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1 Introduction

This deliverable targets algorithms for real-time optimization and their cooperation with decentrali-
zed/distributed MPC. The first section present results for hierarchical multi-rate control design for
constrained linear systems. The second section applies hierarchical and decentralized hybrid model
predictive control to autonomous navigation of a formation of unmanned aerial vehicles under ob-
stacles and collision avoidance constraints. The third section present results for distributed real time
optimization with parametric coordination together with a demonstration on large-scale optimal con-
trol of water distribution network.

Hierarchical multi-rate control design approach to linear systems subject to linear constraints on input
and output variables is a control strategy where, at the lower level, a linear controller stabilizes the
open-loop process without considering the constraints. A higher-level controller commands reference
signals at a lower sampling frequency so as to enforce linear constraints on the variables of the
process. By optimally constraining the magnitude and the rate of variation of the reference signals
applied to the lower control layer, we provide quantitative criteria for selecting the ratio between the
sampling rates of the upper and lower layers to preserve closed-loop stability without violating the
prescribed constraints. The approach is particularly useful when the lower layer is a decentralized
stabilizing controller, and the higher layer is asked to enforce global constraints on system variables
without relying on a full dynamical model of the entire process. The approach was tested in detail on
the hierarchical control of a linear, dynamically coupled, multi-mass-spring system.

For hybrid dynamical systems, precise methodologies for hierarchical control design are more diffi-
cult. We have only tested the hierarchical MPC design on a nontrivial application example involving
hybrid dynamics, namely autonomous navigation of a formation of unmanned aerial vehicles (UAVs)
under obstacle and collision avoidance constraints, including lower-level vehicle stabilization. Each
vehicle, of quadcopter type, is stabilized by a local linear MPC controller around commanded desired
set-points. These are generated at a slower sampling rate by a hybrid MPC controller per vehicle at
the upper control layer, based on a hybrid dynamical model of the UAV and of its surrounding environ-
ment (i.e., the other UAVs and obstacles). The resulting decentralized scheme controls the formation
based on a leader-follower approach. The performance of the hierarchical control scheme is as-
sessed through simulations and comparisons with other path planning strategies, showing the ability
of linear MPC to handle the strong couplings among the dynamical variables of each quadcopter
under motor voltage and angle/position constraints, and the flexibility of the proposed hierarchical
decentralized hybrid MPC scheme in planning the desired paths on-line.
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2 Hierarchical Multi-Rate Control Design for Constrained Linear Sys-
tems

2.1 Introduction

The increasing demand for automation of large-scale systems requires engineers to develop more
complex and scalable control designs, based on distributed and multi-layer architectures. Centralized
control schemes are in fact often inadequate for large-scale systems composed by several interacting
subsystems. This is because all measurements must be collected in one location where a possibly
complex global control decision must be take, causing problems of scalability, robustness, reliability,
and maintenance of large-scale models. Decentralized control has been advocated during at least
the last four decades to overcome the complexity issue [27], but when global performance objectives
need to be optimized under local and possibly global constraints, a (usually centralized) upper layer
of coordination is required, typically running at a smaller sampling frequency.

Model predictive control (MPC) has been extensively used in the process industries for control and
coordination of large-scale systems subject to constraints [28]. Traditionally, MPC is used for generat-
ing reference signals to single-loop controllers in order to optimize a global performance and enforce
constraints on multiple inputs and outputs. In order to achieve this task, MPC requires a dynamical
model of the entire process, used to make predictions over which to optimize the control signals. As
a consequence, MPC suffers from the aforementioned scalability and model maintenance issues,
exacerbated by the complexity issue of solving a large-scale optimization problem on-line.

Decentralized and hierarchical MPC schemes have been investigated recently to address the com-
plexity issue of centralized MPC. We refer the reader to the excellent recent survey [29] and to the
recent literature on decentralized MPC [30–35]. Reference governors (RG) were also proposed to
mitigate the complexity of MPC by separating the stabilization problem from the constraint fulfillment
problem [36–41]. In the RG approach, a (global) model of the underlying closed-loop system is
exploited in a predictive manner to provide a reference signal to the lower-level controller which is
as close as possible to the desired one, compatibly with the given constraints. Although providing
good computational benefits, reference governors have still the drawback of needing a detailed global
dynamical model of the entire underlying closed-loop system for on-line optimization.

In this work we propose a hierarchical multi-rate control approach that exploits the idea of manipulat-
ing reference signals to enforce constraints. We assume that the open-loop process is stabilized by a
linear (possibly decentralized) controller with sampling time TL without taking care of the constraints,
whose reference signals are generated by a higher-level controller running at a larger sampling time
TH = NTL. As in [40], the higher level controller bounds the commanded reference signals to prevent
violations of the contraints. In this work, however, constraints are set also on the variations of the
reference signals. In addition we adopt a multi-rate setting, providing quantitative relations between
the maximum allowed reference variations and to ratio N = TH/TL between the sampling times.

Multirate MPC schemes have been addressed in a variety of papers, see e.g. the early work [42],
and the application papers [43, 44], where hybrid MPC control is used at the higher level to enforce
complex linear and logical constraints. Two main issues arise in hierachical MPC design: the choice
of a simple (“as much abstracted as possible, but not too much”) prediction model of the underlying
subsystem, and the choice of the sampling time TH . Rule of thumbs suggest that the latter must
be ”large enough” to assume that the adopted prediction model is “enough consistent” with the true
underlying closed-loop system, but “not too small” to ensure enough reactiveness of the hierarchical
scheme to changes of desired references. In this work we quantify exactly what “large enough”
should be, and free the designer from concerns about the choose of the prediction model of the
underlying closed-loop system. In fact, safe operations are guaranteed by the resulting magnitude
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Figure 1: Hierarchical control scheme

and rate constraints on reference signals, no matter how the performance index (if any) is optimized
on top by the higher-level controller.

The proposed hierarchical control architecture is described in Section 2.2. In Section 2.3 the con-
straints on reference signals and their dependence on the ratio between sampling times is character-
ized and optimized, and used in Section 2.4 to the define the general hierarchical control design. A
particular design for the upper control layer based on on-line optimization is described in Section 2.5.
Simulation results are reported in Section 2.6.

2.2 Problem setup

Consider the hierarchical control architecture depicted in Figure 1. The open-loop process is sta-
bilized by a lower-level control layer running at a sampling frequency 1

TL
(possibly decentralized, as

depicted in Figure 1). At the higher level a supervisor running at a lower sampling frequency 1
TH

decides the reference signals to send to the lower layer, possibly optimizing a performance criterion
(such as an economic criterion), so as to make sure that a certain number of linear constraints on
input and output variables are satisfied. Hierarchical control arrangements are frequent in industrial
automation, because one can separate the concerns related to stabilization and disturbance rejection
(taken care by the lower level controller at a high sampling frequency) and to steady-state optimization
and constraint handling (taken care by the higher level, usually at a slower pace).

Consider the linear time-invariant (LTI) discrete-time model of the lower-level closed-loop system
x(t +1) = Āx(t)+ B̄u(t)

y(t) = C̄x(t)+ D̄u(t)
u(t) = Kx(t)+Er(t)

(1)

where x(t) ∈ Rn, y(t) ∈ Rny , u(t) ∈ Rnu , and r(t) ∈ Rny is the reference signal. We assume that K is
an asymptotically stabilizing gain, which could either be a centralized or a decentralized one (see
e.g. [45] for LMI-based synthesis of decentralized linear controllers). We also assume that a gain
E ∈ Rnu×ny exists such that the DC-gain from r to y is the identity,

E = ((C̄+ D̄K)(I− Ā− B̄K)−1B̄+ D̄)−1 (2)

The closed-loop system (1) can be rewritten as{
x(t +1) = Ax(t)+Br(t)

y(t) = Cx(t)+Dr(t)
(3)

6



where A = Ā+ B̄K, B = B̄E, C = C̄+ D̄K, D = D̄E.

Define the following ratio

N =
TH

TL
(4)

between the two sampling times of the control layers, where we assume N ∈ N.

The goal of the higher-level controller is to command the piecewise constant vector of references r(t)

r(t) = rk, t = kN, . . . ,(k+1)N−1, k = 0,1 . . . (5)

to the lower-level controller u(t) = Kx(t)+Er(t) in a way that the output vector y(t) is kept within the
admissible output polytope

Y = {y ∈ Rny : Hyy≤ Ky} (6)

where Hy ∈ Rq×ny , Ky ∈ Rq. Note that input constraints may be also embedded in (6) by augmenting
the output vector so that matrix [C D] includes the rows of [K E].

The main goal of this contribution is to determine simultaneously the ratio N and restrictions on rk
and on the set point changes ∆rk = rk− rk−1 so that y(t) ∈Y . To this end, let the reference vector r(t)
be constrained within the tightened set

R = {r ∈ Rny : Hyr ≤ Ky−∆Ky}, (7)

where ∆Ky ∈ Rq, ∆Ky > 0 component-wise, and assume set points r(t) are changed in a way that the
tracking error e(t), y(t)− r(t) is always within the set

E = {e ∈ Rny : Hye≤ ∆Ky} (8)

Vector ∆Ky is a tuning knob of the proposed approach: the smaller the components of ∆Ky, the larger
is the set R of admissible set points rk, but the smaller will be the admissible reference increments
∆rk to maintain tracking errors within E .

Let xr ∈Rn be the steady-state state corresponding to a reference signal r∈Rny , xr =Axr+Br, xr =Gxr,
Gx , (I−A)−1B, and define the shift of coordinates ∆x = x− xr. Then, (3) can be rewritten as{

∆x(t +1) = A∆x(t)
e(t) = C∆x(t)

(9)

Let Ω(0) ⊆ Rn be the maximum admissible output set (MOAS) [46] for the closed-loop system (9)
under the constraint e(t) ∈ E

Ω(0) = {∆x ∈ Rn : HyCAk
∆x≤ ∆Ky, ∀k ≥ 0} , {x ∈ Rn : H0∆x≤ K0} (10)

where1 H0 ∈ Rn0×n and K0 ∈ Rn0 , and define the reference-dependent invariant set

Ω(r) = {x ∈ Rn : H0(x−Gxr)≤ K0} (11)

Lemma 1. Let x(0) ∈Ω(r) and r(t)≡ r ∈R, ∀t ≥ 0. Then y(t) ∈ Y , ∀t ≥ 0.

