly realistic for control systems with sampling periods
from seconds to minutes, such as power, petrochemical or chemical processes. There, the clock
inaccuracy is negligible compared to the sampling period.

3.1.3 Results overview

As was mentioned above, an optimal solution to this problem in the widely used linear-Gaussian set-
ting is the time-varying Kalman filter where process model is augmented by chains of delay blocks
modeling the network as shown in Figure 20. The length of the delay chain is limited to a pre-specified
value, specifying the maximum communication delay considered. Measurements not arriving within
this maximum delay are considered lost. Depending on the actual delay, particular states of the delay
chain are designated as ‘measurements’. A classical time-varying Kalman filter implementation for
this augmented plant may be computationally extensive; we have proposed a new implementation
of the optimal Kalman filter of a lower complexity than the typical square-root algorithm (see [70]).
Reducing complexity was achieved by pre-computing certain gains and a particular factorized repre-
sentation of the state covariance matrix coming from a deep investigation of the problem structure.
Moreover, it was also derived that states of the delay chain corresponding to data that has already
been received are redundant and removed from the process, thus further reducing the computational
load.
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Figure 20: Augmenting plant model by a model of communication delay

The algorithm mentioned above, albeit more economical than standard Kalman filter implementa-
tions, may be still complex for some applications, in particular, when the maximum delay is high
(or when there are several independently transmitted process outputs). Another line of research in
HPL was in developing a suboptimal approximation of a Kalman filter whose implementation is suf-
ficiently simple and fast for the implementation in distributed control systems (for process models
of low complexity models occurring in simple control loops); nevertheless, the proposed technique
is suitable for a wide range of advanced, medium to large complexity problems when implemented
on an appropriate platform for advanced process control and using sampling interval typical for this
control layer. This proposed method assumes again the time stamps for the data being available.
Next, it is assumed that all samples arrive within a maximum time delay. This latter assumption is
rather strict, but an occasional loss of a measurement sample would not have a serious impact on the
estimator performance. The proposed solution is a simplification of our earlier result [53]; it further
uses ideas similar to those of [56]. In [53] it was found that on condition of a lossless communication,
an optimal Kalman filter for systems of time-invariant parameters converges to a filter with switched
Kalman gains. Particular Kalman gain used at a specific time-step k depends only on time indices
of temporarily missing measurement samples. The number of those gains is finite and can be pre-
computed; however, it grows exponentially with the maximum delay. The innovation in this paper is
in proposing a suboptimal filter that can replace some (or all) missing data by fictitious values; later,
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upon receiving a real measurement, the effect of the wrongly entered fictitious item is cancelled and
the newly received value is used for a correct update.

3.1.4 Problem formulation

Here we shall outline describe a novel implementation of Kalman filter for systems shown in Figure
20. A detailed description is in our paper [13] State model of the augmented system is given by

[
x0(k + 1)

xd(k + 1)

]
=

 A0 0 0

C0 0 0
0 I 0

[ x0(k)

xd(k)

]
+

 ξ0(k)

η(k)
0

 , (159)

where x0 is a state of the process of dimension n0and xdis a state of the shift register for delayed
outputs of dimension ndmax. For simplicity, a single output case is described. Variables ξ0 and η are
mutually independent, zero-mean, Gaussian, white noises with covariance matrices given by Q and
r0, respectively. Equation 159 is written, in a compact form, as

x(k + 1) = Ax(k) + ξ(k). (160)

A candidate set of output of the augmented system is given by


y(k)

y(k − 1)
y(k − 2)

...
y(k − ndmax)

 =


C0 0 0 · · · 0
0 1 0 · · · 0
0 0 1 0

. . .
0 0 0 · · · 1


[
x0(k)

xd(k)

]
+


1
0
0
...
0

 η(k), (161)

i.e., (undelayed) process output and the state of the shift register modeling network delay. The actual
process output depends on the data received at the given time step, i.e.,

yd(k) =
[
y(k − j1(k)) · · · y(k − jm(k))

]T
, J(k) = {j1(k), ...., jm(k)} . (162)

It is assumed, that the set of measurements received at step k have not been received previously.
Note, that the length of the observation vector is varying; if no data are received, this vector is empty.
The observation equation thus contains selected rows of 161; it can be expressed as

yd(k) = Cd(k)x(k) +Dr(k)η(k). (163)

Note that the process noise in 160 and measurement noise in 163 are correlated, if a current, unde-
layed measurement is obtained.

3.1.5 Preliminaries

According to the standard Kalman filter formula, predicted state mean and covariance are given by

x̂k+1|k = (A− L(k)Cd(k)) x̂k|k−1 + L(k)yd(k)

Pk+1|k = APk|k−1A
T − L(k)W (k)L(k)T +Q

(164)

where Qis the process noise covariance , and

L(k) =
(
APk|k−1C

T
d (k) + S(k)

)
W (k)−1,

W (k) = Cd(k)Pk|k−1Cd(k)T +Dr(k)r0Dr(k)T ,

S(k) = E
(
ξ(k)η(k)T

)
Dr(k)T .

(165)

The second equation in 164 is the matrix difference Riccati equation, which is the major compu-
tational bottleneck in Kalman filter implementation. It should be noted, that a numerically robust
implementation is the square root filter updating the Cholesky factor of the state covariance matrix.
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Under mild technical assumptions, for time invariant systems, Riccati equation converges to the sta-
bilizing solution of the discrete-time algebraic Riccati equation; in the present setting, this is possible
only for transmission sequences with constant delay J(k) = {j} for all k. The form of this equation is

P̄j = AP̄jA
T −

(
AP̄jC

T
dj + Sj

) (
CdjP̄jC

T
rj +Drjr0D

T
rj

)−1 (
AP̄jC

T
dj + Sj

)T
+Q, (166)

whereCdj is the fixed output matrix corresponding to the constant sequence J(k) = {j} and Sjcorresponds
to S(k) in 165; it is zero for all j > 0.

3.1.6 Main results

The algebraic Riccati equation can be written in the factorized form; let P̄j = H̄T
j H̄j . The factor can

be computed recursively, for j = 0, 1, ..., as

H̄0 =

[
P0

0

]
, H̄j =

[
H̄j−1 D̄j

]
; D̄1 = L0

(
Cd0P̄0C

T
d0 + r0

) 1
2 , D̄j = AD̄j−1 (167)

There, P0 is the solution of the algebraic Riccati equation for the unaugmented process model. Vector
L0is the injection gain in 165 corresponding to P̄0. The recursive formula 167 corresponds to the
Lyapunov difference equation run from P̄0. Vectors D̄j for j = 1, ..., ndmax can be pre-computed
off-line together with H̄0.

The newly proposed representation of the state covariance matrix is as follows:

Pk+1|k = P̄i(k) +Dk+1|kD
T
k+1|k. (168)

There, the time-varying index i(k), also called ‘target delay’, is given by

i(k) =

{
min J(k) if min J(k) ≤ i(k − 1)
min {i(k − 1) + 1, ndmax} if min J(k) > i(k − 1) or J(k) = {}. (169)

Riccati equation is then replaced by a recursive formula for the factor Dk+1|k. This formula is a matrix
difference equation with jumps. The jumps occur upon the change of the target delay i(k). The factor
Dk+1|k then can be partitioned as

Dk|k−1 =
[
DT
Ik|k−1 DT

Fk|k−1

]T
,

where DIk|k−1 and DT
Fk|k−1 stand for the infinite and finite-time response parts, respectively. The

partitioning is such that the number of rows of DT
Ik|k−1 equals n0 + i(k). Further, under proper

initialization, the infinite time response part can be represented as

DIk|k−1 = EIi(k)Zk|k−1, EI0 = I, EIi =

[
EIi−1A0

C0

]
(170)

The infinite response part thus can be reduced to a matrix whose number of rows equals to the
number of states of the unaugmented process model. The dynamics of the matrix factor between the
jumps, i.e., for i(k) = i(k − 1) < ndmax, is given by

[
Zk+1|k
DFk+1|k

]
=

 A0 − L0C0 0 0

0 0 0
0 J 0

[ Zk|k−1

DFk|k−1

]
Φ
(
Zk|k−1, DFk|k−1

)
. (171)

There, J is a diagonal matrix with diagonal elements containing ones or zeros, depending on the
set J(k). This corresponds to the fact that the process outputs, once received, are known and
hence, the conditional covariance of the corresponding states of the delay chain is zero. Matrix Φ is
computed using a QR decomposition of Cd(k)Dk|k−1; details are omitted and can be found in [13].
This matrix provides a loose coupling between the finite- and infinite-time response parts. Further,
‖Φ(k)‖ ≤ 1 and ‖Φ(k)‖ → 1 as k → ∞. The dynamics of the infinite-time response is bounded
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from above by the matrix A0 − L0C0, which is the dynamics of the asymptotic Kalman filter of the
unaugmented process model. Finally, it can be observed that

col dim
(
Dk+1|k

)
= col dim

(
Dk|k−1

)
− dim (J(k)) + 1 for dim (J(k)) > 0. (172)

This implies that if there is more than one missing measurement received at a time, the rank of the
matrix factor Dk+1|k decreases.

Now we only outline what happens when i(k) changes: for i(k) < i(k−1), the factors are augmented
and subsequently rank-reduced as[

Z+
k|k−1 0

D+
Fk|k−1 0

]
=

[
EI(m(k−1)−i(k)+1)Zk|k−1 D̄1A . . . D̄(m(k−1)−i(k))A

DFk|k−1 0 . . . 0

]
T (173)

where T is an orthogonal matrix and D̄jA denote rows 1 to n0 + i(k − 1) − i(k) of D̄j . Note that
the vertical matrix partitioning is different on both sides of the equation: row dim

(
D+
Fk|k−1

)
equals

to row dim
(
DFk|k−1

)
+ i(k− 1)− i(k). Then, matrices Z+

k|k−1 and D+
Fk|k−1 are substituted for Zk|k−1

and DFk|k−1, respectively, in 171. For cases when i(k) = i(k − 1) + 1, we refer to our paper [13].

We note that the orthogonal rank reduction in 173 is the most demanding operation within the filter
update cycle. It can be shown that in the worst-case it is of lower complexity than the QR decompo-
sition involved in the square-root filter.

3.1.7 Summary

We proposed a new algorithm of Kalman filter for systems with communication delays, when packet
loss, out-of-order measurements and bursts of received data are admissible. The algorithm exploits
a particular problem structure and uses pre-computed gains. On the worst case of receiving a burst
of data after a long period of receiving none, the filter update is slightly less complex than standard
implementations. Under normal operation of slightly varying communication delay, the decrease of
complexity is significant. In addition, an insight was gained into the structure of the state covariance
matrix and its dynamics, which is of an independent interest.

3.2 Suboptimal Kalman filter
L. Baramov, D. Pachner and V. Havlena

3.2.1 Introduction

Here we shall consider a similar setting as in the previous section – state estimation for a linear,
time-invariant model disturbed by Gaussian noise, where measurements arrive with variable delay,
possibly out-of-order. We shall further assume that all measurements arrive within a maximum delay
ndmax. It was found in our previous work in [53], under these conditions, Kalman filter converges to a
parameter-varying system, where Kalman gain depends only on the set of missing samples. Let this
set be denoted as

.m(k) = {(i, j)| yi(k − j) is missing at k} (174)

There, yi denotes ith elements of the observation vector and j is the communication delay. Further,
let m̄(k) denote the complement of m(k) to the set {0, . . . , k}, i.e. the set of all received measure-
ments. As was shown in [53], on the assumption of the maximum communication delay, Kalman filter
converges to a filter whose gain is fully determined by this set, i.e., the data update of the state mean
can be written as

x̂k|m̄(k)∪(i,j) = x̂k|m̄(k) +K(m(k), i, j)
(
yi(k − j)− Cix̂k−j|m̄(k)

)
. (175)
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From this it follows: first, we have to keep track only on those past output estimates that corre-
spond to missing samples, i.e., ŷi (k − j|m̄(k)) = Cix̂k−j|m̄(k), j ∈ m(k). Second, as a result of the
bounded delay assumption, there is a finite number of values of m(k) and the same number of gains
K(m(k), i, j), which can be pre-computed off-line. The set m(k) can be considered as filter state
and thus Kalman filter is a time invariant system. On the other hand, the number of gains grows
exponentially with ndmax, which may result in storage problems with large delays. The circumventing
the problem we would be re-calculating the gains each step, e.g., using the technique proposed in
the previous sub-section, which inevitably results in an increased computational load. The proposed
way to keep the filter very simple is to resort to a sub-optimal filter. It is based on the technique of re-
placing a sample that has not arrived in the due time by a ‘fake’ measurement and upon receiving the
correct sample later, canceling the effect of the wrong data and fusing the new information correctly.
This results in restoring optimality; a similar approach is done in [56] for time-varying systems with
full non-steady Kalman filter. Here, we present a solution for time-invariant systems using a switched
linear filter with a moderate number of pre-computed gains.

3.2.2 Main result

We will consider a situation when at time k a correct process value yi(k − j) is not available and
some other value y(1)

i (k − j) is supplied to Kalman filter in place of it. Suppose that later on, at time
step k + h, the correct value of yi(k − j) is received by the filter. The correction of the filter state and
restoring the optimality is possible using a set of pre-computed gains. First, fusing the ‘fake’ data
y

(1)
i (k − j) results in the following data step at time k

x̂k|m̄(k)∪(i,j) = x̂k|m̄(k) +K(m(k), i, j)
(
y

(1)
i (k − j)− Cx̂k−j|m̄(k)

)
(176)

Now, assume that the correct sample arrives h time-steps later. Then, after updating the state as in
175 by all freshly arrived samples that have not been replaced by fakes in the past, the correction of
the incorrectly fused sample y(1)

i (k − j) is done as

x̂k+h|m̄(k+h) := x̂k+h|m̄(k+h) +K (m(t+ h) ∪ {(i, j + h)} , i, j + h)
(
yi(k − j)− y(1)

i (k − j)
)

(177)

Note that the two Kalman gains used in 176 and 177 are generally different. Note that the correction
requires the ‘fake’ measurement to be stored until the correct value is available. In the case when the
filter was optimal up to time k and, if no further sample was missed, the optimality is restored at time
k + h after the correction 177 was performed. The non-optimality between times k and k + h is due
to the fact that the estimator was mislead by pretending that it was given correct data at time k. As a
result, the Kalman filter wrongly considers the state covariance matrix smaller than the real one and
therefore, its responsiveness to prediction errors is reduced. Nevertheless, due to the assumption
that the correct sample arrives within a finite time horizon and the subsequent optimality restoration,
the impact on the overall estimation quality is limited.

This approach greatly reduces the number of gains to be stored, depending on the strategy used.
For instance, we can handle optimally samples arriving with delay up to nd1, while others, whose
delay is between nd1 and ndmax, are handled by replacement/correction technique. The savings in
the number of gains to be stored is due to the reduction of possible values of the set m(k). As a
special case we can consider the one (also used in [56] for time-varying filters) which replaces (and
later corrects) all delayed samples. Then, the number of gains to be stored equals to the product of
the number of sensors and the maximum delay, corresponding to m(k) = {(i, j)}.
As for the value to be used in place of the missing measurement, a natural choice is using the
available estimate, i.e., y(1)

i (k − j) = Cx̂k−j|m̄(k).
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3.2.3 Delayed actuator inputs

In this subsection we shall briefly outline the proposed way of handling delayed (deterministic) inputs
to the process. In the standard settings with point-to-point wired configuration, actuator commands
generated by a controller naturally affects the process states; but in standard cases with the wired
connection between the actuator and the controller, these commands are deterministic and known
so that are easily handled by Kalman filter in its time step. Also, transmitting actuator commands over
networks occurs less often than transmitting process measurements – actuators, unlike sensors,
are typically not of miniature dimensions and need external power supply; hence, they are likely to
be accessible by the standard ‘wired’ plant automation infrastructure. On the other hand, there are
indeed many applications where the manipulated variable is transmitted and this fact has to be taken
into account by the estimator.
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Figure 21: A possible configuration of the state estimator in the control loop

A possible configuration of closed loop controller with Kalman filter is in Figure 21. The controller
here is considered in this section only as a generator of control signal u(k). This signal is transmitted
over the network and received at the process side by the actuator node. It is possible that these
command signals arrive late or never; the actuator node needs to extrapolate the missing signal us-
ing the command history and an extrapolation model – details are omitted in this subsection. The
actuator node has also to acknowledge whether and when the particular command was received; this
acknowledgement is transmitted back over the network – again, subject to time delays and informa-
tion loss; alternatively, as in Figure 21, the actuator can send a message containing the true value
of the actuator command that was applied at the given time. To include uncertain input delay into
the framework developed for the (sub)optimal Kalman filter with variable output delay, the actually
applied actuator command is treated as a process output, possibly delayed. As process input we use
a command estimate ũ computed by from the command history and a network model (in the form of
a Markov chain) predicting the most likely command value received by the actuator. The input model
is introduced to account for discrepancies between the estimated commands ũ and those received,
that can be inferred from the information received by the estimator. The input model can be chosen
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Figure 22: Observation model for a system with inputs and outputs subject to variable delays
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as the above mentioned extrapolation model (in the simplest case it can be the random walk model
consisting of one integrator).Thus, the same framework as described in the previous sub-section can
be used in this extended case.

3.2.4 Summary

In this subsection we have proposed a method of sub-optimal Kalman filter. This filter handles (some
of) temporarily missing measurements by replacing them by a fictitious value, e.g., a local prediction
of the particular output. Upon arrival of the missing item, the overall state of Kaman filter is corrected
and the optimality is restored. The algorithm uses pre-computed filter gains and hence is very fast.
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4 Network-Aware Observer-Based Control

4.1 Decentralized Observed-Based Control of Large-Scale Networked Systems
N.W. Bauer, M.C.F. Donkers, W.M.P.H. Heemels, N. van de Wouw

4.1.1 Introduction

Recently, there has been an enormous interest in control of large-scale systems that are physically
distributed over a wide area. Examples of such distributed systems are electrical power distribution
networks, water transportation networks, industrial factories and energy collection networks (such as
wind farms). This work considers stability analysis and controller design for this class of systems.
This problem setting has a number of features that seriously challenge the controller design.

Firstly, the controller is decentralized in the sense that it consists of a number of local controllers
that do not share information. Although a centralized controller could alternatively be considered, the
achievable bandwidth associated with using a centralized control structure would be limited by long
delays induced by the communication between the centralized controller and distant sensors and
actuators over a (e.g. wireless) communication network [3].

Secondly, when considering control of a large-scale system, it would be unreasonable to assume that
all states are measured. Therefore an output-based controller is needed. In particular, we consider
an observer-based control setup. Note that an observer-based controller offers the advantage of
reducing the number of sensors, which alleviates the demands on the network design. However, it
has been proven that, in general, it is hard to obtain decentralized observers providing state estimate
converging to the ‘true’ states [66].

Finally, the observer-based controller needs to have certain robustness properties when using a
communication network. Indeed, the advantages of using a wired/wireless network are inexpensive
and easily modifiable communication links. However, the drawback is that the control system is
susceptible to undesirable (possibly destabilizing) side-effects see e.g. [27, 86]. There are roughly
five recognized Networked Control System (NCS) side-effects: time-varying delays, packet dropouts,
varying sampling intervals, quantization and communication constraints (the latter meaning that not
all information can be sent over the network at once). For modeling simplicity, we only consider
varying sampling times and communication constraints in this work.

Resuming, we note that although this decentralized observer-based control structure is reasonable
to use, its design is extremely complex due to the fact that we simultaneously face the issues of (i)
a decentralized control structure (ii) limited measurement information and (iii) communication side-
effects. The contribution of this paper is threefold: a model describing the controller decentralization
and the communication side-effects is derived for analysis, a way to assess robust stability of the
closed loop in the face of communication imperfections is given and an approach towards the design
of observer-based controllers is provided.

The outline of this paper is as follows: In Section 4.1.2 the general problem description and the
closed-loop model will be constructed. Construction of the model covers the plant decomposition
needed to establish a decentralized controller structure, the network constraints and the descrip-
tions of the observer-based decentralized control design. We will then propose LMI-based stability
conditions in Section 4.1.3. In Section 4.1.4 we present a constructive design procedure for these
decentralized observer-based controllers for the case of periodic communication protocols. Finally
an example will be presented in Section 4.1.5 and some suggestions for future work will be discussed
in Section 4.1.6.

Nomenclature

The following notational conventions will be used. diag(A1, . . . , AN ) denotes a block-diagonal ma-
trix with the matrices A1, . . . , AN on the diagonal and A> ∈ Rm×n denotes the transpose of the
matrix A ∈ Rn×m. For a vector x ∈ Rn, we denote ‖x‖ :=

√
x>x its Euclidean norm. We denote by

‖A‖ :=
√
λmax(A>A) the spectral norm of a matrixA, which is the square-root of the maximum eigen-

value of the matrix A>A. For brevity, we sometimes write symmetric matrices of the form
[
A B
B> C

]
as
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[
A B
? C

]
.

4.1.2 The Model & Problem Definition

We consider a continuous-time linear plant:{
ẋ(t) = Ax(t) +Bû(t)
y(t) = Cx(t)

(178)

with state x ∈ Rn, control input û ∈ Rm and measured output y ∈ Rp. The goal of the paper is
to present an approach for the analysis and design of a stabilizing controller that has the following
features:

• discrete-time;

• decentralized;

• output-based;

• robust with respect to uncertain time-varying sampling intervals hk ∈ [h, h̄] for all k ∈ N;

• communication constrained: not all outputs and inputs can be communicated simultaneously
and a protocol schedules which information is sent at a transmission instant

The decentralized controllers C(i), i = 1, ..., N , communicate with the sensors and actuators of the
plant via a shared network. The general setup is depicted in Fig. 23.

Communication Network

Continuous-time LTI Plant

C(1)

û(1)

u(1)

y(1)

ŷ(1)

C(2)

û(2)

u(2)

y(2)

ŷ(2)

C(N)

û(N)

u(N)

y(N)

ŷ(N)

Figure 23: Decentralized Networked Control System.

In this paper, the plant will be divided into subsystems, each of which, are controlled by a discrete-
time observer-based controller whose subsystem model is based on a nominal sampling interval. In
Section 4.1.2, we determine a nominal sampling interval with a corresponding plant discretization and
present a decomposition of the plant. In Section 4.1.2 a description of the network imperfections is
provided. In Section 4.1.2 a switching observer-based control structure will be presented and, finally,
in Section 4.1.2 a closed-loop model suitable for stability analysis is derived.

Plant Decomposition

Since we are aiming to design N model-based discrete-time linear observer-based controllers, the
continuous-time plant needs to be divided into N discrete-time subsystems to use as sub-models.
First, we will discretize the continuous-time plant, after which, the states of the continuous-time plant
will be partitioned, leading to N disjoint discrete-time systems.

Plant Discretization - It is well known that a linear continuous-time system (178) with a zero-order-
hold assumption on the inputs û(t) can be exactly discretized to

P :=

{
xk+1 = A?xk +B?ûk
yk = Cxk

, k ∈ N≥0, (179)
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where h? is a suitably chosen nominal constant sampling interval, A? := eAh? and B? :=
∫ h?

0 eAsdsB.
In (179), xk = x(tk), yk = y(tk), with tk the sampling instants, and ûk is the discrete-time control
action available at the plant at t = tk, i.e. û(t) = ûk for all t ∈ [tk, tk+1), k ∈ N.

Plant Decomposition - The system P in (179) will be decomposed into N interconnected subsys-
tems. Choosing the decomposition is a challenging task, as there are many aspects to be taken
into account, i.e. sensor/actuator physical location, subsystem interaction, computational effort of the
control law, input/output relations, etc. For decentralized design, reducing the interactions between
subsystems is highly desired since smaller interaction will generally increase the likelihood of the
decentralized controllers being successful. Considering that the goal of the decomposition is keeping
the interaction between the subsystems small (while maintaining a minimal number of subsystems),
we propose to use the ε-decomposition technique

The ε-decomposition is an algorithm for finding a permutation matrix P such that each element of
all subsystem coupling matrices between subsystems, has magnitude no greater than ε ≥ 0. This
algorithm offers the advantage of only searching for permutations of a system, which preserves any
physical meaning of the original state vector. By using this algorithm we can find a P that expresses
the entire plant as a collection of interconnected (coupled) subsystems

P(i) :=


z

(i)
k+1 = Āiz

(i)
k + B̄iû

(i)
k

+
∑N

j=1
j 6=i

(
Āi,jz

(j)
k + B̄i,j û

(j)
k

)
y

(i)
k = C̄iz

(i)
k +

∑N
j=1
j 6=i

C̄i,jz
(j)
k

, (180)

for i = 1, ..., N , where z = P−1x is the state vector of the permuted system Ā = P−1A?P, B̄ =

P−1B?, C̄ = CP , u(i)
k ∈ Rmi , and y

(i)
k ∈ Rpi . Without loss of generality, we only consider dis-

joint decompositions, that is, z = (z(1)>, z(2)>, ..., z(N)>)>, u = (u(1)>, u(2)>, ..., u(N)>)> and y =
(y(1)>, y(2)>, ..., y(N)>)>. As such, every state, output and input are attributed to only one subsystem
and the subsystem interaction matrices are denoted Āi,j , B̄i,j , C̄i,j , j 6= i. Throughout this paper we
use the decomposition Ā = Ad +Ac, where Ad := diag(Ā1, Ā2, ..., ĀN ). The B̄, C̄ matrices can be
expressed similarly. With this notation, we can equivalently express (180) as

P =

{
zk+1 = Adzk +Bdûk + (Aczk +Bcûk)
yk = Cdzk + Cczk

.

The control structure for a chosen decomposition is depicted in Fig. 24, where the ith controller is
controlling only the ith subsystem.

C(1)

P (1) P (2) P (N)

C(2) C(N)

Communication Network

Figure 24: Decentralized NCS After Decomposition

Network Description

Communication between sensors, actuators and controllers will take place via a shared network,
see Fig. 24. Here, we will consider two network effects: namely, varying sampling intervals and
communication constraints, where the latter imposes the need for a scheduling protocol to determine
what input and output data is transmitted at each sampling time.

In Section 4.1.2, we assumed a constant sampling interval h? to arrive at subsystem models used by
the controller. However, due to the nature of the network, the actual sampling times tk, k ∈ N, are not
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necessarily equidistant in time. Assuming that the sampling intervals hk = tk+1 − tk are contained in
[h, h̄] for some 0 ≤ h ≤ h̄, i.e. hk ∈ [h, h̄] for all k ∈ N, the exact discrete-time equivalent of (178),
after the permutation, is

Phk :=

{
zk+1 = Āhkzk + B̄hk ûk
yk = C̄zk,

(181)

where Āhk := P−1eAhkP , B̄hk := P−1
∫ hk

0 eAsdsB and C̄ := CP . It is important to note that the
observer-based controllers will use subsystem models that are based on the constant sampling in-
terval h?, so variation in the sampling interval prevent the state estimation error from converging to
zero.