Proof. x(0) ∈ Ω(r) implies that y(t)− r(t) ∈ E , ∀t ≥ 0. Since r(t) ∈R, it follows that Hyy(t) = Hye(t)+
Hyr(t)≤ ∆Ky +Ky−∆Ky ≤ Ky, ∀t ≥ 0.

The main idea is the following. Assume that the reference rk ∈R is issued at time t = kN, and that
N is large enough so that x(t +N − 1) ∈ Ω(rk). At time t = (k + 1)N consider the new reference is
rk+1 ∈R. If ∆rk+1 = rk+1− rk is “small enough”, then x(t +N) ∈ Ω(rk+1). The goal of the next section
is to quantify the relationship between the maximum reference variation ∆rk, the ratio N between the
sampling intervals TH , TL, and ∆Ky such that every TH = NTL steps the state vector x(t) of the plant is
guaranteed to lie in an invariant set Ω(rk).

1As ∆Ky > 0 and A is asymptotically stable, Ω(0) is generated by a finite number of inequalities, as proved in [46]. We
assume that (H0,K0) are a minimal hyperplane representation of Ω(0).
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2.3 Computation of maximum reference rates

Assume the ratio N between the sampling times of the upper and lower layers of control is given.
Consider the problem of determining the initial state x(0)∈Ω(r1) and the minimum reference variation
∆r(N) = r2−r1 between two reference values r1,r2 ∈R such that the state x(N) is outside the invariant
set Ω(r2):

∆r(N) = inf
r1,r2,x(0)

||r2− r1||∞ (12a)

s.t. r1,r2 ∈R (12b)
x(0) ∈Ω(r1) (12c)
x(t +1) = Ax(t)+Br2 t = 0,1, . . . ,N−1 (12d)
x(N) /∈Ω(r2) (12e)

Because of constraint (12e), the optimization problem (12) is nonconvex. However, it can be con-
veniently recast as a mixed-integer linear programming (MILP) problem by introducing an auxiliary
binary vector δ ∈ {0,1}n0 , satisfying the following constraints

[δ i = 1]↔ [H i
0(x(N)−Gxr2)≤ Ki

0] (13a)
n0

∑
i=0

δ
i ≤ n0−1 (13b)

where the superscript i denotes the ith component or row. The logical constraint (13a) can be con-
verted to mixed-integer linear inequalities using the standard “big-M” approach

H i
0(x(N)−Gxr2)−Ki

0 ≤ Mi
+(1−δ

i) (14a)
H i

0(x(N)−Gxr2)−Ki
0 ≥ (Mi

−−σ)δ i +σ i = 1, . . . ,n0 (14b)
(14c)

where σ > 0 is a small number (e.g.: the machine precision) and M−,M+ ∈ Rn0 are vectors of lower
and upper bounds obtained by solving the following linear programs

Mi
− = min[

x(0)
r1
r2

][H0AN 0 H0RG
]i [ x

r1
r2

]
−Ki

0 (15a)

s.t.

H0 −H0Gx 0
0 Hy 0
0 0 Hy

[ x
r1
r2

]
≤

 K0
Ky−∆Ky

Ky−∆Ky

 (15b)

where RG , RN −Gx, RN ,
(
∑

N−1
i=0 AiB

)
, and vector M+ is determined by changing min to max in (15).

By introducing an additional variable ε ≥ ‖r2− r1‖∞, we address problem (12) by solving the following

8



MILP

∆r(N) = min
[x′ r′1 r′2 δ ′ ε ]′

ε (16a)

s.t. ε ≥±(r j
2− r j

1) , j = 1, . . . ,ny (16b)
Hyr1 ≤ Ky−∆Ky (16c)
Hyr2 ≤ Ky−∆Ky (16d)
H0(x−Gxr1)≤ K0 (16e)
H i

0(A
Nx+RGr2)−Ki

0 ≤Mi
+(1−δ

i) (16f)
−H i

0(A
Nx+RGr2)+Ki

0 ≤−(Mi
−−σ)δ i−σ (16g)

no

∑
i=0

δ
i ≤ no−1 (16h)

δ
i = {0,1}, i = 1, . . . ,n0 (16i)

The quantity ∆r(N) in (16) is the smallest change of reference vector (expressed in infinity norm) that
can be applied to the closed-loop system (3) such that, starting from an invariant set Ω(rk), the state
vector lands outside a new invariant set Ω(rk+1) after N steps. Or, in other words, for all reference
changes ‖rk− rk−1‖∞ ≤ ∆r(N)−σ , ∀σ > 0, the closed-loop system (3) is such that, starting from an
invariant set Ω(rk), the state vector always arrives into a new invariant set Ω(rk+1) after N steps. Note
that, because of the constraint r1,r2 ∈R, problem (16) may become infeasible for large N, that is any
feasible perturbation of the set-point keeps the state within the invariant set Ω(r2) after N steps. The
following lemma shows a monotonicity property of ∆r(N) with respect to N, for those values N ∈N for
which ∆r(N) is defined.

Lemma 2. Let ∆r(N) be defined by the optimization problem (16). Then for any N1,N2 ∈ N, N1 < N2,
such that ∆r(N1), ∆r(N2) are defined it holds that

∆r(N1)≤ ∆r(N2) (17)

Proof. We first prove by contradiction that ∆r(N) ≤ ∆r(N +1), ∀N ∈ N such that ∆r(N +1) is defined.
Assume that N ∈ N exists such that ∆r(N + 1) < ∆r(N). This implies that there exists a state x and
two references r1,r2 ∈ R such that ∆r(N + 1) ≤ ‖r1− r2‖∞ < ∆r(N), x ∈ Ω(r1), AN+1x+∑

N
i=1 AiBr2 6∈

Ω(r2). Then, also ANx+∑
N−1
i=1 AiBr2 6∈Ω(r2), otherwise, by invariance of Ω(r2), also AN+1x+∑

N
i=1 AiBr2

would belong to Ω(r2). Hence, the optimality of ∆r(N) is violated, a contradiction. The monotonicity
condition (17) for generic N1, N2 easily follows.

2.4 Hierarchical controller

Assume that N has been fixed and that the upper control layer commands set-points rk under the
constraints

‖rk− rk−1‖∞ ≤ ∆r(N)−σ , ∀k = 0,1, . . . (18a)
rk ∈R, ∀k =−1,0,1, . . . (18b)

feeding the lower control layer as in (5).

Theorem 1. Let K be a lower-level feedback gain such that Ā+ B̄K is a strictly Schur matrix, and
assume that matrix E in (2) exists. Assume a vector r−1 ∈R exists such that the initial state x(0) ∈
Ω(r−1). Let the upper-level controller change the set-points rk according to the constraints (18), in
which ∆r(N) is the solution of (16) and σ > 0 is arbitrary small. Then the linear system (Ā, B̄,C̄, D̄)
satisfies the constraints y(t) ∈ Y for all t ≥ 0. If in addition limt→∞ r(t) = r ∈R then limt→∞ y(t) = r.

9



Proof. Because of (18), x(kN)∈Ω(rk), ∀k≥ 0. By Lemma 1, it follows that y(t)∈Y , ∀t = kN, . . . ,k(N+
1)− 1, ∀k = 0,1, . . ., that is y(t) ∈ Y , ∀t ≥ 0. To prove convergence of y(t) to r when limt→∞ r(t) = r,
similarly to (34) define ∆x(t) = x(t)−Gxr and rewrite (3) as{

∆x(t +1) = A∆x(t)+B(r(t)− r)
e(t) = C∆x(t)+D(r(t)− r)

(19)

As (19) is an asymptotically stable linear system it is also input-to-state stable [47], and hence it
immediately follows that limt→∞ ∆x(t) = 0, which in turn implies that limt→∞ y(t)− r = 0.

Theorem 1 shows that any upper-level reference generation strategy satisfying constraints (18) guar-
antees the fulfillment of output constraints and asymptotic convergence to constant set-points. The
MILP (16) provides the supremum ∆r(N) of the reference variations ‖rk− rk−1‖∞ that the higher-level
controller can apply for a given ratio N = TH/TL between sampling times. It is worth to investigate
the relation between ∆r(N) and N further. In fact, the design of the higher control layer could be
addressed from a different point of view: given a desired ∆r, determine the minimum N such that
∆r < ∆r(N). In practical applications N is restricted to a range [Nmin, Nmax] of values: the upper layer
is executed at a slower pace than the lower layer (Nmin not too small), but at the same time the upper
layer should be reactive enough to adjust set-points (Nmax not too large). Hence, it is worth to solve
the MILP (16) only within the restricted range N ∈ [Nmin,Nmax] to characterize ∆r(N) that, by Lemma 2,
we know increases with N. In particular, it is of interest the ratio

R(N) =
∆r(N)

N
(20)

which characterizes the maximum speed of change of the reference signal. In fact, the larger N
the larger is the supremum of the variations ∆r that the supervisor can issue, but the less frequently
such variation happens, that is every NTL sampling times. Another issue related to tuning of the upper
control layer is the choice ∆Ky: from one hand a larger ∆Ky tightens the range of admissible references
R, but on the other hand it enlarges the size of the invariant set Ω(r), and therefore augments the
achievable ∆r(N). There is therefore a tradeoff the designer must choose between constraints on
reference signals (R) and constraints on reference speed (R(N)).

Because of the need of enforcing constraints (18) in the upper control layer, in the next section
we propose a model predictive control (MPC) design strategy for such a layer, although any other
constraint-handling strategy could be employed, such as static optimization or a rule-based selection.

2.5 MPC design of upper control layer

We introduce an upper-layer MPC strategy, denoted as HiMPC, for generating the reference signal r
under constraints (18).