Since the plant and controller are communicating through a network with communication constraints,
the actual input of the plant ûk ∈ Rm is not equal to the controller output uk and the actual input of the
controller ŷk ∈ Rp is not equal to the plant output yk ∈ Rp. Instead, ûk and ŷk are networked versions
of uk and yk, respectively.

To explain the effect of communication constraints and thus the difference between ŷk and yk and
ûk and uk one has to realize that the plant has nu sensors and ny actuators. These sensors and
actuators are grouped into nT ≤ nu + ny nodes. At each sampling time tk, one node obtains access
to the network and transmits its corresponding u and/or y values. Only the transmitted values will be
updated, while all other values remain unchanged. This means the constrained data exchange can
be expressed as {

ûk = Γuσkuk + (I − Γuσk)ûk−1

ŷk = Γyσkyk + (I − Γyσk)ŷk−1,
(182)

where Γul ∈ Rm×m and Γyl ∈ Rp×p, for l = 1, ..., nT , are diagonal matrices where the jth diagonal
value is 1 if the jth input or output, respectively, belongs to node l and zero elsewhere. Without loss of
generality, we will assume the matrices Γul and Γyl can be divided in Γui,l and Γyi,l, for i ∈ {1, ..., N} such
that Γul := Diag(Γu1,l,Γ

u
2,l, ...,Γ

u
N,l) and Γyl := Diag(Γy1,l,Γ

y
2,l, ...,ΓN,l), where Γui,l ∈ Rmi×mi and

Γyi,l ∈ Rpi×pi are matrices corresponding to inputs and outputs, respectively, of the ith subsystem.

The value of σk ∈ {1, 2, ..., nT } indicates which node is given access to the network. The switching
functions determining σk are known as protocols. In this paper we focus on the general class of
periodic protocols [18], which are characterized by σk+Ñ = σk for some period Ñ ≥ nT , Ñ ∈ N. The
well-known Round Robin protocol [73] belongs to this class of periodic protocols.

Finally, we introduce the network-induced errors{
euk := ûk−1 − uk
eyk := ŷk−1 − yk,

(183)

where euk and eyk will be referred to as the (network-induced) input error and output error, respectively.

Decentralized Networked Observer-Based Controllers

In this paper we will use decentralized observer-based controllers in the sense that for each sub-
system of the plant we have one observer-based controller and the controllers do not exchange infor-
mation. Therefore, the individual observers have no information about externally coupled states. As a
consequence, it is desired to ensure that coupling between subsystems is minimal since ignored cou-
pled dynamics will act as an unknown disturbance input to the decoupled observers. Furthermore,
the model-based controllers will adopt switching gains to deal with the communication constraints

Ãc,hk,σk =
Ad − LσkΓyσkCd + ∆Bc,hkKσk LσkΓyσkCc −∆Ac,hk + ∆Bc,hkKσk −∆Bc,hk (I − Γuσk ) 0

−B̄hkKσk Āhk − B̄hkKσk B̄hk (I − Γuσk ) 0
Kσk (Ad − LσkΓyσkCd −BdKσk − I) Kσk (Ad + LσkΓyσkCc −BdKσk − I) (KσkBd + I)(I − Γuσk ) 0

C̄B̄hkKσk C̄(I − Āhk + B̄hkKσk ) −C̄B̄hk (I − Γuσk ) I − Γyσk


(187)
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effectively. The ith networked observer-based controller is given by

C(i)
σk

:=


z̃

(i)
k+1 = Āiz̃

(i)
k + B̄iû

(i)
k

+Li,σkΓyi,σk(ŷ
(i)
k − C̄iz̃

(i)
k )

u
(i)
k = −Ki,σk z̃

(i)
k ,

(184)

where z̃
(i)
k+1 represents the state estimate of the ith observer at time k + 1 for the plant state z

(i)
k+1

and the output injection matrices Li,σk , i ∈ {1, .., N}, σk ∈ {1, ..., nT } will be designed to stabilize the
dynamics of the state estimation error ηk := z̃k − zk. We adopt a switched-observer structure (notice
the σk-dependence in (184)) to deal with the presence of communication constraints. Switched ob-
servers have received much attention in the past decade [4,74,79]. Γyi,σk in (184) is used so that the
standard output injection is only applied to the newly received measurements. If no measurements
are received (Γyi,σk = 0 for some σk) then (184) reduces to a standard model-based prediction step.

Similar to the plant, the dynamics of all the controllers (184) can be described by a single discrete-time
system, which will consist of block diagonal matrices due to the decoupled nature of the controllers

Cσk =


z̃k+1 = Adz̃k +Bdûk

+LσkΓyσk(ŷk − Cdz̃k)
uk = −Kσk z̃k,

(185)

where Lσk = diag(L1,σk , L2,σk , ..., LN,σk) and Kσk = diag(K1,σk , ,K2,σk , ...,KN,σk).

Closed-Loop Model

To derive an expression for the closed loop, we will adopt the state vector x̄k = [η>k z>k eu >k ey >k ]>.
Combining (181), (182), (183), and (185) the entire closed-loop system can be represented by the
following switched uncertain discrete-time system

x̄k+1 = Ãc,hk,σk x̄k, (186)

where Ãc,hk,σk is given by (187) with

∆Ac,hk := Āhk −Ad = (Āhk − Ā) +Ac

∆Bc,hk := B̄hk −Bd = (B̄hk − B̄) +Bc.

The ∆Ac,hk term consists of two terms being (Āhk − Ā), which is caused by a ‘clock skew’ (hk − h?)
effect, added to Ac, which is caused by the subsystem coupling. The same applies to ∆Bc,hk . The
‘clock skew’ effect is an arbitrarily time-varying term (due to time-varying sampling intervals) while
the ‘neglected coupling’ effect is a deterministic disturbance, which is the result of both the nominal
sampling time and the chosen decomposition.

4.1.3 Stability Analysis

In this section, we analyze whether the system (186), (187), with given Kσk and Lσk , is stable for
some given bounds on the sampling interval, i.e. hk ∈ [h, h] for all k ∈ N. The stability analysis is
based on the ideas in [17], in which stability of networked control systems is discussed. As in [17],
the uncertain parameter hk, k ∈ N appears nonlinearly in (187) through Āhk and B̄hk . To make the
system amenable for analysis, a procedure is proposed to overapproximate system (186), (187) by a
polytopic system with norm-bounded additive uncertainty, i.e.,

x̄k+1 =
M∑
j=1

αlk (Fσk,j +Gj∆kHσk) x̄k, (188)

where Fl,j ∈ Rn×n, Gj ∈ Rn×q, Hl ∈ Rq×n, for l ∈ {1, . . . , nT } and j ∈ {1, . . . ,M}, with M the number
of vertices of the polytope. The vector αk = [α1

k . . . α
M
k ]> ∈ A, k ∈ N, is time-varying with

A =
{
α ∈ RM

∣∣∑M
j=1 α

j = 1 and αj ≥ 0

for j ∈ {1, . . . ,M}
}

77



and ∆k ∈ ∆, where ∆ is a norm-bounded set of matrices in Rq×q that describes the additive un-
certainty. Equation (188) is an overapproximation of (186) in the sense that for all l ∈ {1, . . . , nT }, it
holds that {

Ãc,h,l | h ∈ [h, h]
}

⊆
{∑M

j=1 α
j (Fl,j +Gj∆Hl) |α ∈ A,∆ ∈∆

}
. (189)

We now provide a gridding-based procedure to overapproximate system (186), such that (189) holds,
after which we can provide conditions for stability.

Procedure 1.

• Select M distinct sampling intervals h̃1, . . . , h̃M as grid points, such that h =: h̃1 ≤ h̃2 < . . . <
h̃M−1 ≤ h̃M := h.

• Define
Fl,j := Ãc,h̃j ,l.

Decompose the matrix A, as given in (178), into its real Jordan form [31], i.e. A := TΛT−1,
where T is an invertible matrix and

Λ = diag(Λ1, . . . ,ΛL)

with Λi ∈ Rni×ni , i ∈ {1, . . . , L}, the i-th real Jordan block of A.

• Compute for each line segment Sm = [h̃m, h̃m+1], m ∈ {1, . . . ,M − 1}, and for each real Jordan
block Λi, i ∈ {1, . . . , L}, the worst case approximation error, i.e.

δ̃Ai,m =

sup
α̃1 + α̃2 = 1,
α̃1, α̃2 ≥ 0

∥∥∥eΛi(α̃
1h̃m+α̃2h̃m+1) −

2∑
j=1

α̃jeΛih̃m+j−1

∥∥∥, (190a)

δ̃Ei,m = sup
α̃1 + α̃2 = 1,
α̃1, α̃2 ≥ 0

∥∥∥ 2∑
j=1

α̃j
∫ α̃1h̃m+α̃2h̃m+1

h̃m+j−1

eΛisds
∥∥∥. (190b)

For a detailed explanation of the origin of the approximation error bounds, see [17].

• Map the obtained bounds (190) at each line segment Sm, m ∈ {1, . . . ,M − 1}, for each Jordan
block Λi, i ∈ {1, . . . , L}, to their corresponding vertices j ∈ {1, . . . ,M}, according to

δAj,i =

{
δ̃Aj,i i ∈ {1, N},
max{δ̃Aj,i−1, δ̃

A
j,i} i ∈ {2, . . . , N − 1},

δEj,i =

{
δ̃Ej,i i ∈ {1, N},
max{δ̃Ej,i−1, δ̃

E
j,i} i ∈ {2, . . . , N − 1}.

• Finally, with B and C given in (178), define

Hσ :=

[
T−1 0 0 0

T−1BKl T−1BKl 0 T−1B(I − Γul )

]
and

Gj :=


T T
T T
−CT −CT

0 0

· Uj
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in which

Uj = Diag(δA1,jI1, . . . , δ
A
L,jIL, δ

E
1,jI1, . . . , δ

E
L,jIL)

with Ii is the identity matrix with size of the i-th real Jordan Block. The additive uncertainty set
∆ ⊆ R2nx×2nx is now given by

∆ =
{

Diag(∆1, . . . ,∆2L) | ∆i+jL ∈ Rni×ni ,
‖∆i+jL‖ ≤ 1, i ∈ {1, . . . , L}, j ∈ {1, 2}

}
.

Theorem 11. Consider system (186), (187), where hk ∈ [h, h], k ∈ N. If system (188) is obtained by
following Procedure 1, (188) is an overapproximation of (186) in the sense that (189) holds.

Proof. The proof can be obtained along the lines of the proof of Theorem 1 of [17] and is omitted for
the sake of brevity.

Using this overapproximation, stability of system (186), (187) can be analyzed using the following
theorem from [17], in which

R := {Diag(r1I1, . . . , rLIL, rL+1I1, . . . , r2LIL)

∈ R2nx×2nx | ri > 0}

with Ii the identity matrix of size ni, complying with the i-th real Jordan Block.

Theorem 12. Consider the closed-loop NCS (186), (187), dictated by a periodic protocol with pe-
riod Ñ , and an overapproximation constructed using Procedure 1. Assume that there exist positive
definite matrices P`, ` ∈ {1, . . . , Ñ}, and matrices R`,σj ∈ R, ` ∈ {1, . . . , Ñ} and j ∈ {1, . . . ,M},
satisfying the LMIs [

F>σ`,jP`+1Fσ`,j − P` +H>σ`R`,σjHσ` F>σ`,jP`+1Gj
G>j P`+1Fσ`,j G>j P`+1Gj −R`,σj

]
≺ 0, (192)

where PÑ+1 := P1, for all ` ∈ {1, . . . , Ñ} and j ∈ {1, . . . ,M}. Then, the system (188) is GAS and
consequently, the system (186), (187) is globally asymptotically stable (GAS).

Proof. The proof is given in [17].

Remark 6. Using a reasoning similar as in [50], it can be shown that GAS of the discrete-time model
also implies stability of the sampled-data NCS including intersample behavior.

Remark 7. NCS with other protocols (e.g. TOD) can be analyzed in a similar manner using the ideas
in [17].

Ãσk
=


Ad − Lσk

Γyσk
Cd 0 0 0

−BdKσk
Ad −BdKσk

Bd(I − Γuσk
) 0

Kσk
(Ad − Lσk

Γyσk
Cd −BdKσk

− I) Kσk
(Ad −BdKσk

− I) (Kσk
Bd + I)(I − Γuσk

) 0
CdBdKσk

Cd(I −Ad +BdKσk
) −CdBd(I − Γuσk

) I − Γyσk


(194a)

Ãσk
=

 Ad − Lσk
Γyσk

Cd 0 0
−BdKσk

Ad −BdKσk
0

CdBdKσk
Cd(I −Ad +BdKσk

) I − Γyσk

 (194b)
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4.1.4 Design for Periodic Protocols

In the previous sections, we derived a model describing an LTI plant interconnected with a decentral-
ized switched observer-based controller by a communication network and presented a procedure to
assess stability of the model for given Kl and Ll, l ∈ {1, 2, ..., nT }. In this section, we will present a
procedure for obtaining the controller and observer gains Kl and Ll, respectively, in (185) for periodic
protocols.

As the decentralized and networked constrained control problem is known to be non-convex and
hard to solve in general, for the design of Kl and Ll we ignore two aspects of the problem; namely
the clock skew effects and the coupling terms between the subsystems. Due to the available robust
stability test (see Section 4.1.3), we can verify stability including these ignored effects a posteriori.
In other words, first we design a switched observer-based controller for the system with constant
sampling interval h? and without subsystem coupling and, second, perform a robust stability analysis
including varying sampling-time effects and subsystem coupling terms using Theorem 12. In case
the a posteriori test fails, a modification is made to the design problem and solved again.

Alternatively, the robust stability analysis can be split into two steps. The first step is to include only
the coupling terms and assess stability. Since the resulting is a periodic switched linear system,
stability can be assessed using a standard eigenvalue test [39]. This will provide the designer with
a check whether to re-design. Depending on the design freedom available, a re-design may consist
of choosing a coarser subsystem decomposition or modifying the periodic protocol. If the coupled
system is stable, then we are guaranteed to have some margin of robustness against time-varying
sampling intervals, i.e. the NCS will be stable for hk ∈ [h, h̄], k ∈ (N) for some h < h? < h̄. Therefore
the second step is to add the clock skew terms and use the stability analysis of Section 4.1.3 to
determine the values of h and h̄ that guarantee stability and verify if the range [h, h̄] is sufficiently
large.

Returning to the design, if we ignore clock skew effects and subsystem coupling terms, the system
(186) changes into

x̄k+1 = Ãσk x̄k (193)

with Ãσk as in (194a). This simplifies the design problem to stabilizing a cascade of three smaller sys-
tems (recognize the block triangular structure in Ãσk in (194a)). We can further reduce design com-
plexity by assuming that the controller can access all actuators at every transmission time (Γuσk = I).
This assumption yields the system (193) with Ãσk as in (194b). In the following, we will first design
for the case when Γuσk = I and then briefly provide insight into the design for general Γuσk matrices.

For the special case, Γuσk = I (actuators always accessible), one can modify the model (193) with
(194a) by removing the third column and row (as euk = 0, k ∈ N) and design for the model (193)
with Ãσk given by (194b). This case is certainly of practical interest since it is a common industrial
configuration to hardwire actuators directly to a controller while measurement data is received through
(wireless) sensor networks. The following theorem formalizes the LMI-based design of a switched
observer-based controller under periodic protocols with Γuσk = I for all k.

Theorem 13. Consider the system (193) with Ãσk as in (194b). Moreover, consider the protocol to be
periodic, such that σk+Ñ = σk holds for all k ∈ N with Ñ ≥ nT and { σk | 1 ≤ k ≤ Ñ } = {1, 2, ..., nT },
i.e. all nodes are addressed in one period of the protocol. Suppose that, for each ith subsystem,
i = 1, ..., N , the following conditions are satisfied:

1. There exist matrices Pi,l = P>i,l � 0 ∈ Rni×ni and Si,l ∈ Rni×pi for l = 1, 2, ..., nT , such that for
all ` = 1, 2, ..., Ñ [

Pi,σ(`−1)
Ā>i Pi,σ` − C̄>i (Γyi,σ`)

>S>i,σ`
? Pi,σ`

]
� 0; (195)

2. There exist matrices Qi = Q>i � 0 ∈ Rni×ni and Zi ∈ Rmi×ni such that[
Qi QiA

>
i − Z>i B̄>i

? Qi

]
� 0. (196)
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Then the controller gainsKl = K = diag(Z1Q
−1
1 , ..., ZNQ

−1
N ) and observer gains Ll = diag(L1,l, ..., LN,l)

with Li,l = P−1
i,l Si,l will render the system x̄k+1 = Ãσk x̄k, with Ãσk as in (194b) GAS.

Note that Theorem 13 provided convex LMI conditions (195), (196) to design switched observer-
based controllers for the special case that all actuators can be updated at each sampling interval. The
conditions in Theorem 13 are independent LMIs to solve for Kl and Ll, l ∈ {1, 2, ..., nT } separately,
such that the independent periodic systems corresponding to the diagonal blocks of (194b) are stable.
In the general case, i.e. (193) with Ãσk given by (194a), the convexity of the design problem is
lost. Indeed, Kσk appears in a quadratic form in the second diagonal block of (194a). However,
considering a time-dependent quadratic Lyapunov function candidate and using currently available
software, PENBMI [41], it is possible to solve for Kl directly (using the second diagonal block of
(194a)) as a polynomial matrix inequality [25].

4.1.5 Example

In this section, we will illustrate the design procedure by using a numerical example. Let us consider
the unstable continuous-time plant given by (178) with

[
A B

C

]
=



0.6 −4.2 0.1 2.1 0.7 1.9 −0.02
0.1 −2.1 0.01 0 0 1 −0.01

0 0 −3.2 0.2 0 0 0.8
0 −0.03 5.3 −0.2 0 0 −0.4

1 4 0 0.05
0.2 1 0 0

0 0 2 0


, (197)

where the decomposition into two subsystems (N = 2) is shown using dashed lines and the nominal
sampling interval is chosen as h? = 1 second. The periodic protocol, with Ñ = 3, is given by
σ1 = 1, σ2 = 2, σ3 = 3 and

Γy1 = Γy2 = Γy3 = Γul =1 0 0
0 1 0
0 0 0

,
0 0 0

0 1 0
0 0 1

,
1 0 0

0 0 0
0 0 0

,
1 0 0

0 1 0
0 0 1

 (198)

for all l ∈ {1, 2, 3}. This specific protocol indicates that the controllers have access to the actuators
at each transmission time, but the sensor data available to the controller is constrained. Solving the
LMI’s (195), the following innovation (output injection) matrices were found

L1 = L2 = L3 =
6.24 −24.89 0
−0.73 3.46 0

0 0 0
0 0 0

,


0.32 2.65 0
0.16 0.15 0

0 0 0.28
0 0 3.27

,


0.57 0.44 0
0.04 0.02 0

0 0 0
0 0 0

. (199)

Solving the LMIs (196), the following state feedback matrix were found

Kl = K =

 1.94 −1.40 0 0
−0.56 −0.86 0 0

0 0 1.36 0.81

 (200)

for all l ∈ {1, 2, 3}. The matrices shown in (199) and (200) will stabilize the decoupled version of
(197) (the off-diagonal blocks of Ā, B̄, C̄ equal to zero) under the protocol given in (198) and for the
nominal sampling interval h?. Including the off-diagonal blocks into the closed-loop model shows a
degradation in performance but preservation of stability. Finally, using Procedure 1 and Theorem 12
with sampling intervals h̃l = {0.9, 0.96, 1, 1.04, 1.1} as grid points, it was determined that this control
system can withstand all possible sampling interval variations in the interval hk ∈ [0.9, 1.1] for all k.
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Figure 25: Design Example: Closed-loop state evolution to non-zero initial conditions for the system
without coupling and nominal sampling interval h? = 1 after (top) implementing Theorem 13, (middle)
including global subsystem coupling and (bottom) simulating uniformly distributed random sampling
intervals hk ∈ [0.9, 1.1].

Fig. 25 illustrates this design procedure by plotting the closed-loop state evolution for x̄0 = [1, ..., 1]>

after each step of the procedure.
This example shows that the derived theory can be used to design stabilizing output-based decen-
tralized controllers in the presence of communication constraints and network imperfections.

4.1.6 Conclusions and Future Work

In this paper, we developed a model for analyzing decentralized observer-based controllers in the
presence of network-induced communication constraints and time-varying sampling intervals. We
provided LMI-based stability conditions for verifying stability of the closed-loop NCS. A procedure
was presented to design the decentralized observer-based controllers which guarantee stability in
the face of communication constraints on the measurement data, but for constant sampling intervals
and a decoupled plant. In the case all control inputs are transmitted at each sampling instant, LMI-
based design conditions were obtained, otherwise PMI conditions can be solved. Robust stability of
the designed controller was verified a posteriori by first assessing stability when including coupling
in the plant and then testing for the range of time-varying sampling intervals that the closed loop can
withstand.

The derived results show the overall structure and complexity of observer-based control design over
shared networks. This confirms earlier observations that indicated the complexity of decentralized
control design (even without the presence of communication constraints and variations of sampling
intervals and availability of full state information). Interestingly, by ignoring varying sampling intervals
and global coupling terms, the closed-loop system matrix reveals a lower block triangular structure
that can be exploited to obtain simpler LMI conditions for controller/observer synthesis and smaller
polynomial matrix inequalities to perform the overall design. In the particular (but industrially relevant)
case that all control inputs are communicated at each sampling interval, the design reduces to an
LMI.

The presented results can serve as a platform for future developments towards more efficient design
conditions for the general case under periodic and other protocols. Another topic for future work is to
extend the design to include a distributed control structure, where the controllers can communicate
their state information over the network.
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4.2 Event-based Estimation and Robust MPC
J. Sijs, M. Lazar, W.M.P.H. Heemels

4.2.1 Introduction

Event-based control has emerged recently as a viable alternative to classical, periodic control, with
many relevant applications in networked control systems (NCS). A recent overview of the main pros
and cons of event-based control can be found in [7]. The main motivations for event-based control
are the limitations imposed by NCS, such as limited bandwidth and computational power, which
led to the objective of reducing data transfer or energy consumption. Basically, it was proposed
that measurements should be sent to the controller only when an event occurs, of which “Send-on-
Delta” (or Lebesque sampling) [8, 44] and “Integral sampling” [45] are some examples. Subsequent
studies on control that are based on the event sampling method “Send-on-Delta” were presented in
[11,16,35,63,71,72]. The conclusion that can be drawn from these works is that when measurements
are sent only at event instants, i.e. dictated by NCS requirements such as minimizing data transfer, it
is difficult to guarantee (practical) stability of the closed-loop system.

The natural solution that emerged for solving this problem was to include the controller in the event-
triggering decision process. Various alternatives are presented in [11, 16, 38, 42, 64, 75] and the
references therein. The generic procedure within this framework is to define a specific criterion for
triggering events as a function of the state vector. This function can either be related to guaranteeing
closed-loop robust stability, see, e.g., [75], or to improving disturbance rejection, see, e.g., [38]. One
of the concerns regarding this framework is that data transfer or energy consumption might be com-
promised. Another relevant aspect is the fact that controllers are designed for a specific type of event
sampling method or, the sampling method is designed specifically for the controller. This implies that
both functionalities, i.e. event sampling and control, of the process depend heavily on each other and
changing one requires a re-design of the other to guarantee the same properties for the closed-loop
system.

Figure 26: Schematic representation of the feedback loop.

In this paper we investigate the possibility of designing an event-based control system where closed-
loop robust stability is decoupled from event generation. To that extent, an event-based state estima-
tor (EBSE) is introduced in the feedback loop, as depicted in Figure 26. The purpose of the EBSE is
to deliver a state estimation to the controller synchronously in time, while it receives measurements
only at events. Such an EBSE with a synchronous update was recently developed in [60] for au-
tonomous systems. The first contribution of this work is to extend the estimation algorithm of [60] to
systems with control inputs. It is shown that under certain assumptions, the EBSE has a bounded
covariance matrix. This is possible because the state is updated both when an event occurs, at which
a measurement sample is received, as well as at sampling instants synchronous in time, without re-
ceiving a measurement sample. In the latter case the update is based on the knowledge that the
monitored variable, i.e., the measurement, is within a bounded set that is used to define the event.

83



The controller that uses the state estimate is based on a new robust MPC algorithm, which forms the
second contribution of this paper. This MPC scheme achieves input-to-state stability with respect to
the estimation error. Moreover, the MPC algorithm offers the possibility to optimize on-line the closed-
loop trajectory-dependent ISS gain, which enhances disturbance rejection. The controller is chosen
to run synchronously in time. Therefore, this setup provides most benefits in situations where the
sensors are connected to the controller via a (wireless) network link but the controller itself is wired
to the actuator/plant. Such a setup is often seen in applications where there are more limitations
regarding sensing as to actuation. To integrate the EBSE and MPC in a feedback loop, we develop
an efficient method for translating, at each synchronous time instant, the bounds on the covariance
matrix of the EBSE into a polytope where the estimation error lies. The latter bound is then fed to
the MPC algorithm that uses it to optimize the closed-loop ISS gain. Obviously, if the EBSE receives
more real measurements, the resulting bounds on the estimation error will be smaller, which will
ultimately improve the trade-off between event generation and closed-loop performance.

The remainder of the paper is structured as follows. Preliminaries are presented in Section 4.2.2,
while the EBSE is described in Section 4.2.3. Section 4.2.4 presents the MPC algorithm. Sec-
tion 4.2.5 discusses several issues related to integration of the EBSE and the robust MPC controller
in a feedback loop. An example illustrates the effectiveness of the proposed event-based control
scheme in Section 4.2.6. Conclusions are summarized in Section 4.2.7.

4.2.2 Preliminaries

Let R, R+, Z and Z+ denote the field of real numbers, the set of non-negative reals, the set of integers
and the set of non-negative integers, respectively. For any C ⊂ R, let ZC := {c ∈ Z|c ∈ C}. For a
set S ⊆ Rn, we denote by ∂S the boundary, by int(S) the interior and by cl(S) the closure of S. For
two arbitrary sets S ⊆ Rn and P ⊆ Rn, let S ⊕ P := {x + y | x ∈ S, y ∈ P} denote their Minkowski
sum. A polyhedron (or a polyhedral set) in Rn is a set obtained as the intersection of a finite number
of open and/or closed half-spaces. Given (n + 1) affinely independent points (θ0, . . . , θn) of Rn, i.e.
(1 θ>0 )>, . . . , (1 θ>n )> are linearly independent in Rn+1, we define the corresponding simplex S as

S := Co(θ0, . . . , θn) :=

{
x ∈ Rn

∣∣∣∣x =
n∑
l=0

µlθl,
n∑
l=0

µl = 1

µl ∈ R+ for l ∈ Z[0,n]

}
,

where Co(·) denotes the convex hull.