2.5.1 Prediction model

We consider an under-sampled and possibly reduced-order model of the lower-level closed-loop
model (3), evolving with sampling time TH = NTL{

xH
k+1 = AHxH

k +BHrk
yk = CHxH

k +DHrk
(21)

where yk = y(kN), xH
k = Zx(kN), and Z is a matrix mapping the original state x(kN) into the new

state xH
k (in case the order of the system is not reduced Z = I). Model (21) can be easily obtained

10



Figure 2: Mass-spring system considered in the simulation example

by resampling system (3) using standard discretization methods. As a consequence, fast-enough
modal responses become negligible, which implies that the HiMPC algorithm can exploit only an
incomplete information about the underlying closed-loop dynamics. This is a very convenient feature
when HiMPC is applied to supervise a decentralized control layer, where maintaining a global detailed
dynamical model of the entire lower-level closed-loop process may be a hard task. In the extreme
case in which all dynamics are neglected, model (21) becomes the following static model + one-step
delay {

xH
k+1 = rk
yk = xH

k
(22)

where xH
k = rk−1 ∈ Rny is a state buffering the reference signal for one step TH . Model (21) is partic-

ularly appropriate for large values of N. Note that in case model (22) is used, no feedback from the
states x of the process is required by the upper control layer.

2.5.2 Cost function and constraints

The upper-layer MPC controller must embed constraints (18) on the generated references, to ensure
stability and constraint satisfaction. It may also embed additional constraints on the reference signals,
such as mixed logical/linear constraints (see e.g. [43]).

The MPC controller can optimize virtually any cost function of rk, ∆rk, and xH
k , that may be dictated for

instance by economic objectives.

Note also that if Hy is block-diagonal (for example, Y is a box), then R is also block diagonal, and
if performance objectives and possibly other additional constraints are also block diagonal, so that
HiMPC based on model (22) can be implemented in a decentralized way.

Finally, note that when HiMPC is based on model (22), a simple static optimization with respect to rk
can be setup, that possibly leads to a small-scale linear or quadratic programming problem. In this
case, multiparametric programming algorithms can be exploited to convert HiMPC into a piecewise
affine control law [48].

11



2.6 Simulation example

2.6.1 Problem description

We test the performance of the proposed HiMPC approach on the multi-mass-spring system depicted
in Figure 2. Although the example is academic and relatively low-dimensional, the concepts illustrated
in the example are immediately scalable to larger systems.

The process is composed by four masses moving vertically, each one connected by a spring to a
fixed ceiling, subject to damping due to viscous friction with the environment, and connected to its
neighbor mass by another spring. The values of the parameters of the system are reported in Table
1. An input force u [Nm] can be applied to each mass by the lower-level controller. The output of the
system is the vector y collecting the vertical positions y1, . . . ,y4 of the masses.

Table 1: Plant parameters

Physical characteristic symbol value
mass M 5 [kg]
viscous friction β 0.1 [kg/s]
vertical elastic coefficient Kv 1 [N/m]
lateral elastic coefficient Kl 0.1 [N/m]

The dynamics of the discrete-time model of the system obtained by exact discretization with sampling
time TL = .25 s are described the following matrices

Ā =


1 0.25 0 0 0 0 0 0

−0.055 0.995 0.005 0 0 0 0 0
0 0 1 0.25 0 0 0 0

0.005 0 −0.06 0.995 0.005 0 0 0
0 0 0 0 1 0.25 0 0
0 0 0.005 0 −0.06 0.995 0.005 0
0 0 0 0 0 0 1 0.25
0 0 0 0 0.005 0 −0.055 0.995



B̄ =


0 0 0 0

0.05 0 0 0
0 0 0 0
0 0.05 0 0
0 0 0 0
0 0 0.05 0
0 0 0 0
0 0 0 0.05

 C̄ =

[ 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

]
D̄ = 0

The lower level regulator was designed as a centralized LQR with unit weights on all inputs and
outputs, modified by zeroing all extra block-diagonal terms to obtain the decentralized linear gain

K =

[−0.3102 −2.1343 0 0 0 0 0 0
0 0 −0.2842 −2.0997 0 0 0 0
0 0 0 0 −0.2842 −2.0997 0 0
0 0 0 0 0 0 −0.3102 −2.

]
.

It is immediate to verify that the closed-loop matrix Ā+ B̄K is strictly Schur and that matrix E in (2)
is well posed. The HiMPC controller is designed to enforce the output constraint y(t) ∈ Y , where

Y = {y ∈R4 : −0.3≤ yi ≤ 1,y2 ≤ y1+0.3, i = 1, . . . ,4}, or Hy =
[ I

−I
−1 1 0 0

]′
, Ky = [ 1 1 1 1 0.3 0.3 0.3 0.3 0.3 ]′,

corresponding to constraining mass positions between −0.3 and 1 m, and by preventing mass #1 to
go below mass #2 by more than 0.3 m.

HiMPC adopts a linear MPC formulation based on model (21) or, in alternative, model (22), using the
linear MPC setup of the Hybrid Toolbox [49]. The prediction horizon is 2, the control horizon 1, unit
weights are used on reference increments and on mass position errors, i.e., on the deviations of yk
from a user-defined reference position signal p(t). The constraints on control signals rk ∈R and on
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Figure 3: ∆r(N), obtained by solving (16) for ∆0 = 0.3

their increments |ri
k− ri

k−1| ≤ ∆r(N)−σ , i = 1,2,3,4 are enforced (σ=machine precision). The quantity

∆Ky = ∆0 [ 1 1 1 1 1 1 1 1 0.4 ]′

is chosen to restrict the tracking error, where ∆0 is a scaling factor. The relation between N, ∆0, and
∆r is reported in Table 2. A “*” in the table denotes that (12) has no solution, which means that
constraints on ∆r become redundant with respect to the condition r ∈R. The scaling factor ∆0 = 0.3
will be used in the following simulations, as it provides a good compromise between the size of the
invariant sets Ω(r) and the size of the admissible reference set R = {r ∈R4 : 0≤ ri ≤ 0.7, i = 0, . . . ,4}.

Table 2: ∆r for different values of N and scalings factors ∆0

N�∆0 0.1 0.3 0.4 0.55
18 0.01 0 0 0
21 0.04 0 0 0.20
42 0.41 0.07 0 *
44 0.41 0.22 0.14 *
45 0.42 0.33 0.36 *
46 0.44 0.38 0.50 *
48 0.46 0.66 * *
49 0.48 0.70 * *
54 1.00 * * *
57 1.10 * * *

To give an example of the complexity of the MILP optimization problem (16), this is solved in 141.2 s
for N = 49 and ∆0 = 0.3 on an iMac Intel Core 2 Duo 2.8GHz running Matlab R2009b under Windows
XP. The MPT Toolbox [50] was used for invariant set computations, YALMIP [51] and Cplex 9.0 [52]
to formulate and solve, respectively, the MILP (16). Figures 3 and 4 show the resulting ∆r(N) and
the ratio R(N) = ∆r(N)/N as a function of N, respectively. The function depicted in Figure 3 is non-
decreasing, in accordance with Lemma 2. Figure 4 shows the maximum reference rate that can be
generated by the upper layer of the proposed hierarchical control scheme, which in this particular
case is also increasing with N. By inspecting Figures 3 and 4, a good value of N is 49, where both
R(N) and ∆r(N) are maximized. The resulting reference variations are ∆r(N) = 0.7.
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2.6.2 Simulation results

Denote by HiMPC49 the upper-layer MPC controller running every TH = 49 · TL seconds, based on
prediction model (21), obtained by resampling (3) with sampling time TH . Denote by HiMPC49

DC the
alternative controller based on model (22). To demonstrate the effectiveness of the proposed hier-
archical approach, we compare it to other two controllers: “HiNone”, where the upper layer is simply
bypassed and constraints are ignored by feeding p(t) to the lower level, and “HiQP” that selects rk
according to the following quadratic program (QP)

min
rk

‖rk− rk−1‖2
2 +‖rk− p(t)‖2

2 (23a)

s.t. r2− r1 ≤ 0.3 (23b)
−0.3≤ ri

k ≤ 1, i = 1,2,3,4 (23c)

which completely ignores the underlying closed-loop dynamics, and therefore gives no guarantee
that constraints on y(t) are enforced. We assume that the user-defined reference signal p(t) only
varies at common multiples of the sampling times, p(t) = pk, ∀t ∈ [kN, . . . ,(k+1)N−1], k = 0,1 . . ..

Figures 5 and 6 show the closed-loop trajectories of the positions of masses #1 and #2 and of the
commanded references, respectively, from zero initial condition x(0). The trajectories obtained by
using HiMPC49 and the trajectories of masses #3 and #4 are not reported in the figures. The reasons
are that the HiMPC controller based on the resampled model (21) behaves very similarly to the one
based on the static+delay model (22), due to the fact that the sampling time TH = NTl = 12.25 s is long
enough to neglect the closed-loop dynamics; moreover, despite the coupling due to springs, masses
#3 and #4 track a constant reference very tightly, even during setpoint variations on the other masses
#1, #2.