The notation 0 is used to denote either the null-vector or the null-matrix. Its size will be clear from
the context. The transpose, inverse, determinant and trace of a matrix A ∈ Rn×n are denoted as
A>, A−1, |A| and tr(A), respectively. The ith, minimum and maximum eigenvalue of a square matrix
A are denoted as λi(A), λmin(A) and λmax(A), respectively. The Hölder p-norm of a vector x ∈ Rn

is defined as ‖x‖p := (|[x]1|p + . . . + |[x]n|p)
1
p for p ∈ Z[1,∞) and ‖x‖∞ := maxi=1,...,n |[x]i|, where

[x]i, i ∈ Z[1,n], is the i-th element of x. For brevity, let ‖ · ‖ denote an arbitrary p-norm. For a matrix
Z ∈ Rm×n let ‖Z‖ := supx 6=0

‖Zx‖
‖x‖ denote its corresponding induced matrix norm. It is well known

that ‖Z‖∞ = max1≤i≤m
∑n

j=1 |Z{ij}|, where Z{ij} is the ij-th entry of Z. Let z := {z(l)}l∈Z+ with
z(l) ∈ Ro for all l ∈ Z+ denote an arbitrary sequence. Define ‖z‖ := sup{‖z(l)‖ | l ∈ Z+} and
z[k] := {z(l)}l∈Z[0,k]

.

The Gaussian function (shortly noted as Gaussian) is defined as G : Rn × Rn × Rn×n → R+,

G(x, µ, P ) =
1√

(2π)n|P |
e(x−µ)TP−1(x−µ). (201)

By definition it follows that if x ∈ Rn is a random variable with a probability density function (PDF)
p(x) = G(x, µ, P ), then the expectation and covariance of x are given by E[x] = µ and cov(x) = P ,
respectively.
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For a bounded Borel set [2] Y ⊂ Rn, the set PDF is defined as ΛY : Rn → {0, ν}, with ν ∈ R the
Lebesque measure [37] of Y , i.e.,

ΛY (x) =

{
0 if x 6∈ Y,
ν−1 if x ∈ Y.

(202)

A function ϕ : R+ → R+ belongs to class K if it is continuous, strictly increasing and ϕ(0) = 0. A
function β : R+ × R+ → R+ belongs to class KL if for each fixed k ∈ R+, β(·, k) ∈ K and for each
fixed s ∈ R+, β(s, ·) is decreasing and limk→∞ β(s, k) = 0.

Considered the following discrete time system,

x(tk+1) ∈ Φ(x(tk), w(tk)), tk = kτs, (203)

where x(tk) is the state and w(tk) ∈ Rn is the unknown disturbance at time instant tk = kτs, k ∈ Z+

and for some τs ∈ R+. The mapping Φ : Rn × Rn ↪→ Rn is an arbitrary compact and non-empty
set-valued function. For zero input in (203) we assume that Φ(0, 0) = {0}. Suppose w(tk) takes a
value in a bounded set W ⊂ Rn for all tk ∈ R+.

Definition 3. We call a set P ⊆ Rn robustly positively invariant (RPI) for system (203) with respect to
W if for all x ∈ P it holds that Φ(x,w) ⊆ P for all w ∈W.

Definition 4. Let X with 0 ∈ int(X) and W be subsets of Rn. We call system (203) ISS in X for inputs
in W if there exist a KL-function β(·, ·) and a K-function γ(·) such that, for each x(t0) ∈ X and all
w = {w(tl)}l∈Z+ with w(tl) ∈ W for all l ∈ Z+, it holds that all corresponding state trajectories of
(203) satisfy the following inequality: ‖x(tk)‖ ≤ β(‖x(t0)‖, k) + γ(‖w[tk−1]‖), ∀k ∈ Z≥1.

We call γ(·) an ISS gain of system (203).

Theorem 14. Let W be a subset of Rn and let X be a RPI set for (203) with respect to W, with
0 ∈ int(X). Furthermore, let α1(s) := asδ, α2(s) := bsδ, α3(s) := csδ for some a, b, c, δ ∈ R>0, σ ∈ K
and let V : Rn → R+ be a function such that:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (204a)
V (x+)− V (x) ≤ −α3(‖x‖) + σ(‖w‖) (204b)

for all x ∈ X, w ∈W and all x+ ∈ Φ(x,w). Then the system (203) is ISS in X for inputs in W with

β(s, k) := α−1
1 (2ρkα2(s)), γ(s) := α−1

1

(
2σ(s)

1− ρ

)
,

ρ := 1− c

b
∈ [0, 1). (205)

The proof of Theorem 14 can be found in [34]. We call a function V (·) that satisfies the hypothesis of
Theorem 14 an ISS Lyapunov function.

4.2.3 event-based state-estimation

In this section we will present the extension of the EBSE, as recently developed in [60], to systems
with control inputs. Therefore, let us assume that a dynamical system with state vector x ∈ Rn,
control input u ∈ Rm, process noise q ∈ Rn, measurement vector y ∈ Rl and measurement noise
v ∈ Rl is given. This process is described by a generic discrete-time state-space model, i.e.,

x(t) = Aτx(t− τ) +Bτu(t− τ) + q(t, τ), (206a)
y(t) = Cx(t) +Du(t) + v(t). (206b)

with Aτ ∈ Rn×n and Bτ ∈ Rn×m, for all τ ∈ R+, C ∈ Rl×n and D ∈ Rl×m. It is assumed that
u(s) remains constant for all t − τ ≤ s < t. Basically, the above system description (206a) could
be perceived as a discretized version of a continuous-time plant ẋ(t) = Ax(t) + Bu(t). In this case

85



the matrices Aτ and Bτ would then be defined with the time difference τ of two sequential sample
instants, i.e.,

Aτ := eAτ and Bτ :=

∫ τ

0
eAηdηB.

However, we allow for the more general description (206). We assume that the process- as well as
the measurement-noise have Gaussian PDFs with zero mean, for some Qτ ∈ Rn×n, τ ∈ R+ and
Rv ∈ Rl×l, i.e.,

p(q(t, τ)) := G(q(t, τ), 0, Qτ ) and p(v(t)) := G(v(t), 0, Rv).

The sensor uses an event sampling method which is based on y. Its sample instants are indexed by
r, i.e. y(tr) denotes a measurement taken at the event instant tr. As proposed in [60], Hr ⊂ Rl+1

is a set, determined at the event instant tr−1, in the time-measurement-space that induces the event
instants. An example of this set, in case the measurement-space is 2D, is graphically depicted in
Figure 27. To be precise, given that tr−1 was the latest event instant, the next event instant tr is
defined as:

tr := inf

{
t ∈ R+ | t > tr−1 and

(
y(t)
t

)
6∈ Hr

}
. (207)

To prevent that more than one sample action occurs at tr−1, it should hold that (y>(tr−1), tr−1)> ∈
int(Hr).

To illustrate the event triggering, let us present two examples of how to choose the set Hr. In the first
example the events are triggered by applying the sampling method “Send-on-Delta” [8, 44]. A new
measurement sample y(tr) is generated when |y(t)− y(tr−1)| > ∆. Notice that this is equivalent with
(207) in case

Hr := {(y>, t)>
∣∣ |y − y(tr−1)| ≤ ∆}.

The second example of a method for triggering the events is taken from [9, 38]. Therein, a sampling
method is described which is similar to “Send-on-Delta”, although y(tr−1) is replaced with the current
predicted measurement Cx̂(t). Notice that in this case Hr := {(y>, t)>

∣∣ |y − Cx̂(t)| ≤ ∆}.
As the sensor uses an event-sampling method on y(t), the EBSE receives y(tr) to perform a state-
update. However, typically the event instants tr do not occur at the same time as the synchronous
instants at which the controller needs to calculate a new control-input. Hence, the EBSE has to keep
track of the state at both the event instants as well as the synchronous instants. Let us define Tr(t)
and Tc(t) as the set of time instants that correspond to all event instants and synchronous instants,
respectively. Therefore, if τs ∈ R+ denotes the controller’s sampling time, we have that

Tr := {tr | r ∈ Z+} and Tc := {kτs | k ∈ Z+},

where the event instants tr are generated by (207). Notice that it could happen that an event instant
coincides with a synchronous instant. Therefore Tr ∩ Tc might be non-empty. The EBSE calculates
an estimate of the state-vector and an error-covariance matrix at each sample instant t ∈ T, with
T := Tr ∪ Tc. At an event instant, i.e. t ∈ Tr, the EBSE receives a new measurement y(tr) with
which a state-update can be performed. At the synchronous instants t ∈ Tc\Tr, the EBSE does not
receive a measurement. Standard estimators would perform a state-prediction using the process-
model. However, from (207) we observe that if no measurement y was received at t > tr−1, still it is
known that (y(t)>, t)> ∈ Hr. The estimator can exploit this information to perform a state-update not
only at the event instants but also at the synchronous instants t ∈ Tc\Tr. Next, we describe how this
is implemented. Let us define Hr|t ⊂ Rl as a section of Hr at the time instant t ∈ (tr−1, tr), which is
graphically depicted in Figure 27, and formally defined as:

Hr|t :=

{
y ∈ Rl

∣∣∣ (y
t

)
∈ Hr

}
.

Therefore, the following two conditions hold for any t ∈ T:

y(t) ∈
{
{y(t)} if t ∈ Tr,
Hr|t if t ∈ Tc\Tr.

(208)
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Figure 27: An example of Hr defining a set in the time-measurement-space and Hr|t defining a
section in the measurement-space at a certain time-instant t ∈ (tr−1, tr).

The estimator must first determine a PDF of the measurement y(t). Therefore if δ(·) denotes the
Dirac-pulse and ΛY (·) denotes the set PDF as defined in (202), then from equation (208) it follows
that:

p(y(t)) =

{
δ(y(t)) if t ∈ Tr,

ΛHr|t(y(t)) if t ∈ Tc\Tr.
(209)

In [62] is was shown that any PDF can be approximated as a sum of Gaussians. Therefore, let
us assume that p(y(t)) of (209) is approximated by

∑N
i=1

1
NG(y(t), ŷi(t), RH(t)), for some N ∈ Z+,

RH(t) ∈ Rl×l and ŷi(t) ∈ Rl for all i ∈ Z[1,N ]. Notice that in case t ∈ Tr it follows that N = 1,
ŷ1(t) = y(t) and RH(t) can be taken arbitrary small to approximate the Dirac pulse. Let x̂(t) denote
the estimated state-vector of the EBSE and let P (t) denote the error-covariance matrix both at t ∈ T.
Furthermore, let R(t) := Rv + RH(t). Then, the set of equations of the EBSE, in standard Kalman
filter form, yields:

Step 1: prediction

x̂−(t) = Aτ x̂(t− τ) +Bτu(t− τ),

P−(t) = AτP (t− τ)A>τ +Qτ ,
(210a)

Step 2: measurement-update, ∀i ∈ Z[1,N ]

K(t) = P−(t)C>(CP−(t)C> +R(t))−1C,

Pi(t) = (I −K(t)C)P−(t),

x̂i(t) = x̂−(t) +K(t)(ŷi(t)−Du(t)− Cx̂−(t)),

βi(t) = G(yi(t), Cx̂
−(t) +Du(t), CP−(t)C> +R(t)),

(210b)

Step 3: state-approximation

x̂(t) =

N∑
i=1

βi(t)∑N
i=1 βi(t)

x̂i(t), (210c)

P (t) =
N∑
i=1

βi(t)∑N
i=1 βi(t)

(
Pi(t) + (x̂(t)− x̂i(t)) (x̂(t)− x̂i(t))>

)
.

The main reason for the approximation of (210c) is to limit the amount of processing demand of
the EBSE. Next, we present a brief account of the numerical complexity of the proposed EBSE in
comparison with the original Kalman filter [32], i.e.,

• Prediction: O((m+ 1)n) +O(2n2) +O(2n3);

• Update: O(l3)+O(l2(1+2n))+O(n2(2l+1))+O(2n3)+O(nm+l(n+1))+O(N(2l2+3l+nl+n));

• Approximation: O(n+ (2 + 3n)N) +O((4N + 1)n2).
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For clarity, let us neglect terms that are of second order or less. Then the computational complexity
of the EBSE is

O(4n3 + l3 + 2l2n+ 2ln2 +N(2l2 + nl + 4n2),

which is still proportional to the complexity of the original Kalman filter, i.e., O(4n3 + l3 + 2l2n+ 2ln2).

Remark 8. The set of equations of the EBSE is based on a Sum-of-Gaussians approach. The main
reason for choosing the Sum-of-Gaussians approach is that it enables an asymptotic bound on P (t).
This property is important as it enables a guarantee, in a probabilistic sense, that the estimation error
is bounded. �

Next, we recall the main result of [59, 60], where it was proven that all the eigenvalues of P (t), i.e.
λi(P (t)), are asymptotically bounded. To that extent, let us define H̄ ⊂ Rl as a bounded set such
that Hr|t ⊆ H̄ for all t ∈ T. This further implies that each set Hr|t is bounded for all t ∈ T. With
the set H̄ we can now determine a covariance-matrix R ∈ Rl×l, such that R � R(t) for all t ∈ T.
Notice that R = Rv + RH̄ , in which RH̄ can be derived from ΛH̄(y) by approximating this PDF as a
single Gaussian. Similarly, there exist a ω ∈ R+, such that the Euclidean distance between any two
elements ofHr|t is less than (ω+1)λ−1

min(R(t)), for all t ∈ Tc\Tr. The next preliminary result [55] states
the standard conditions for the existence of a bounded asymptotic covariance matrix Σ∞ ∈ Rn×n for
a scaled synchronous Kalman filter. The update of the covariance matrix for this type of Kalman filter,
denoted with Σ[k] ∈ Rn×n at the synchronous instant t = kτs, yields:

Σ[k] = ω
(

(AτsΣ([k − 1]Aτs +Qτs)
−1 + C>R−1C

)−1
, ∀k ∈ Z+.