The unfiltered reference p1 = 0.7 applied by HiNone during the first sample instant [0,TH ] makes mass
#1 violate the upper limit y1≤ 1 between time t ≈ 3 s to t ≈ 6 s. At time t = 49 s a transition from p1 = 0.7
to p1 = 0.1 is requested, while p2 is decreased to 0.6. The user is demanding a steady-state infeasible
configuration of the masses, since p2− p1 ≥ 0.3. Note in Figure 7 that HiNone tracks the references
violating the constraint. Since HiQP does not tighten enough the constraints by ∆Ky, at time t ≈ 50 s
a violation occurs of the constraint y2−y1 ≤ 0.3 by 0.03. At time t = 98 s the setpoints are set again to
a feasible configuration p1 = 0.4 and p2 = 0.7. Comparing HiNone, HiQP, HiMPC, it is apparent that
HiMPC is the most cautious, as evidenced by the commanded reference signals depicted in Figure
6, but it is also the only one that is able to enforce all constraints correctly.
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Figure 5: Closed-loop trajectories showing the position of mass #1 (continuous line) and #2 (dashed
line): HiMPC (blue lines), HiNone (black lines), HiQP (purple lines). User defined reference p(t) (dash
dotted red lines) and reference constraints (dotted green line) are also shown

3 Decentralized Hierarchical Multi-Rate Control of Constrained Linear
Systems

3.1 Introduction

The recent massive innovations in automation and communication technologies make control of
large-scale systems (LSS) a viable technology. The complexity and spatial distribution of many sen-
sors and actuators and their interconnections over a communication network require however novel
control design approaches: most of the existing advanced control theory is based on the assump-
tion that the decision-making process is centralized, which is impractical in the case of LSS; more
classical methodologies based on decentralized control, developed starting already in the seventies
(see the book of [56]), do not fully exploit the computation potentials of modern control systems. A
widely used technique that exploits numerical optimization is model predictive control (MPC); current
industrial MPC practice is, however, to rely on global prediction models and centralized real-time
optimization, although decentralized MPC schemes were proposed recently (see e.g. [33,57,58,62]
and the recent survey [59]). While decentralization avoids the need of maintaining a model of the
entire process and of solving a possibly large-scale optimization problem in a central control sta-
tion at each sampling time, performance is typically degraded with respect to centralized schemes
(the more is degraded the more local dynamics and objectives are coupled) and global constraints
are often hard to impose without time-consuming iterative decision processes. Hierarchical control
is a good compromise: lower-level local controllers take care of stabilization tasks based on sim-
plified local dynamical models, and are orchestrated by a upper-level control layer that maximizes
global performance and enforces global constraints [29]. A similar concept was also adopted in the
reference governor (RG) literature, where the complexity of MPC was mitigated by separating the
stabilization problem from the constraint fulfillment problem [36,37,39–41].
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Figure 6: References generated by HiMPC (blue lines), HiNone (black lines), HiQP (purple lines) for
mass #1 (continuous line) and mass #2 (dashed line)
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y2−y1=0.33

Figure 7: Zoom of Figure 5 showing the violation of the constraint y2− y1 ≤ 0.3: position of mass #1
(continuous line) and #2 (dashed line), HiMPC (blue lines), HiNone (black lines), HiQP (purple lines)

A recent approach to hierarchical control was proposed in [60] to guarantee constraint fulfillment, in
which a centralized upper-level controller, running at a lower sampling frequency and based on a
global more abstract model (e.g., the DC gain) of the system, restricts the set of admissible reference
signals to the lower layer of decentralized linear controllers, therefore guaranteeing the fulfilment of
constraints. The approach provides quantitative criteria to bound the maximum allowed reference
variations and to choose the ratio N between the sampling intervals of the upper and lower level so
that fulfillment of input and state constraint is guaranteed.

This contribution extends such an idea further, by decentralizing also the upper-level control layer
(see Figure 8). We assume that the plant is stabilized by a set of m lower-level controllers, all running
with sampling time T L, receiving feedback only from local states. Each local upper-level controller can
run at an independent sampling rate T H

i , i = 1, . . . ,m, generating the reference signal ri, i = 1, . . . ,m
to the corresponding lower-level controller. The absence of a centralized upper-level layer avoids
centralized computations and guarantees full scalability.

The basic idea to enforce constraints is the following: After extending the hierarchical multi-rate
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Figure 8: Decentralized hierarchical control scheme

approach of [60] to handle robust constraint fulfillment in the presence of additive state uncertainty,
we model the dynamical coupling among subsystems as local disturbances (as done for instance
in [57]), and exploit the limits imposed on unmodeled states to bound the sets containing such local
disturbances.

Multirate MPC approaches was proposed in a variety of papers, see e.g. the early work of [42], and
the application papers [43,44] in which hybrid MPC control is used at the upper level to enforce com-
plex linear and logical constraints. Two main issues arise in hierachical MPC design: the choice of
a simple abstract model to design the upper-level controller (or possibly no model), and the choice
of its sampling time T H . Rule of thumbs suggest that the latter must be “large enough” to assume
that the adopted prediction model is “enough consistent” with the true underlying closed-loop system,
but “not too small” to ensure enough reactiveness of the hierarchical scheme to changes of desired
references. In this work we quantify exactly what “large enough” should be in a decentralized setting.
Safe operations are guaranteed by constraints on magnitude and rate of the reference signals param-
eterized by the ratio between the sampling intervals of the two layers, no matter how the performance
index (if any) is optimized on top by the upper-level controller.

The proposed hierarchical control architecture is described in Section 3.2. In Section 3.3 the con-
straints on reference signals and their dependence on the ratio between sampling intervals is char-
acterized and optimized, and used in Section 3.4 to define the overall hierarchical control scheme. A
particular design for the upper control layer based on on-line optimization is described in Section 3.5.
Simulation results are reported in Section 3.6.

3.2 Problem setup

Consider the decentralized hierarchical control architecture depicted in Figure 8, where the open-loop
process

x(t +1) = Āx(t)+ B̄u(t) (24a)
y(t) = C̄x(t)+ D̄u(t) (24b)

is in closed loop with the lower-level control layer

u(t) = Fx(t)+Er(t) (24c)

where x(t) ∈Rnx , y(t) ∈Rnr , u(t) ∈Rnu , and r(t) ∈Rnr is the reference signal. We assume that the gain
F is asymptotically stabilizing and running at a sampling frequency f L = 1

T L . Denote by I i
x , I i

u, I i
r
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the sets of state, input, and output indices, respectively, corresponding to the i-th subsystem, and by
ni

x, ni
u, ni

r their cardinalities, i = 1, . . . ,m. Note that in general such subsets of indices may overlap, in
case different subystems share common states, inputs, or outputs. We assume that F and E have
the decentralized structure

Fh, j = 0, ∀h ∈I i
u and j /∈I i

x ,∀i = 1, . . . ,m (25)
Eh, j = 0, ∀h ∈I i

u and j /∈I i
r ,∀i = 1, . . . ,m (26)

The gains F and E can be computed by several methods, see e.g. [45,56,61].

To enforce constraints on state and inputs, at the upper level a set of m supervisors, running at
lower sampling frequencies f H

i = 1
T H

i
, i = 1, . . . ,m, manipulates the components j ∈I i

r of the desired

reference vector p∈Rnr , producing a corresponding reference vector ri ∈Rni
r . The resulting reference

vector r ∈ Rnr is passed to the lower level. The selection of r from p may be driven by numerical
procedures optimizing performance or economic criteria.

The closed-loop system (24a), (24c) can be rewritten as

x(t +1) = Ax(t)+Br(t) (27)

where A = Ā + B̄F , B = B̄E. Despite the fact that only local state feedback is used, the global
model (27) may not be block diagonal, because of possible dynamical coupling through matrices
Ā, B̄. Hence, system (27) can be written as the collection of m dynamical systems

Σi : xi(t +1) = Aixi(t)+Biri(t)+di(t) (28)

where di(t) captures the unmodeled dynamics due to the neglected dynamical couplings.

Assumption 1. Matrix Ai has spectral radius within the unit circle.

Assumption 1 states that the nominal local closed-loop system (di(t) = 0)) is asymptotically stable,
and is a condition that should be imposed while synthesizing F .

Given a matrix M, let MI,J be the submatrix of matrix M obtained by collecting the row indices in I
and the column indices in J, and by MI the submatrix collecting all the rows indexed by I. A similar
notation is used for subvectors vI of a given vector v. Then we set Ai = AI i

x ,I
i

x
, Bi = BI i

x ,I
i

r
in (28).

The neglected dynamics are modeled as follows. Let J i
x = {1, . . . ,nx}\I i

x , J i
r = {1, . . . ,nr}\I i

r , and
set x̃i = xJ i

x
, r̃i = rJ i

r
, Ãi = AI i

x ,J
i

x
, B̃i = BI i

x ,J
i

r
, where (Ãi, B̃i) capture the influence of unmodeled

states x̃i and reference signals r̃i on Σi.

The upper-level controllers are assumed to act independently, so their sampling intervals may dif-
fer. Define the following ratios Ni = T H

i /T L, where 1/T L is the sampling frequency of the lower-level
decentralized controller, Ni ∈ N, i = 1 . . .m.

The goal of the i-th upper-level controller is to generate a piecewise-constant reference ri(t)

ri(t) = rk
i , t = kNi, . . . ,(k+1)Ni−1, k = 0,1 . . . (29)

in order to keep the state vector xi(t) and the reference ri(t) within the admissible polytope

Xi = {[ xi
ri ] ∈ Rni

x+ni
r : H i

xxi +H i
rri ≤ Ki} (30)

where H i
x ∈ Rqi×ni

x , H i
r ∈ Rqi×ni

r , Ki ∈ Rqi . Note that (30) covers the case of input, state, and output
constraints, and constraints on the local tracking error yi− ri.

Let A0
i ∈ Rni

x×nx be the matrix obtained by collecting from A the rows indexed by I i
x and then zeroing

the columns indexed by I i
x , and similarly B0

i ∈ Rni
x×nr is the matrix obtained by collecting from B the
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rows indexed by I i
x and then zeroing the columns indexed by I i

r . Hence, AI i
x
x=Aixi+Biri+A0

i x+B0
i r.

Moreover, let X = {[ x
r ] : Hxx+Hrr≤ K}, where Hx, Hr, K define the set of states and references such

that their subvectors x j, r j belong to X j, ∀ j = 1, . . . ,m, which is a bounded set as X j are polytopes.
Under the assumption that

[
xi(t)
ri(t)

]
∈Xi holds for all t ≥ 0, ∀i = 1, . . . ,m, and therefore that

[
x(t)
r(t)

]
∈X ,

∀t ≥ 0, the local “disturbance” di(t) modeling the effect of the other subsystems on Σi, belongs to the
bounded polyhedral set (=polytope)

Di = {di ∈ Rni
x : ∃x ∈ Rnx , r ∈ Rnr such that

di = A0
i x+B0

i r, [ x
r ] ∈X } (31)

We aim at determining the ratio Ni and restrictions on the reference values rk
i and their variations ∆rk

i =

rk
i − rk−1

i generated by the upper-level controllers simultaneously so that
[

xi(t)
ri(t)

]
∈Xi, ∀i = 1, . . . ,m, for

any di ∈Di.