Proposition 2. [55] Let Σ∞ be defined as the solution of Σ−1
∞ =

(
ωAτsΣ∞A

>
τs +Qτs

)−1
+ C>R−1C.

If Σ∞ exists, (Aτs , C) is an observable pair and λi(Ā) ≤ 1, for all i ∈ Z[1,n], where Ā :=
√
ω
(
Aτs −

AτsΣ̄C
> (CΣ̄C> +R

)−1
C
)

and Σ̄ := AτsΣ∞A
>
τs +Qτs , then it holds that limk→∞Σ[k] = Σ∞.

Now we can state the main result on the asymptotic bound of P (t).

Theorem 15. Let the scalars aτs and bτs be defined as follows: aτs := supτ∈[0,τs] σmax(Aτ ) and
bτs := supτ∈[0,τs] σmax(Bτ ). If the hypothesis of Proposition 2 holds, then we have that

lim
t→∞

λmax (P (t)) ≤ a2
τsλmax (P∞) + b2τsλmax(Qτs).

This result guarantees a bound on the covariance of the estimation error at all time instants. The
proof of the above theorem is obtained mutatis mutandis from the proof given in [59,60] for the case
of an autonomous process. Indeed, the difference in the EBSE algorithm (210) corresponding to the
system with a control input versus the autonomous system is given by the term Bτu(t− τ) in (210a).
However, as this additional term is present in both x̂i(t) and x̂(t), it cancels out in x̂(t) − x̂i(t) and
therefore, it is not present in the expression of P (t). As such, the proof given in [59, 60] applies to a
system with control input as well.

In Section 4.2.5 we will show how P (t) is used to determine, with a certain probability, a bound on the
estimation error at every synchronous instant. Knowledge of this bound is used to design the robust
MPC algorithm, as it is explained in the next section.

4.2.4 Robust MPC algorithm

In this section we start from the fact that a state estimate x̂(tk), provided by the EBSE at each time
instant tk = kτs, k ∈ Z+, is available for the controller at all synchronous instants. Moreover, we
assume that the corresponding estimation error w(tk) := x̂(tk) − x(tk) satisfies w(tk) ∈ W(tk) at all
tk, where W(tk) is a known polytope (closed and bounded polyhedron). An efficient procedure for
determining W(tk) from P (tk), k ∈ Z+, will be presented in Section 4.2.5.
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As the controller samples synchronously in time, the process-model of (206) can be rewritten from
an asynchronous model into a synchronous one. Hence, consider the following discrete-time model
of the system used for controller synthesis:

x(tk+1) : = Ax(tk) +Bu(x̂(tk))

= Ax(tk) +Bu(x(tk) + w(tk)), k ∈ Z+,
(211)

where x(tk) ∈ X ⊆ Rn is the real state, x̂(tk) ∈ X ⊆ Rn is the estimated state, u(tk) ∈ U ⊆ Rm
is the control action and w(tk) ∈ W(tk) ⊂ Rn is an unknown estimation error at the discrete-time
instant tk. The matrices A = Aτs and B = Bτs correspond to the discretized model of system (206).
From the above equations it can be seen that at any synchronous time instant tk there exists a
w(tk) ∈W(tk) such that x(tk) = x̂(tk)−w(tk) ∈ {x̂(tk)}⊕W(tk) and, any w(tk) can be obtained as a
convex combination of the vertices of W(tk). We assume that 0 ∈ int(X) and 0 ∈ int(U) and indicate
that 0 ∈ int(W(tk)) for all k ∈ Z+, as it will be shown in Section 4.2.5. For simplicity and clarity of
exposition, the index tk is omitted throughout a part of this section, i.e. x̂, x, W, etc. will denote x̂(tk),
x(tk), W(tk) and so on.

Our goal is now to design a control algorithm that finds a control action u(x̂) ∈ U such that for all
w ∈W

V (Ax+Bu(x̂))− V (x) + α3(‖x‖)− σ(‖w‖) ≤ 0. (212)

Satisfaction of the above inequality for some σ ∈ K would guarantee ISS of the corresponding closed-
loop system, see Theorem 14. Moreover, to improve disturbance rejection, we will adopt the idea of
optimizing the closed-loop ISS gain by minimizing the gain of the function σ, which was recently
proposed in [36]. Therein, the case of additive disturbances was considered. In what follows we
extend the results of [36] to estimation errors, which act as a disturbance on the measurement that is
fed to the controller.

The first relevant observation is that an optimization problem based directly on the constraint (212)
is not finite dimensional in w. However, we demonstrate that by considering continuous and convex8

Lyapunov functions and bounded polyhedral sets X,U,W (with non-empty interiors containing the
origin) a solution to inequality (212) can be obtained via a finite set of inequalities that only depend
on the vertices of W.

Let we, e = 1, ..., E, be the vertices of W (notice that E > n, as W is assumed to have a non-empty
interior). Next, consider a finite set of simplices S1, . . . , SM with each simplex Si equal to the convex
hull of a subset of the vertices of W and the origin, and such that ∪Mi=1Si = W, int(Si) ∩ int(Sj) = ∅
for i 6= j, int(Si) 6= ∅ for all i. More precisely, Si = Co{0, wei,1 , . . . , wei,l} and

{wei,1 , . . . , wei,l} ⊆ {w1, . . . , wE}

(i.e. {ei,1, . . . , ei,l} ⊆ {1, . . . , E}) with wei,1 , . . . , wei,l linearly independent. For an illustrative example
see Figure 28: the polyhedron W consists of S1, S2, . . . , S5, where, for instance, the simplex S3 is
generated by 0, we3,1 , we3,2 , with e3,1 = 2 and e3,2 = 3. For each simplex Si we define the matrix
Wi := [wei,1 . . . wei,l ] ∈ Rl×l, which is invertible. Let γe ∈ R+ be variables associated with each
vertex we, which are both depending on the time instant tk.

Next, suppose that both x and x̂ are known. Notice that the assumption that x is known is only used
here to show how one can transform (212) into a finite dimensional problem. The dependence on
x will be removed later, leading to a main stability result and an MPC algorithm that only use the
estimated state x̂, see Problem 1. Let α3 ∈ K∞ and consider the following set of constraints:

V (Ax̂+Bu(x̂))− V (x) + α3(‖x‖) ≤ 0, (213a)
V (A(x̂− we) +Bu(x̂))− V (x) + α3(‖x‖)− γe ≤ 0 (213b)

for all e = 1, . . . , E.
8This includes quadratic functions, V (x) = x>Px with P � 0, and functions based on norms, V (x) = ‖Px‖ with P a

full-column rank matrix.
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Figure 28: An example of the set W.

Theorem 16. Let V be a continuous and convex Lyapunov function. If for α3 ∈ K∞, x̂ and x there
exist u(x̂) and {γe}e=1,...,E , such that (213a) and (213b) hold, then (212) holds for the same u(x̂),
with σ(s) := ηs and

η := max
i=1,...,M

‖γ̄iW−1
i ‖, (214)

where γ̄i := [γei,1 . . . γei,l ] ∈ R1×l and ‖ · ‖ is the corresponding induced matrix norm.

Proof: For any w ∈ W =
⋃M
i=1 Si there exists an i such that w ∈ Si = Co{0, wei,1 , . . . , wei,l}, which

means that there exist non-negative µ0, µ1, . . . , µl with
∑

j=0,1,...,l µj = 1 such that

w =
∑

j=1,...,l

µjw
ei,j + µ00 =

∑
j=1,...,l

µjw
ei,j .

In matrix notation we have that w = Wi[µ1 . . . µl]
> and thus

[µ1 . . . µl]
> = W−1

i w.

By multiplying each inequality in (213b) corresponding to the index ei,j and the inequality (213a) with
µj ≥ 0, j = 0, 1, . . . , l, summing up and using

∑
j=0,1,...,l µj = 1 yields:

µ0V (Ax̂+Bu(x̂)) +
∑

j=1,...,l

µjV (A(x̂− wei,j ) +Bu(x̂))

− V (x) + α3(‖x‖)−
∑

j=1,...,l

µjγei,j ≤ 0.

Furthermore, using
∑

j=0,1,...,l µj = 1 and convexity of V yields

V (A(x̂−
∑

j=1,...,l

µjw
ei,j ) +Bu(x̂))− V (x)

+ α3(‖x‖)−
∑

j=1,...,l

µjγei,j ≤ 0,

or equivalently

V (A(x̂− w) +Bu(x̂))− V (x) + α3(‖x‖)− γ̄i[µ1 . . . µl]
> ≤ 0.

Using that [µ1 . . . µl]
> = W−1

i w and x = x̂−w we obtain (212) for σ(s) = ηs and η ≥ 0 as in (214).�

Based on the result of Theorem 16 we are now able to formulate a finite dimensional optimization
problem that results in closed-loop ISS with respect to the estimation error w(tk) and moreover, in
optimization of the closed-loop ISS gain. This will be achieved only based on the estimate x̂(tk) and
the set W(tk).

Let γ̄ := [γ1, . . . , γE ]> and let J : RE → R+ be a function that satisfies α4(‖γ̄‖) ≤ J(γ1, . . . , γE) ≤
α5(‖γ̄‖) for some α4, α5 ∈ K∞. Define next:

Vmin(tk) := min
x∈{x̂(tk)}⊕W(tk)

V (x) (215)
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and
α3,max(tk) := max

x∈{x̂(tk)}⊕W(tk)
α3(‖x‖). (216)

Problem 1. Let α3 ∈ K∞, a cost J and a Lyapunov function V be given. At time k ∈ Z+ let an
estimate of the state x̂(tk) be known and minimize J(γ1(tk), . . . , γE(tk)) over u(tk), γ1(tk), . . . , γE(tk),
subject to the constraints

u(tk) ∈ U, γe(tk) ≥ 0 (217a)
Az +Bu(tk) ∈ X, ∀z ∈ {x̂(tk)} ⊕W(tk) (217b)
V (Ax̂(tk) +Bu(tk))− Vmin(tk) + α3,max(tk) ≤ 0, (217c)

V (A(x̂(tk)− we(tk)) +Bu(tk))− Vmin(tk)

+ α3,max(tk)− γe(tk) ≤ 0
(217d)

for all e = 1, . . . , E. �

Let π(x̂(tk)) := {u(tk) ∈ Rm | (217) holds} and let

x(tk+1) ∈ φcl(x(tk), π(x̂(tk))) := {Ax(tk) +Bu | u ∈ π(x̂(tk))}
denote the difference inclusion corresponding to system (211) in “closed-loop” with the set of feasible
solutions obtained by solving Problem 1 at each k ∈ Z+.

Theorem 17. Let α1, α2, α3 ∈ K∞ of the form specified in Theorem 14, a continuous and convex
Lyapunov function V and a cost J be given. Let W be a bounded set such that W(tk) ⊆W for all tk.
Suppose that Problem 1 is feasible for all states x̂ in X⊕W. Then the difference inclusion

x(tk+1) ∈ φcl(x(tk), π(x̂(tk))), k ∈ Z+ (218)

is ISS in X for inputs in W.

Proof: As x(tk) ∈ {x̂(tk)}⊕W(tk) for all k ∈ Z+ we have from (217b) that x(tk+1) = Ax(tk)+Bu(tk) ∈
X, i.e. the real state satisfies state constraints and, x̂(tk+1) ∈ X ⊕W(tk+1) ⊆ X ⊕W, i.e. Problem 1
remains feasible at k + 1 and X is an RPI set w.r.t. the estimation error. Then, from the definitions
(215) and (216), and from (217c), (217d) we have that

V (Ax̂(tk) +Bu(tk))− V (x(tk)) + α3(‖x(tk)‖) ≤ 0,

V (A(x̂(tk)− we(tk)) +Bu(tk))− V (x(tk))

+ α3(‖x(tk)‖)− γe(tk) ≤ 0,

for all x(tk) ∈ {x̂(tk)} ⊕W(tk), as V (x(tk)) ≥ Vmin(tk) and also α3(‖x(tk)‖) ≤ α3,max(tk). Then, from
Theorem 16 we have that (204b) holds with σ(s) := η(tk)s and η(tk) as in (214), i.e.

V (Ax(tk) +Bu(tk))− V (x(tk)) + α3(‖x(tk)‖)− σ(‖w(tk)‖) ≤ 0,

for all x(tk) ∈ {x̂(tk)} ⊕W(tk). Next let

γ∗ := max
x∈cl(X),u∈cl(U)

{V (Ax+Bu)− V (x) + α3(‖x‖)}.

Since X, U and W are assumed to be bounded sets, γ∗ exists, and inequality (217d) is always satisfied
for γe(tk) = γ∗ for all e = 1, . . . , E, k ∈ Z+, irrespective of x, u and the vertices of W(tk) ⊆ W. This
in turn, via (214) ensures the existence of a positive η∗ such that η(tk) ≤ η∗ for all tk and for all
w(tk) ∈ W. Hence, we proved that inequality (212) holds, and thus, the continuous and convex
Lyapunov function V is a ISS Lyapunov function. Then, due to RPI of X, ISS in X for inputs in W
follows directly from Theorem 14. �

Note that in Theorem 17 we used a worst case evaluation of γe(k) to prove ISS, which corresponds
to a worst case evaluation of the set W(tk). However, in reality the gain η(tk) of the function σ can
be much smaller for k ≥ k0, for some k0 ∈ Z+. This is achieved via the minimization of the cost
J(·), which produces small values of γe(tk), e = 1, . . . , E. This in turn, via (214), will result in a small
η(tk). Furthermore, this will ultimately yield a smaller ISS gain for the closed-loop system, due to the
relation (205). Hence, Problem 1, although it inherently guarantees a constant ISS gain, as shown in
the proof of Theorem 17, it provides freedom to optimize the ISS gain of the closed-loop system, by
minimizing the variables γ1(tk), . . . , γE(tk) via the cost J(·).
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Remark 9. The relations (205) and (214) yield an explicit expression of the gain of γ at every time
instant. This can be used to set-up an event triggering mechanism as follows: at every k ∈ Z+, if
NCS requirements allow event generation and η(tk) ≥ ηbound trigger event. In this way, a healthy
trade-off between minimization of data transmission and performance can be achieved. �

A cost on the future states can be added to Problem 1. As ISS is guaranteed for any feasible solution,
optimization of the cost can still be used to improve performance, without requiring that the global
optimum is attained in real-time. An example of such a cost will be given next.