Let the reference vector ri(t) be constrained within the tightened set

Ri = {ri ∈ Rni
r : (H i

xGi +H i
r)ri ≤ Ki−∆Ki} (32)

where Gi = (I−Ai)
−1Bi is the reference-to-state DC gain of (28). Vector ∆Ki ∈ Rqi is selected to have

positive components. We assume that set-points ri(t) are changed in a way that the tracking error
∆xi(t), xi(t)−Giri(t) is kept within the set

Ei = {∆xi ∈ Rni
x : H i

x∆xi ≤ ∆Ki} (33)

Vector ∆Ki is a tuning knob of the proposed approach: the smaller the components of ∆Ki are, the
larger is the set Ri of admissible set points rk, but the smaller is the admissible reference increments
∆rk

i to maintain tracking errors ∆xi(t) within Ei, ∀i = 1, . . . ,m.

As xr
i = Giri = Aixr

i +Biri, in the new coordinates ∆xi = xi− xr
i Equation (28) becomes

∆xi(t +1) = Ai∆xi(t)+di(t) (34)

Let Ωi(0) ⊆ Rni
x be the maximum output admissible robustly invariant set (MOARS, [63]) for sys-

tem (34) under the constraint ∆xi(t) ∈ Ei

Ωi(0) = {∆xi ∈ Rni
x : H i

x(A
k
i ∆xi +

k−1

∑
j=0

(Ak
i )

jdi(k−1− j))

≤ ∆Ki, di(k−1− j) ∈Di, ∀k ≥ 0} (35)

Let (H i
0,K

i
0) be a minimal hyperplane representation of Ωi(0), Ωi(0) = {∆xi ∈ Rni

x : H i
0∆xi ≤ Ki

0}, and
let ni

0 be the number of such hyperplanes, that under Assumption 1 exists and is finite for each
i = 1, . . . ,m, see [63]. Then

Ωi(ri) = {xi ∈ Rni
x : xi−Giri ∈Ωi(0)} (36)

The following lemma extends Lemma 1 in [60] to cover the case of polytopic uncertainty.

Lemma 3. For all subsystems i = 1, . . . ,m, let xi(0) ∈Ωi(ri) and ri(t)≡ ri ∈Ri, ∀t ≥ 0. Then xi(t) ∈Xi,
∀t ≥ 0.

Proof: By (10), xi(0)∈Ωi(ri) implies that H i
x∆x(t) = H i

xx(t)−H i
xGiri ≤ ∆Ki, ∀di( j)∈Di, j < t, and ∀t ≥ 0.

By (32) it follows that H i
xx(t)−H i

xGiri≤ ∆Ki ≤Ki−H i
xGiri−H i

rri which in turns implies H i
xx(t)+H i

rri≤Ki,
∀t ≥ 0. �
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The main idea of this work is the following. Assume that the reference rk
i ∈ Ri is issued at the

sampling instant t = kNi and that Ni is large enough so that xi(t +Ni−1) ∈Ωi(rk
i ), for all i = 1, . . . ,m. At

time t = (k+1)Ni consider the new reference is rk+1
i ∈Ri. If ∆rk+1

i = rk+1
i − rk

i is “small enough”, then
xi(t +Ni) ∈ Ωi(rk+1

i ). The goal of the next section is to quantify the relationship among the maximum
reference variation ∆rk

i , the ratio Ni between the sampling intervals T H
i , T L, and ∆Ki such that every

T H
i = NiT L time units each state subvector xi(t) is guaranteed to lie in the corresponding invariant set

Ωi(rk
i ), which in turn implies that x(t), r(t) satisfy the constraint

[
x(t)
r(t)

]
∈X .

3.3 Reference rate constraints

Assume that the integer Ni =
T H

i
T L of the i-th control hierarchy is given. Consider the following problem:

determine the initial state xi(0)∈Ωi(r1
i ) and the minimum reference variation ∆ri(Ni) = r2

i −r1
i between

two reference values r1
i ,r

2
i ∈Ri such that the state xi(Ni) is outside the invariant set Ωi(r2

i ) for some
disturbance sequence DNi = {di(t)}Ni−1

t=1 , with di(t) ∈Di, ∀t ∈ {1, . . . ,Ni−1}:

∆ri(Ni) = inf
r1

i ,r
2
i ,xi(0),DNi

||r2
i − r1

i ||∞ (37a)

s.t. r1
i ,r

2
i ∈Ri (37b)

xi(0) ∈Ωi(r1
i ) (37c)

xi(t +1) = Aixi(t)+Bir2
i +di(t) (37d)

di(t) ∈Di, t = 0,1, . . . ,Ni−1 (37e)
x(Ni) /∈Ωi(r2

i ) (37f)

Because of constraint (37f), problem (37) is nonconvex. However, it can be conveniently recast as
a mixed-integer linear programming (MILP) problem by introducing an auxiliary binary vector δ ∈
{0,1}n0 , satisfying the following constraints

[δ h = 1]↔ [(H i
0)h(xi(Ni)−Gir2

i )≤ (Ki
0)h] (38a)

ni
0

∑
h=0

δh ≤ ni
0−1 (38b)

where the subscript h denotes the h-th component or row. The logical constraint (38a) can be con-
verted to mixed-integer linear inequalities using the standard “big-M” approach (see e.g. [64]). By
introducing an additional variable ε ≥ ‖r2

i − r1
i ‖∞, we address problem (37) by solving the following
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MILP

∆ri(Ni) = min
[xi r1′

i r2′
i DNi δ ′ ε ]

′
ε (39a)

s.t. ε ≥±((r2
i ) j− (r1

i ) j) , j = 1, . . . ,ni
r (39b)

(H i
xGi +H i

r)r
1
i ≤ Ki−∆Ki (39c)

(H i
xGi +H i

r)r
2
i ≤ Ki−∆Ki (39d)

H i
0(xi−Gir1

i )≤ Ki
0 (39e)

(H i
0)h

(
ANi

i xi +
Ni−1

∑
j=0

A jdi(Ni−1− j)+Ri
Gr2

i −Gir2
i

)
− (Ki

0)h ≤ (Mi
+)h(1−δ

h) (39f)

−(H i
0)h

(
ANi

i xi +
Ni−1

∑
j=0

A jdi(Ni−1− j)+Ri
Gr2

i −Gir2
i

)
+(Ki

0)h ≤−((Mi
−)h−σ)δ h−σ (39g)

di(t) ∈Di, t = 0,1, . . . ,Ni−1 (39h)
ni

o

∑
w=0

δ
w ≤ ni

o−1 (39i)

δ
h = {0,1}, h = 1, . . . ,ni

0 (39j)

where Ri
G =

(
∑

Ni−1
h=0 Ah

i Bi

)
−Gi. The quantity ∆ri(Ni) in (39) is the smallest change of reference com-

ponents in I i
r (expressed in infinity norm) that can be applied to the closed-loop system (27) such

that, if xi starts from an invariant set Ωi(rk
i ), the i-th state vector lands outside the new invariant set

Ωi(rk+1
i ) after Ni steps. Or, in other words, if for all i = 1, . . . ,m the change of reference signals are

bounded by ‖rk
i − rk−1

i ‖∞ ≤ ∆ri(Ni)−σ and each subvector xi of the closed-loop system (27) starts
from the invariant set Ωi(rk

i ), than xi arrives in its corresponding new invariant set Ωi(rk+1
i ) after Ni

steps, for all arbitrarily small σ > 0.

Note that, because of the constraint r1
i ,r

2
i ∈Ri, problem (39) may become infeasible for large Ni, that

is no r2
i 6= r1 exists that keeps the state within the invariant set Ω(r2

i ) after Ni steps.

The following lemma shows a monotonicity property of ∆ri(Ni) as a function of Ni, for Ni ∈N such that
∆ri(Ni) is defined.

Lemma 4. Let ∆ri(Ni) be defined by the optimization problem (39). Then for any N1
i ,N

2
i ∈N, N1

i < N2
i ,

such that ∆ri(N1
i ), ∆ri(N2

i ) are defined it holds that

∆ri(N1
i )≤ ∆ri(N2

i ) (40)

Proof: We first prove by contradiction that ∆ri(Ni)≤∆ri(Ni+1), ∀Ni ∈N such that ∆ri(Ni+1) is defined.
Assume that Ni ∈ N exists such that ∆ri(Ni + 1) < ∆ri(Ni). This implies that there exists a state xi, a
disturbance sequence DNi, and two references r1

i ,r
2
i ∈Ri such that ∆ri(Ni +1)≤ ‖r1

i − r2
i ‖∞ < ∆ri(Ni),

xi ∈ Ωi(r1
i ), ANi+1

i xi +∑
Ni
h=0 Ah

i (di(Ni− h) + Bir2
i ) 6∈ Ωi(r2

i ). Then, also ANi
i xi +∑

Ni−1
h=0 Ah

i (di(Ni− 1− h) +
Bir2

i ) 6∈Ωi(r2
i ), otherwise, by invariance of Ωi(r2

i ), also ANi+1
i xi+∑

Ni
h=0 Ah

i (di(Ni−h)+Bir2
i ) would belong

to Ωi(r2
i ). Hence, the optimality of ∆ri(Ni) is violated, a contradiction. The monotonicity condition (40)

for generic N1
i , N2

i easily follows. �

21



3.4 Hierarchical controller

Assume that, for each subsystem i, Ni has been fixed and that the upper control layer commands
set-points rk

i under the constraints

‖rk
i − rk−1

i ‖∞ ≤ ∆ri(Ni)−σ , ∀k = 0,1, . . . (41a)
rk

i ∈Ri, ∀k =−1,0,1, . . . (41b)

for some small σ > 0, to the lower control layer as in (29).

Theorem 2. Assume that K is a decentralized asymptotically stabilizing linear gain, that Assumption 1
holds, and that a set of vectors r−1

i ∈Ri exists such that the initial states xi(0)∈Ωi(r−1
i ), for i= 1, . . . ,m.

Let all the upper-level controllers change the set-points rk
i according to the constraints (41), in which

∆ri(Ni) is the solution of (39) and σ > 0 is an arbitrary small number. Then the linear system (1)
satisfies the constraints

[
x(t)
r(t)

]
∈X , for all t ≥ 0. If in addition limt→∞ r(t) = r ∈R then limt→∞ x(t) = Gr,

G = (I−A)−1B.

Proof: Because of (41), xi(kNi) ∈ Ωi(rk
i ), ∀k ≥ 0. By Lemma 3, it follows that

[
xi(t)
ri(t)

]
∈ Xi, ∀t =

kNi, . . . ,k(Ni+1)−1, ∀k = 0,1, . . . and i = 1, . . . ,m, that is
[

x(t)
r(t)

]
∈X , ∀t ≥ 0. As limt→∞ r(t) = r, similarly

to (34) define ∆x(t) = x(t)−Gr and rewrite (27)as

∆x(t +1) = A∆x(t)+B(r(t)− r) (42)

As (42) is an asymptotically stable linear system it is also input-to-state stable [47], and hence it
immediately follows that limt→∞ ∆x(t) = 0, which in turn implies that limt→∞ x(t) = Gr. �

Theorem 2 shows that any decentralized upper-level reference generation strategy satisfying con-
straints (41) guarantees the fulfillment of state+reference constraints and asymptotic convergence
to constant set-points. The MILP (39) provides the supremum ∆ri(Ni) of the reference variations
‖rk

i − rk−1
i ‖∞ for each subsystem i that the i-th upper-level controller can apply for a given ratio

Ni = T H
i /T L between consecutive sampling times. We stress that for each subsystem the ratio Ni

is determined independently on the other hierarchical arrangements.

It is worth to investigate the relations between ∆ri(Ni) and Ni further for each subsystem i = 1, . . . ,m.
In fact, the design of the i-th upper control layer could be addressed from a different point of view:
given a desired ∆ri, determine the minimum Ni such that ∆ri < ∆ri(Ni). In practical applications Ni

is restricted to a range [Nmin
i , Nmax

i ] of values: the upper layer is executed at a slower pace than the
lower layer (Nmin

i not too small), but at the same time the upper layer should be reactive enough
to adjust set-points (Nmax

i not too large). Hence, it is worth to solve the MILP (39) only within the
restricted range Ni ∈ [Nmin

i ,Nmax
i ] to characterize ∆ri(Ni) that, by Lemma 4, we know increases with

Ni. In particular, it is of interest the ratio Ri(Ni) =
∆ri(Ni)

Ni
which characterizes the maximum speed of

change of the reference signal. In fact, for each subsystem, the larger Ni the larger is the supremum
of the variations ∆ri that the local supervisor can issue, but the less frequently such variation happens,
that is every NiT L sampling times. Another issue related to tuning of the upper control layer is the
choice of ∆Ki for each i: from one hand a larger ∆Ki tightens the range of admissible references
Ri, but on the other hand it enlarges the size of the invariant set Ωi(ri), and therefore augments the
achievable ∆ri(Ni). There is therefore a tradeoff: the designer must choose between constraints on
reference signals (Ri) and constraints on reference speed (Ri(Ni)).

Because of the need of enforcing constraints (41) in the upper control layer, in the next section we
propose a decentralized model predictive control (MPC) design strategy for such a layer, although
any other constraint-handling strategy could be employed, such as static optimization or a rule-based
selection.

22



3.5 Decentralized MPC design of upper control layer

This section introduces a simple decentralized MPC strategy for the upper layer of control in the hier-
archy, denoted as DHiMPC, for generating each reference signal ri while enforcing constraints (41).

3.5.1 Prediction model

We consider an under-sampled and possibly reduced-order model of each nominal lower-level closed-
loop model (28) (di(t) = 0), evolving with sampling time T H

i = NiT L

xH
i (k+1) = AH

i xH
i (k)+BH

i ri(k) (43)

where xH
i (k) = Zixi(kNI), and Zi is a matrix mapping each original state xi(kNi) into the new state

xH
i (k) (in case the order of the system is not reduced Zi = I). Model (43) can be easily obtained

by resampling system (28) for di(t) = 0 using standard discretization methods. Hence, fast-enough
modal responses become negligible, which implies that the HiMPC algorithm can exploit only an in-
complete information on the underlying local closed-loop dynamics. However, each HiMPC controller
is independent from the others, which allows one to tune the upper-layer sampling rates individually.
Therefore, reference changes can be commanded at different time instants, which guarantees max-
imum flexibility in large-scale systems that have different time constants. Note that, contrarily to [60]
where a complex centralized upper-level supervisor based on a global (yet possibly reduced-order)
model is used, in this work we propose a decentralized design and decentralized implementation that
allows treating each subsystem independently.

3.5.2 Cost function and constraints

Each upper-level MPC controller must embed constraints (41) on the generated references, to ensure
stability and constraint satisfaction of state-dependent constraints. Moreover, it is possible to embed
additional constraints on the reference signals, such as mixed logical/linear constraints (see e.g. [43])
on local reference signals.

The i-th MPC controller can potentially optimize any cost function of ri(k), ∆ri(k), and xH
i (k), that may

be dictated for instance by economic objectives. Note that a global cost function cannot be directly
addressed by means of DHiMPC, nevertheless various consensus [65] and distributed optimization
[66] approaches can be applied.

3.6 Simulation example

3.6.1 Problem description

We test the effectiveness of the proposed approach on a multi-mass-spring system similar to the one
described in [60], where a centralized hierarchical approach was used. The process is composed by
four mass-spring-damper systems moving on the vertical axis, as described in Figure 9. Contrarily
to [60], neighboring systems i and j are connected by dampers with coefficient µi, j = 0.005 [kg/s],
∀i, j, instead of springs, which makes condition (26) satisfied. The remaining parameters are as
in [60]. The system is described by a 8th order linear dynamics whose states are mass positions z
and velocities v, x = [z1 v1 z2 v2 z3 v3 z4 v4]

′, whose input u = [u1 u2 u3 u4]
′ collects the forces applied to

the masses, and whose output y = [z1 z2 z3 z4]
′ are mass positions, to be controlled on the set-point

r ∈ R4.
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Figure 9: Dynamical process used in the simulation example

The plant is sampled every T L = 0.25 s and is subject to the state constraints x(t) ∈X , where X =
{x∈R8 : −0.3≤ x1,x3,x5,x7 ≤ 1, x3 ≤ x1+0.3}, corresponding to constraining mass positions between
−0.3 and 1 m, and by preventing mass #1 to go below mass #2 by more than 0.3 m.

The equivalent discrete-time model (1) of the process is decentralized according to the following index
selection

I 1
x = {1,2,3,4}, I 2

x = {5,6} , I 3
x = {7,8} (44a)

I 1
u = I 1

r = {1,2}, I 2
u = I 2

r = {3}, I 3
u = I 3

r = {4} (44b)

which clearly makes the constraint x3 ≤ x1 +0.3 local in subsystem Σ1.

The upper level of DHiMPC is composed of a set of linear MPC controllers based on linear prediction
models as in (43), and implemented using the Hybrid Toolbox [49] and the WIDE Toolbox developed
by Barcelli et al. (http://ist-wide.dii.unisi.it/toolbox/). The prediction horizon is 10,
the control horizon 5, unit weights are used on reference increments and weight equal 100 is used
to penalize each mass position error. The constraints on control signals ri(k) ∈ Ri and on their
increments |r j

i (k)− r j
i (k−1)| ≤ ∆ri(Ni)−σ , j = 1,2,3,4 are enforced for i = 1, . . . ,m = 8, where σ is the

machine precision. The quantities

∆K1 =

[
∆0
∆0

0.4∆0

]
, ∆K2 =

[
∆0
∆0

]
, ∆K3 =

[
∆0
∆0

]
, ∆K4 =

[
∆0
∆0

]
are chosen to tighten the constraint on the reference in (32), where ∆0 is a scaling factor to be
determined.

The computation of the maximum output admissible robustly invariant sets (MOARS) Ωi(0) defined
in (36) is carried out independently for each subsystem i. Figure 10 shows the two-dimensional
polytopes related to Σ2 and Σ3 (the MOARS for Σ1 lies in R4 and is not shown). The conservatism in-
troduced by the unmodeled dynamics di(t) is displayed in the same figure by comparing the MOARS
with the corresponding MOAS resulting by setting di(t) = 0 (which means a complete lack of inter-
action among the subsystems). Note that Σ2 and Σ3 have the same MOAS as they share the same
local dynamical model, but different MOARS’s. This is due to the overall plant structure, which is not
symmetric for the last two subsystems, as mass #3 is surrounded by other two masses while mass
#4 has only one neighboring mass.
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Figure 10: Invariant sets Ω2(0) (left) and Ω3(0) (right): with bounded dynamical coupling (MOARS,
cyan) and interaction-free (MOAS, red)
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Figure 11: Plots of ∆ri(Ni) as a function of Ni obtained by solving (39): subsystems Σ1 (continuous
blue line), Σ2 (black dashed), and Σ3 (red dotted with circles), and centralized approach (magenta
dotted with triangles)

3.6.2 Computation of maximum reference rates

The relation among Ni, ∆0 and ∆ri is investigated for each subsystem independently. Figure 3 depicts
∆r(N) for the values of N for which the optimization problem (39) admits a solution. For comparison,
in Figure 3 we also report the results obtained by computing the same quantities with the centralized
hierarchical approach of [60].

Let DHiMPCi denote the decentralized hierarchical controller designed for subsystem Σi, i = 1,2,3,
and HiMPC the centralized hierarchical controller designed as proposed in [60]. DHiMPCi enforces
constraints more conservatively than HiMPC because of the conservative way interactions are mod-
eled. On the other hand, while HiMPC has a uniform sampling frequency on all subsystems, DHiMPC2
and DHiMPC3 can be implemented at smaller sampling times, which makes the reaction to changes
in set points on masses #2 and #3 more quick.