In what follows, we will indicate certain ingredients which allow the implementation of Problem 1 via
linear programming. For this, we restrict our attention to Lyapunov functions defined using the infinity
norm, i.e.,

V (x) = ‖PV x‖∞, (219)

where PV ∈ Rp×n is a full-column rank matrix. Note that this type of function satisfies (204a), for
α1(s) := ν(PV )√

p s (where ν(PV ) > 0 is the smallest singular value of PV ) and for α2(s) := ‖PV ‖∞s.
Letting α3(s) := cs for some c ∈ R+ we directly obtain from (216) that α3,max(tk) is equal to the
maximum of α3 over the vertices of the set {x̂(tk)}⊕W(tk). Similarly, it is sufficient to impose (217b)
only for the vertices of {x̂(tk)} ⊕W(tk), i.e., for {we(tk) + x̂(tk)}e∈Z[1,E]

.

By definition of the infinity norm, for ‖x‖∞ ≤ c to be satisfied for some vector x ∈ Rn and constant
c ∈ R+, it is necessary and sufficient to require that ± [x]i ≤ c for all i ∈ Z[1,n]. So, for (217c)-(217d)
to be satisfied, it is necessary and sufficient to require that

± [PV (Ax̂(tk) +Bu(tk))]i − Vmin(tk) + α3,max(tk) ≤ 0,

± [PV (A(x̂(tk)− we(tk)) +Bu(tk))]i − Vmin(tk)

+ α3,max(tk)− γe(tk) ≤ 0 (220)

for all i ∈ Z[1,p] and e ∈ Z[1,E]. Moreover, by choosing an infinity-norm based cost function

J(x(tk), u(tk), γi(tk)) := ‖PJ(A(x̂(tk)− w(tk)) +Bu(tk))‖∞

+ ‖QJ(x̂(tk)− w(tk))‖∞ + ‖RJu(tk)‖∞ +
E∑
i=1

‖Γiγi(tk)‖∞, (221)

with full-column rank matrices PJ ∈ Rpj×n, QJ ∈ Rqj×n, RJ ∈ Rrj×m and Γi ∈ R+, we can reformulate
the optimization of the cost J subject to the constraints (217) as the linear program

min
u(tk),γ1(tk),...,γE(tk),ε1,ε2

ε1 + ε2 +

E∑
i=1

Γiγi(tk) (222)

subject to (217a), (217b), (220) and

A(we(tk) + x̂(tk)) +Bu(tk) ∈ X, ∀e ∈ Z[1,E],

± [PJ(A(x̂(tk)− we1(tk)) +Bu(tk))]i + ‖QJ(x̂(tk)− we2(tk))‖∞ ≤ ε1

∀(e1, e2) ∈ Z[1,E] × Z[1,E], ∀i ∈ Z[1,pj ],

± [RJu(tk)]i ≤ ε2, ∀i ∈ Z[1,rj ].

The only thing left for implementing Problem 1 is to compute Vmin(k). Using the same reasoning as
above, it can be shown that the optimization problem (215) can be formulated as a linear program.
As such, finding a solution to Problem 1 amounts to solving 2 linear programs and calculating the
maximum over a finite set of real numbers, which can be performed efficiently.

This completes the design procedure of the robust MPC and we continue with the integration of the
EBSE and MPC.

4.2.5 Integration of EBSE and MPC

In this section we provide a method for designing a set W(tk) based on P (tk). To that extent, we
will use the fact that P (tk) is a model for cov(x(tk) − x̂(tk)), i.e., the covariance matrix of w(tk).
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Hence, G(w(tk), 0, P (tk)) is a model for the true PDF p(w(tk)). The first step in this design is defining
ellipsoidal sets that are based on P (tk). Each ellipsoidal set represents a model of the probability
that the true estimation-error, i.e., w(tk), is within that set. The second step is to define W(tk) as
an over-approximation of a certain ellipsoidal set that can be computed efficiently and such that
w(tk) ∈W(tk) has a high probability. As all variables of this section are at the time-instant tk, we will
omit tk from every time-dependent variable, i.e. w(tk) and P (tk) become w and P , respectively. Let
us start by describing the sub-level-sets of a Gaussian. For any Gaussian G(w, 0, P ) one can define
the sub-level set ε(P, c) ⊂ Rn, for some c ∈ R+, as follows:

ε(P, c) :=
{
w ∈ Rn

∣∣∣w>P−1w ≤ c
}
. (223)

The shape of this sub-level-set is an ellipsoid, or an ellipse in the 2D case as it is graphically depicted
in Figure 29 (for c = 1). This figure illustrates the relation of the ellipsoid with the eigenvalues of
the corresponding covariance matrix P . In this case the relation between eigenvalues of P yields
λ1(P ) > λ2(P ).

Figure 29: Graphical representation of the Gaussian G(w, 0, P ) as the sub-level-set ε(P, 1). The
direction of each arrow is defined as the eigenvector of the corresponding eigenvalue λi(P ).

Applying some basics of probability theory one can calculate the probability, depending on c, that the
random vector w is within the set ε(w,P, c). Some examples of this probability, denoted with Pr(·),
for different values of c are:

Pr (w ∈ ε(P, 1)) ≈ 0.68,

P r (w ∈ ε(P, 4)) ≈ 0.95,

P r (w ∈ ε(P, 9)) ≈ 0.997.

Notice that ε(P, c) defines an ellipsoid. As such, to use the MPC law as proposed in the previous
section, we need to obtain a polytopic over-approximation of this set. This over-approximated set can
then be used as the set W where the estimation error is bounded. Recall that the vertices of W are
used in the controller to determine the control action. There is no optimal method to calculate this set,
as it amounts to the ancient problem of “squaring the circle”. See for example the recent results in [1]
and the references therein. What can be stated is that a trade-off should be made between the size of
the set W on the one hand, indicating the worst case estimation error bound, and the computational
complexity of obtaining W on the other hand, which should be kept reasonable for on-line calculation.

If for example one chooses that Pr(w ∈W) = 0.95, then W can be taken as a tight over-approximation
of ε(P, 4), as illustrated in Figure 30(a). However, to obtain this tight over-approximation, knowledge of
all the eigenvalues of P and vertex computation is required, which is computationally expensive. If the
real-time properties of the resulting algorithm allow this tight over-approximation, then Figure 30(a)
can be considered. However, here we want to have the least processing-time, i.e. computational
complexity. Therefore, we aim at describing the vertices of W by a single parameter that depends on
the maximum eigenvalue of P . An example of such a set is shown in Figure 30(b). Therein, W is
fully determined by the scalar d =

√
cλmax(P ) = 2

√
λmax(P ), which represents an upper bound on

the infinity norm of w.

Notice that the vertices of W as shown in Figure 30(b) are explicitly defined as all possible realizations
of the vectors (w1, . . . , wE)> when [wi]j ∈ {−d, d} for all j ∈ Z[1,n] and i ∈ Z[1,E]. The next result
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(a) Accurate over-approximate. (b) Fast over-approximation.

Figure 30: Examples of over-approximating ε(P, 4) by W.

provides an expression for d ∈ R+, which is calculated at each synchronous sample instant tk, such
that ε(P, c) ⊆W, for a given c ∈ R+.

Lemma 7. Suppose a random vector w ∈ Rn is given of which its PDF is a Gaussian with zero mean
and a covariance-matrix P ∈ Rn×n. Let us define W := {w | ‖w‖∞ ≤ d} with d :=

√
c ∗ λmax(P ).

Then for any c ∈ R+, it holds that ε(P, c) ⊂W.

Proof. Let w ∈ ε(P, c). Then it holds that

λmin(P−1)‖w‖2∞ ≤ λmin(P−1)‖w‖22 ≤ w>P−1w ≤ c,

from which ‖w‖∞ ≤
√
c(λmin(P−1))−1 follows. Applying the fact that λmin(P−1) = (λmax(P ))−1 gives

that
‖w‖∞ ≤

√
c ∗ λmax(P ).

Hence, w ∈W and as w ∈ ε(P, c) was arbitrary, the proof is complete.

The above results shows that in order to compute the vertices of the set W at each tk, one only
needs to calculate the current λmax(P ). The computational efficiency of the procedure for obtaining
the set W can be further improved by using the known fact that λmax(P ) ≤ tr(P ), at the cost of a more
conservative error bound. To increase the probability that w(tk) ∈ W(tk), one can use Lemma 7 to
observe that:

Pr (w(tk) ∈ ε(P (tk), c)) ≤ Pr (w(tk) ∈W(tk)) .

Therefore, by choosing c = 9 yields:

0.997 ≈ Pr (w(tk) ∈ ε(P (tk), 9))

≤ Pr (w(tk) ∈W(tk)) .
(224)

Remark 10. As the covariance matrix P (t) is bounded for all t ∈ T, shown in [59, 60], it follows
that λmax(P (t)) is also bounded for all t ∈ T. Then, by the definition of the set W(tk), it holds that
W(tk) ⊆W for all tk and

W :=

{
w ∈ Rn | ‖w‖∞ ≤ sup

t

√
cλmax(P (t))

}
.

�

This completes the overall design of the feedback loop that consists of (i) the EBSE algorithm, which
provides an estimate of the state x̂(tk) at all tk, (ii) the algorithm for computation of the vertices of
W(tk) at all tk such that w(tk) = x̂(tk)− x(tk) ∈W(tk) has a high probability and (iii) the robust MPC

94



algorithm, which provides inherent ISS w.r.t. to estimation errors w(tk) and optimized ISS w.r.t. to
w(tk) ∈W(tk).

The only aspect left to be treated is concerned with the fact that the EBSE is a stochastic estimator,
while the robust MPC algorithm is a deterministic controller. Due to the stochastic nature of the
estimator, one does not have a guarantee that w(tk) ∈ W(tk) for all tk and, as such, that the real
state is bounded. Instead, one has the information that w(tk) ∈ W(tk) for all tk only with a certain
(high) probability, which implies that the ISS property of the MPC scheme applies to the overall
integrated closed-loop system in a probabilistic sense only. If for some tk ∈ R+, w(tk) 6∈ W(tk) but it
is still bounded, it would be desirable to still have an ISS guarantee (i.e., independent of the bound on
w(tk)) for the closed-loop system. A possible solution could be to use a uniformly continuous control
Lyapunov function to establish inherent ISS to the estimation error, which forms the object of future
research.

4.2.6 Illustrative example

In this section we illustrate the effectiveness of the developed EBSE and robust MPC scheme. The
case study is a 1D object-tracking system. The states x(t) of the object are position and speed while
the measurement-vector y(t) is position. The control input u(t) is defined as the object’s acceleration.
The states and control input are subject to the constraints x(t) ∈ X = [−5, 5]× [−5, 5] and u(t) ∈ U =
[−2, 2]. Both the process-noise as well as the measurement-noise are chosen to have a zero-mean
Gaussian PDF with Qτ = 3τ · 10−4I and Rv = 1 · 10−4. As the process is a double integrator, the
process model becomes:

x(t+ τ) =

(
1 τ
0 1

)
x(t) +

(
τ2

2
τ

)
u(t) + q(t, τ),

y(t) =
(
1 0

)
x(t) + v(t).

(225)

The sampling time of the controller is τs = 0.7[s]. For simplicity, we use “Send-on-Delta” as the
sampling method with ∆ = 0.1[m]. This means that in case the object drove an additional 0.1 meter
with respect to its last sampled position, a new measurement of the position is taken. Therefore, the
set which defines event sampling becomes Hr|t = [y(tr−1) − ∆, y(tr−1) + ∆]. The PDF ΛHr|t(y(t)),
for all t ∈ T, of the EBSE is approximated as a sum of 5 Gaussians that are equidistantly distributed
along [y(tr−1)−∆, y(tr−1) + ∆]. Therefore, we set

N = 5, yi(t) = y(tr−1)−
(
N − 2(i− 1)− 1

N

)
∆, ∀i ∈ Z[1,N ],

RH(t) =

(
2∆

N

)2 (
0.25− 0.05e−

4(N−1)
15 − 0.08e−

4(N−1)
180

)
.

Next, let us design the parameters of the robust MPC. The technique of [36] was used to compute
the weight PV ∈ R2×2 of the Lyapunov function V (x) = ‖PV x‖∞ for α3(s) := 0.01s, yielding

PV =

(
2.7429 0.7121
0.1989 4.0173

)
.

Following the procedure described in Section 4.2.5, the set W(tk) will have 4 vertices at all k ∈ Z+. As
such, to optimize robustness, 4 optimization variables γ1(tk), · · · , γ4(tk) were introduced, each one
assigned to a vertex of the set W(tk). The MPC cost was chosen as J(x(tk), u(tk), γ1(tk), . . . , γ4(tk))
with PJ = 0.4I, QJ = 0.2I, RJ = 0.1 and Γi = 4 for all i ∈ Z[1,4]. The resulting linear program has 11
optimization variables and 108 constraints. In this cost-function, the variable Vmin(tk) of equation (215)
is used. Its value is also calculated via solving a linear program with 3 optimization variables and 5
constraints. During the simulations, the worst case computational time required by the CPU over 100
runs was 20 [ms] for the controller and 5 [ms] for the EBSE, which shows the potential for controlling
fast linear systems.