All functions depicted in Figure 11 are nondecreasing, in accordance with Lemma 4. Similarly to [60],
it is possible to compute the maximum reference rate that can be generated by each DHiMPC scheme
by maximizing the ratio ∆ri(N)

N , i = 1 . . .3.

From the computation viewpoint, the centralized MILP associated with HiMPC involves more state
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(a) 1st and 2nd mass positions

0 20 40 60 80 100 120 140 160 180
−0.2

0

0.2

0.4

0.6

0.8

M
a
s
s
 p

o
s
it
io

n
s

0 20 40 60 80 100 120 140 160 180

0

0.2

0.4

0.6

0.8

In
p
u
ts
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Figure 12: Mass positions: DHiMPC (black), HiMPC (blue), mass #1 and #3 (continuous line), mass
#2 and #4 (dashed line), and corresponding references (red)

variables and dynamic constraints than any of the decentralized DHiMPC’s, however each of the
latter needs to account for disturbances. Using the centralized MILP as a reference for comparison,
the CPU time for computing the MILPs associated with the decentralized approach are get multiplied
by a factor ' 5 (DHiMPC1), ' 1

5 (DHiMPC2), and ' 1
8 (DHiMPC3).

3.6.3 Simulation results

We test the DHiMPC approach and compare it to the corresponding HiMPC one. Denote by p(t) the
desired output reference at time t, p(0) = [ 0.65 0.8 0 0.2 ]′, and let r−1

i = 0 ∈Ri and xi(0) = 0 ∈ Ωi(r−1
i ),

for i = 1,2,3. Let N1 = 51, N2 = 32, and N3 = 25 for DHiMPC1,2,3, respectively, and N = 42 for HiMPC.
This choice leads to ∆r1 = 0.7, ∆r2 = 0.7, and ∆r3 = 0.69 for DHiMPC, and ∆r = 0.7 for HiMPC.

At time t = 0 both HiMPC and DHiMPC1 exploit the full admissible reference range, applying the
maximum ∆r to masses #1 and #2, see Figure 12(a). Note that the desired reference p2(t) provided by
the user for the position of mass #2 is out of the bounds in (32) during the time interval t ∈ [0,45], p2(0)
also violates the reference variation constraint which is 0≤ ri(t)≤ 0.7, i = 1, . . . ,3. Figure 12(a) shows
how DHiMPC1 reacts later than HiMPC to changes of p(t), while instead DHiMPC2 and DHiMPC3
react more quickly. Note that constraints are always satisfied, even if commanded references p are
infeasible, such as for 86 < t < 144.5 s for masses #1 and #2.

3.7 Conclusions

This work has proposed a decentralized hierarchical control approach to handle state-dependent
constraints in large-scale linear control systems. The control design is carried out in two steps:
First, a lower-level set of decentralized linear controllers is designed to stabilize the process without
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accounting for the constraints; second, each regulator is fed by an upper-level controller, running
at a slower pace, that manipulates the desired references so as to guarantee the fulfillment of the
constraints. Although some conservatism is introduced by treating the dynamic couplings as bounded
disturbances, the proposed approach is totally scalable and therefore suitable for constrained linear
systems of large size.
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4 Hierarchical and Decentralized Hybrid Model Predictive Control of a
Formation of Unmanned Aerial Vehicles

4.1 Introduction

The last few years have been characterized by an increasing interest in stabilizing and maneuver-
ing a formation of multiple vehicles. Research areas include both military and civilian applications
(such as intelligence, reconnaissance, surveillance, exploration of dangerous environments) where
Unmanned Aerial Vehicles (UAVs) can replace humans. There are different types of UAVs: planes
are suitable for long-range applications because are energy efficient, but they need wide operating
spaces; rotorcrafts, such as helicopters and quadcopters, have less autonomy but can operate in
limited workspaces, they can take off and land vertically and easily hover above targets. Neverthe-
less, VTOL (Vertical Take-Off and Landing) UAVs are more complex to control [1], because of highly
nonlinear and coupled dynamics, and to limitations on actuators and pitch/roll angles. In particular,
quadcopters are a class of VTOL vehicles for whose stabilization several approaches were proposed
in literature: classical PID [2], nonlinear control [3], LQR [4], visual feedback [1], H∞ control [5,6], and
recently linear MPC (Model Predictive Control) [7].

MPC is particularly suitable for control of multivariable systems governed by costrained dynamics,
as it allows to operate closer to the boundaries imposed by hard constraints; in the context of UAVs,
MPC techniques have been already applied for control of formation flight in [8–13].

In the context of path planning for obstacle avoidance, several other solutions have been proposed
in the literature, such as potential fields [14, 15], A∗ with visibility graphs [2, 16], nonlinear trajectory
generation (see e.g. the NTG software package developed at Caltech [9], and mixed-integer linear
programming (MILP) [17, 18]. In particular the latter has shown the great flexibility of on-line mixed-
integer optimization in real-time trajectory planning of aircrafts, as also reported in [19] where on-line
MILP techniques were proved very effective in handling multiaircraft conflict avoidance problems.
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linear 
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Figure 13: Hierarchical control structure for UAV navigation

Here we adopt the two-layer MPC approach to quadcopter stabilization and on-line trajectory genera-
tion for autonomous navigation with obstacle avoidance presented earlier in [7]. A linear constrained
MPC controller with integral action takes care of quadcopter stabilization and offset-free tracking of
desired set-points. At a higher hierarchical level and lower sampling rate, a hybrid MPC controller
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Figure 14: Quadcopter model

generates on line the path to follow to reach a given target position/orientation while avoiding obsta-
cles. In this work we extend the approach in two ways: first, we let the underlying linear MPC algo-
rithm controlling directly motor voltages, rather than torques; second, the higher-level hybrid MPC are
organized in a decentralized control scheme, based on a leader-follower approach. We assume that
target and obstacle positions may be time-varying, and in this case that only their current coordinates
are known (not the future ones), so that off-line (optimal) planning cannot be easily accomplished.

In Section 4.2 we describe the layers of the hierachical structure of each controlled quadcopter and
its nonlinear dynamics, whose linearization provides the prediction model for linear MPC design in
Section 4.3 for stabilization under constraints and tracking of generated trajectories. Then, the higher-
level hybrid MPC controller for path planning and obstacle avoidance is described in Section 4.3.2.
In Section 4.6 we give the results of simulations, comparing our approach with the potential fields
method described in [15]. Finally, some conclusions are drawn in Section 4.7.

4.2 Hierarchical MPC of each UAV

Consider the hierarchical control system depicted in Figure 13. At the top layer a hybrid MPC con-
troller generates on-line the desired positions (xd ,yd ,zd), in order to accomplish the main mission,
namely reach a given target position (xt ,yt ,zt) while avoiding collisions with obstacles and other
UAVs. This references are tracked in real-time by a linear MPC controller placed at middle layer
of the architecture. At the bottom layer of the closed-loop system lies the nonlinear dynamics of the
quadcopter, commanded by linear MPC. In the next subsections we describe in details each layer of
the architecture.

4.2.1 Nonlinear quadcopter dynamics

A quadcopter air vehicle is an underactuated mechanical system with six degrees of freedom and
only four control inputs (see Figure 14). We denote by x, y, z the position of the vehicle and by θ ,
φ , ψ its rotations around the Cartesian axes, relative to the “world” frame I. In particular, x and y
are the coordinates in the horizontal plane, z is the vertical position, ψ is the yaw angle (rotation
around the z-axis), θ is the pitch angle (rotation around the x-axis), and φ is the roll angle (rotation
around the y-axis). The dynamical model adopted in this contribution is mainly based on the model
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proposed in [20], simplified to reduce the computational complexity and to make easier the design of
the controller. As described in Figure 14, each of the four motors M1, M2, M3, M4 generate four thrust
forces f1, f2, f3, f4, and four torques τ1, τ2, τ3, τ4, respectively, which are adjusted by manipulating
the voltages applied to the motors. We use the linear equations obtained in [4]

fi =
9.81(22.5VMi−9.7)

1000
, i = 1, . . . ,4

approximated to consider all motors identical, to express the relationships between motors thrustes
and their voltages. A total force f and three torques τθ , τφ , τψ around their corresponding axes are
generated

f = f1 + f2 + f3 + f4 (45a)
τθ = ( f2− f4)l (45b)
τφ = ( f3− f1)l (45c)

τψ =
4

∑
i=1

τi (45d)

where l is the distance between each motor and the center of gravity of the vehicle, that allow chang-
ing the position and orientation coordinates of the quadcopter freely in the three-dimensional space.
The dynamical system is described by following equations

ẍ = (− f sinθ −β ẋ)
1
m

(46a)

ÿ = ( f cosθ sinφ −β ẏ)
1
m

(46b)

z̈ = −g+( f cosθ cosφ −β ż)
1
m

(46c)

θ̈ =
τθ

Ixx
(46d)

φ̈ =
τφ

Iyy
(46e)

ψ̈ =
l

Izz
(− f1 + f2− f3 + f4) (46f)

where the damping factor β takes into account realistic friction effects, m denotes the mass of the
vehicle, and Ixx, Iyy, Izz are the moments of inertia around the body frame axes x, y, z. The nonlinear
dynamical model has twelve states (six positions and six velocities) and four inputs (the motors volt-
ages VMi), largely coupled through the nonlinear relations in (46). The parameters used in this work
are reported in Table 3.

Table 3: Parameters of quadcopter model
m [kg] l [m] β [Ns/m] Ixx [Nms2] Iyy [Nms2] Izz [Nms2]

0.408 0.136 0.2 0.0047 0.0047 0.0089

4.3 Linear MPC for Stabilization

In order to design a linear MPC controller for the quadcopter air vehicle, we first linearize the nonlinear
dynamical model (46) around an equilibrium condition of hovering. The resulting linear continuous-
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time state-space system is converted to discrete-time with sampling time Ts{
ξL(k+1) = AξL(k)+BuL(k)

yL(k) = ξL(k)
(47)

where ξL(k) = [θ ,φ ,ψ,x,y,z, θ̇ , φ̇ , ψ̇, ẋ, ẏ, ż,zI]
′ ∈ R13 is the state vector, uL(k) = [u, τ̃θ , τ̃φ , τ̃ψ ]

′ ∈ R4 is the
input vector, yL(k)∈R13 is the output vector (that we assume completely measured or estimated), and
A, B, C, D are matrices of suitable dimensions obtained by the linearization process. The additional
state, zI =

∫
(z−zd) is included to provide integral action on the altitude z, so that offset-free tracking of

the desired setpoint zd is guaranteed in steady-state. The integral action is mainly due to counteract
effect of the gravity force acting against the force developed by the collective input u.