In the simulation scenario we tested the closed-loop system response for x(t0) = [3, 1]> with the
origin as reference. The initial state estimates of the EBSE were chosen as x̂(t0) = [3.5, 1.2]> and
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P (t0) = I. The evolution of the true state is graphically depicted in Figure 31. Figure 32 presents the
control input u(tk). The evolution of the different values for γ1(tk), · · · , γ4(tk) is shown in Figure 33.
Figure 34 presents the absolute error between the estimated and true state, i.e. position |[w(tk)]1|
and speed |[w(tk)]2|, and the modeled error bound which is chosen to be d =

√
9λmax(P (tk)) and

defines W(tk).
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Figure 31: Evolution of the true state: position, i.e. x1(tk) and speed, i.e. x2(tk).

The symbols “×” in the plot of the true object position of Figure 31 denote the instants when an event
occurs, i.e., whenever the object drove an additional 0.1 [m] with respect to its previous sampled
position measurement. Notice that the number of events increases when position is changing fast.
Therefore, a large amount of samples are generated in the first 5 seconds. After 20 seconds, both
the position and speed of the true state are zero and no event occurs anymore.

0 10 20 30 40 50 60 70
−2

−1.5

−1

−0.5

0

0.5

1

1.5

co
nt

ro
l i

np
ut

 [m
/s

2 ]

time [s]

Figure 32: Evolution of the the control input u(tk) .

Figure 32 shows that the input constraints are fulfilled at all times, and sometime they are active.
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Figure 33: Evolution of the 4 optimization variables γi(tk) .

Notice that when the state is close to zero, due to the optimization of the cost J , this pushes the control
input to zero. As such, the optimization variables γi(tk) of Figure 33 must satisfy V (we(tk))−γe(tk) ≤
0, e = 1, . . . , E. This explains the non-zero value of γi(tk) when the state reaches the equilibrium, for
example in between 20 and 30 seconds.
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Figure 34: Evolution of the true estimation error compared to the bounds on the modeled one.

Figure 34 shows that the true estimation-error remained within the limits of the modeled one at al-
most all sample instances. Furthermore, after 20 seconds no new measurement is received anymore
for some longer time period. Standard state-estimators would predict the state in that case, causing
λmax(P (tk)) to diverge. Due to the EBSE, which makes use of the bounded set Hr|t , λmax(P (tk))
converges to a constant, although no events are generated anymore. This confirms that bounded-
ness of the covariance matrix of the EBSE is independent of the number of events for a bounded set
Hr|t, although the actual value of the bound is influenced by the choice of Hr|t. Notice the variety in
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the modeled estimation-error at 33, 41, 49 and 60 seconds. This is caused by the fact that an event
occurs at these instances. Hence, the state-update is based on a received measurement rather
then a bounded set, which reduces its uncertainty. A final remark is to be made on the fact that at
around 10 seconds the true estimation-error exceeds the modeled one. This means that at this time
instant w(tk) 6∈ W(tk). Nevertheless, the trajectory of the closed-loop system remains bounded with
reasonable robust performance, which encourages us to further analyze the ISS of the integrated
closed-loop system. In light of the solution proposed at the end of the previous section, it is worth to
mention that the CLF used in the example is globally Lipschitz.

For future research it would also be interesting to compare the results obtained with the developed
robust MPC scheme with a stochastic MPC set-up, such as the algorithm presented in [10].

4.2.7 Conclusions

In this paper an event-based control system was designed with the property that control actions
can take place synchronously in time but data transfer between the plant and the controller is kept
low. This was achieved by introducing an event-based state estimator in the feedback loop. The
event-based estimator was used to obtain a state estimate with a bounded covariance matrix in
the estimation error at every synchronous time instant, under the assumption that the set used for
event generation is bounded in the measurement-space. This covariance matrix was then used to
estimate explicit polytopic bounds on the estimation-error that were fed into a robust MPC algorithm.
We proved that the resulting MPC controller achieves ISS to the estimation error and, moreover, it
optimizes the closed-loop trajectory-dependent ISS gain. We provided justification of our main ideas
on all the parts of the overall ”output-based controller” (e.g., a bounded covariance matrix of ESBE-
plant interconnection and ISS of MPC-plant loop) that show that in principle such an event-based
controller should work. Several aspects of the integration of the stochastic event-based estimator and
the deterministic MPC algorithm were discussed. The formal proof of closed-loop properties of the
EBSE-MPC-plant interconnection or its variations is a topic of future research, although simulations
provide convincing and promising evidence of the potential of the proposed methods.
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5 Benchmark Results

5.1 Decentralized Temperature Control of a Passenger Train
D. Barcelli, A. Bemporad

Below the model of the Passenger train is recalled in order to improve readability of the present
deliverable.

Consider the following discrete-time linear global process model{
z(t+ 1) = Az(t) +Bv(t) + Fd(t)

h(t) = Cz(t)
(226)

where z ∈ Rn is the state vector, v ∈ Rm is the input vector, y ∈ Rp is the output vector, Fd ∈ Rd is
a vector of measured disturbances. Let A be stable and assume Fd is constant. We aim at solving
a set-point tracking problem so that h tracks a given reference value r ∈ Rp, despite the presence of
Fd. In order to recast the problem as a regulation problem, assume steady-state vectors zr ∈ Rn and
vr ∈ Rm exist solving the static problem{

(I −A)zr = Bvr + Fd
r = Czr

(227)

and let x = z − zr and u = v − vr. Input constraints vmin ≤ v ≤ vmax are mapped into constraints
vmin − vr ≤ u ≤ vmax − vr9.

Proposition 3. Under the global coordinate transformation (227), the process (226) under the de-
centralized MPC law (126)–(128) is such that h(t) converges asymptotically to the set-point r, under
the assumption of Theorem in [100] or, in the presence of packet drops, of Theorem 8.

Note that problem (227) is solved in a centralized way. Defining local coordinate transformations vir,
zir based on submodels (123) would not lead, in general, to offset-free tracking, due to the mismatch
between global and local models. This is a general observation one needs to take into account in
decentralized tracking. Note also that both vr and zr depend on Fd as well as r, so problem (227)
should be solved each time Fd or r change.

In this section we test the proposed DMPC approach for decentralized control of the temperature
in different passenger areas in a railcar. The system is schematized in Figure 35. Each passen-
ger area has its own heater and air conditioner but its thermal dynamics interacts with surrounding
areas (neighboring passenger areas, external environment, antechambers) directly or through win-
dows/walls/doors. The internal doors can be opened by passengers, external doors automatically
open at train stops. Passenger areas are composed by a table and the associated four seats. Tem-
perature sensors are located in each four-seat area, in each antechamber, and along the corridor.
The goal of the controller is to adjust each passenger area to its own temperature set-point to maxi-
mize passenger comfort.

Let 2N be the number of four-seat areas (N = 8 in Figure 35), N the number of corridor partitions,
and 2 the number of antechambers. Under the assumption of perfectly mixed fluids in each jth
volume, j = 1, . . . , n where n = 3N + 2, the heat transmission equations by conduction lead to the
linear model dTj(τ)

dτ =
∑n

i=0Qij(τ) +Quj , Qij(τ) =
SijKij(Ti(τ)−Tj(τ))

CjLij
, j = 1, . . . , n, where Tj(τ) is the

temperature of volume #j at time τ ∈ R, T0(τ) is the ambient temperature outside the railcar, Qij(τ)
is heat flow due to the temperature difference Ti(τ)−Tj(τ) with the neighboring volume #i, Sij is the
contact surface area, Quj is the heat flow of heater #j, Kij is the thermal coefficient that depends
on the materials, Cj = Kj

cVj is the the (material dependent) heat capacity coefficient Kj
c times the

fluid volume Vj , and Lij is the thickness of the separator between the two volumes #i and #j. We

9In case vr 6∈ [vmin, vmax], perfect tracking under constraints is not possible, and an alternative is to set

[ zrvr ] = arg min
∥∥[ I−A −B

C 0

]
[ zrvr ]− [ Fd

r ]
∥∥

s.t. vmin ≤ vr ≤ vmax
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Figure 35: Physical structure of the railcar

assume that Qij(τ) = 0 for all volumes i, j that are not adjacent, ∀τ ∈ R. Hence, the process can
be modeled as a linear time-invariant continuous-time system with state vector z ∈ R3N+2 and input
vector v ∈ R2N {

ż(τ) = Acz(τ) +Bcv(τ) + FT0(τ)
h(τ) = Cz(τ)

(228)

where F ∈ Rn is a constant matrix, T0(τ) is treated as a piecewise constant measured disturbance,
and C ∈ Rp×n is such that h ∈ Rp contains the components of z corresponding to the temperatures
of the passenger seat areas, p = 2N . Since we assume that the thermal dynamics are relatively slow
compared to the sampling time Ts of the decentralized controller we are going to synthesize, we use
first-order Euler approximation to discretize dynamics (228) without introducing excessive errors:{

z(t+ 1) = Az(t) +Bv(t) + FdT0(t)
h(t) = Cz(t)

(229)

where A = I + AcTs, B = BcTs, and Fd = FTs. We assume that A is asymptotically stable, as an
inheritance of the asymptotic stability of matrix Ac.

In order to track generic temperature references r(t), we adopt the coordinate shift defined by (227).
The next step is to decentralize the resulting global model. The particular topology of the railcar
suggests a decomposition of model (118) as the cascade of four-seat areas. There are two kinds of
four-seat areas, namely (i) the ones next to the antechambers, and (ii) the remaining ones. Besides
interacting with the external environment, the areas of type (i) interact with another four-seat-area,
an antechamber, and a section of the corridor, while the areas of type (ii) only with the four-seat
areas at both sides and the corresponding section of the corridor. Note that the decentralized models
overlap, as they share common states and inputs. The decoupling matrices Zi are chosen so that in
each subsystem only the first component of the computed optimal input vector is actually applied to
the process.

As a result, each submodel has 5 states and 2 or 3 inputs, depending whether it describes a seat
area of type (i) or (ii), which is considerably simpler than the centralized model (118) with 26 states
and 16 inputs.

We apply the DMPC approach (126) with Q =
[

200I16 0
0 0.2I10

]
, R = 105I16,

[
vmin=−0.03
vmax=0.03

]
W, Ts =

9 min, where vmin is the lower bound on the heat flow subtracted by the air-conditioners, and vmax

is the maximum heating power of the heaters (with a slight abuse of notation we denoted by vmin,
vmax the entries of the corresponding lower and upper bound vectors of R16). Note that the first
sixteen diagonal elements of matrix Q correspond to the temperatures of the four-seat areas. It is
easy to check that with the above parameters condition in [100] for local stability is satisfied. For
comparison, a centralized MPC approach (120) with the same weights, horizon, and sampling time is
also designed. The associated QP problem has 16 optimization variables and 32 constraints, while
the complexity of each DMPC controller is either 2 (or 3) variables and 4 (or 6) constraints. The
DMPC approach is in fact largely scalable: for longer railcars the complexity of the DMPC controllers
remains the same, while the complexity of the centralized MPC problem grows with the increased
model size. Note also that, if a multiple cores computation is taken, the DMPC approach can be
immediately parallelized.
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Figure 36: Comparison between centralized MPC (dashed lines) and decentralized MPC (continuous lines):
output h1 (upper plots) and input v1 (lower plots). Gray areas denote packet drop intervals
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Figure 37: Decentralized MPC results. Upper plots: output variables h (continuous lines) and references r
(dashed lines). Lower plots: command inputs v. Gray areas denote packet drop intervals

Simulation results

We investigate different simulation outcomes depending on four ingredients: i) type of controller
(centralized/decentralized), ii) packet-loss probability, iii) change in reference values, iv) changes of
external temperature (acting as a measured disturbance).

The initial condition is 17◦C for all seat-area temperatures, except for the antechamber, which is 15◦C.
Note that the steady-state value of antechamber temperatures is not relevant for the posed control
goals.

The closed-loop trajectories of centralized MPC feedback vs. decentralized MPC with no packet-
loss are shown in Figure 36(a) (we only show the first state and input for clarity). In both cases the
temperatures of the four-seat areas converge to the set-point asymptotically.

Figure 37(a) shows the temperature vector h(t) tracking the time-varying reference r(t) in the ab-
sence of packet-loss, where the coordinate transformation (227) is repeated after each set-point and
external temperature change.

To simulate packet loss, we assume that the probability of losing a packet depends on the state of
the Markov chain depicted in Figure 38.

The Markov chain is in the jth state if j − 1 consecutive packets have been lost. The probability of
losing a further packet is 1 − p, 0 ≤ p ≤ 1, except for the (N + 1)th state where no packet can be
lost any more. Such a probability model is partially confirmed by the experimental results on relative
frequencies of packet failure burst length observed in [113]. The simulation results obtained with
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Figure 38: Markov chain describing the loss probability

p = 0.5 are shown in Figure 36(b) and Figure 37(b). The stability condition (133a) of Theorem 8 was
tested and proved satisfied for values of j up to 160.

The simulations were run on a MacBook Air 1.86 GHz running Matlab R2008a under OS X 10.5.6 and
the Hybrid Toolbox for Matlab [102]. The average CPU time for solving the centralized QP problem
associated with (120) is 6.0 ms (11.9 ms in the worst case). For the decentralized case, the average
CPU time for solving the QP problem associated with (126) is 3.3 ms (7.4 ms in the worst case).
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