The linear MPC formulation of the Model Predictive Control Toolbox for Matlab [21] is used here,
where the MPC control action at time k is obtained by solving the optimization problem

min
∆uL(k|k)

...
∆uL(m−1+k|k)

ε



NL−1

∑
i=0

(
ny

∑
j=1
|wy

j [yL j(k+ i+1|k)− rL j(k+ i+1)] |2 +
nu

∑
j=1
|w∆u

j ∆uL j(k+ i|k)|2 +ρεε
2

)
(48a)

s.t. umin
L j ≤ uL j(k+ i|k)≤ umax

L j , j = 1, . . . ,nu

ymin
L j − εV y,min

L j ≤ yL j(k+ i+1|k)≤ ymax
L j + εV y,max

L j j = 1, . . . ,ny

∆u(k+h|k) = 0, h = NLu, . . . ,NL

ε ≥ 0

(48b)

for all i = 0, . . . ,NL−1, with respect to the sequence of input increments {∆u(k|k), . . . ,∆u(NLu−1+k|k)}
and the slack variable ε. In (48a) the subscript “() j” denotes the jth component of a vector, “(k+ i|k)”
denotes the value predicted for time k+ i based on the information available at time k, rL(k) is the
current sample of the output reference, V y,min, V y,max are constant vectors with nonnegative entries
which represent the designer’s concern for relaxing the corresponding output constraint, ny = 13
is the number of outputs, nu = 4 is the number of inputs. The linear MPC controller sets u(k) =
u(k−1)+∆u∗(k|k), where ∆u∗(k|k) is the first element of the optimal sequence.

4.3.1 Linear MPC tuning and validation

The linear MPC controller is tuned according to the following setup. Regarding input variables, we set
umin

L j =−6 Nm, umax
L j = 6 Nm, j = 1,2,3, umin

L4 =−6 N, umax
L4 = 6 N, w∆u

i, j = 0.1, ∀ j = 1, . . . ,4, i = 0, . . . ,NL−1.
For output variables we set a lower bound ymin

L6 = 0 on altitude z, and upper and lower bounds ymax
L1−2 =

−ymin
L1−2 =

π

12 on pitch θ and roll φ angles. The output weights are wy
j = 1, j ∈ {4,5,11,12}, on x, y, ẋ,

ẏ, respectively, and wy
j = 10 on the remaining output variables. The chosen set of weights ensures

a good trade-off between fast system response and actuation energy. The prediction horizon is
NL = 20, the control horizon is NLu = 3, which, together with the choice of weights, allow obtaining a
good compromise between tracking performance, robustness, and limited computational complexity.
The sampling time of the controller is Ts =

1
14 s. The remaining parameters V y,min, V y,max, ρε are

defaulted by the Model Predictive Control Toolbox [25].

The closed-loop performance is tested by simulating the nonlinear quadcopter model (46) under the
effect of the linear MPC controller (48) using Simulink and the Model Predictive Control Toolbox. Ad-
ditional blocks were designed to generate reference signals from either the computer keyboard or
an external four-axes joystick. Moreover, the numerical signals are connected to an animation block
based on FlightGear [55] for 3D visual inspection on the regulation performance, connected through a
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Figure 15: Visualization of quadcopter dynamics in FlightGear (chase view)

graphical user interface designed for easy human-machine interaction. FlightGear allows one to very
intuitively move the quadcopter around the virtual world to any desired direction by sending desired
set-point commands directly from the keyboard or joystick, and assess closed-loop performance visu-
ally. An animation movie can be retrieved at http://www.dii.unisi.it/hybrid/aerospace/
quadcopter. Due to different angle representation systems, the following coordinate transformation θ ′

φ ′

ψ ′

=

 cosψ −sinψ 0
sinψ cosψ 0

0 0 1

 θ

φ

ψ


is used to map the signals (θ ,φ ,ψ) generated by model (46) into the coordinates (θ ′,φ ′,ψ ′) defining
the angle coordinates of the quadcopter in the virtual environment:

Figure 16 shows simulation results obtained by tracking a generic reference signal. The correspond-
ing input plots are shown in Figure 17, where the thick solid line represents the collective activity u.
Note that u is nonzero at steady-state due to the task of keeping the quadcopter in hovering. The
other lines represent, respectively, the actuations on pitch τ̃θ , roll τ̃φ , and yaw τ̃ψ angles.

Note that because of the constraints imposed on θ and φ , the nonlinear dynamics of the vehicle is
maintained close enough to the linearized model used in the MPC design. As performance is rather
satisfactory, the possible use of multiple MPC controllers based on models linearized at different
conditions has not been explored here.

The results were obtained on a Core 2 Duo running Matlab R2008a and the MPC Toolbox under MS
Windows. The average CPU time to compute the MPC control action is about 13 ms per time step,
which is about 1/6 of the sampling time Ts. No attempt was done to speed up computations, such as
using fast on-line MPC implementations [53] or explicit off-line MPC solutions [54].

4.3.2 Hybrid MPC for collision avoidance

The proposed approach consists of constructing an abstract hybrid model of the controlled aerial
vehicle and of the surrounding obstacles, and then use a hybrid MPC strategy for on-line generation
of the desired positions. The closed-loop dynamics composed by the quadcopter and the linear
MPC controller can be very roughly approximated as a 3-by-3 diagonal linear dynamical system,
whose inputs are (xd ,yd ,zd) and whose outputs are (x,y,z). Accordingly, the dynamics is formulated
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Figure 16: Linear MPC for tracking generic position references

Figure 17: Linear MPC: commanded inputs
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in discrete-time as 
x(k+1) = α1xx(k)+β1x(xd(k)+∆xd(k))
y(k+1) = α1yy(k)+β1y(yd(k)+∆yd(k))
z(k+1) = α1zz(k)+β1z(zd(k)+∆zd(k))

(49)

where ∆(·)d(k) is the increment of desired (·)-coordinate commanded at time kThyb, and Thyb > Ts is
the sampling time of the hybrid MPC controller. Input increments ∆xd(k), ∆yd(k), ∆zd(k) are upper and
lower bounded by a quantity ∆

−∆

[
1
1
1

]
≤
[

∆xd(k)
∆yd(k)
∆zd(k)

]
≤ ∆

[
1
1
1

]
(50)

Constraint (50) is a tuning knob of the hybrid MPC controller, as it allows one to directly control
the speed of maneuver of the quadcopter by imposing constraints on the reference derivatives∥∥∥∥[ ẋd(t)

ẏd(t)
żd(t)

]∥∥∥∥
∞

≤ ∆ ·Thyb.

Obstacles are modeled as polyhedral sets. For minimizing complexity, the ith obstacle, i = 1, . . . ,M,
is modeled as the tetrahedron

Aobski

[
x(k)−xi(k)
y(k)−yi(k)
z(k)−zi(k)

]
≤ Bobs (51)

where Aobs

[ x
y
z

]
≤ Bobs is a fixed hyperplane representation of a reference tetrahedron, ki is a fixed

scaling factor, and
[

xi(k)
yi(k)
zi(k)

]
is a reference point of the obstacle. In this work we choose Aobs, Bobs such

that the corresponding polyhedron is the convex hull of vectors
[

0
0
0

]
,

[
5/2
0
0

]
,

[
0

5/2
0

]
,

[
5/6
5/6
5/2

]
, which makes

the reference point
[ xi

yi
zi

]
its vertex with smallest coordinates.

Equation (51) can be rewritten as

Aobski

[
x(k)
y(k)
z(k)

]
≤Cobs(k) (52)

where Cobs(k) = Bobs +Aobski

[
xi(k)
yi(k)
zi(k)

]
∈ R4 is a quantity that may vary in real-time. Although we model

here the predicted evolution of Cobs as

Cobs(k+h+1) =Cobs(k+h) (53)

non-constant dynamics may be used as well if obstacle velocities and/or accelerations were esti-
mated.

Finally, to represent the obstacle avoidance constraint, define the following binary variables δi j ∈
{0,1}, i = 1, . . . ,M, j = 1, . . . ,4

[δi j(k) = 1]↔ [A j
obski

[
x(k)
y(k)
z(k)

]
≤C j

obs(k)] (54)

where j denotes the jth row (component) of a matrix (vector). The following logical constraints

4∨
j=1

¬δi j(k) = 1, ∀i = 1, . . . ,M (55)

impose that at least one linear inequality in (52) is violated, therefore enforcing the quadcopter posi-

tion
[

x(k)
y(k)
z(k)

]
to lie outside each obstacle.
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Figure 18: Example of “safety area” surrounding an obstacle

Differently from [7], we want to penalize here that vehicles fly too close to obstacles. To this end,
each obstacle seen by a UAV is surrounded by a “safety area”, represented by a larger tetrahedron
containing the one defined by (52) (see Figure 18). Also for such safety areas we define binary
variables δ` j(k), ` = 1, . . . ,S, as in (54), where S is the number of safety areas (S ≤M in case of one
UAV flying in an area with M obstacles), but without imposing the logical constraints as in (55) to
allow the UAV entering those areas. Such an event is penalized by defining for each “safety area” a
variable γ`(k), `= 1, . . . ,S

γ`(k) =

{
1 if

∧4
j=1 δ` j(k) = 1 ∀`= 1, . . . ,S

0 otherwise
(56)

that the controller will try to keep at zero. In this way, the vehicle will tend to avoid passing through
the safety areas that have been set around the obstacles. Note that although γ` can only assume
values 0 and 1, we treat it as a real variable to ease the hybrid MPC computations that will be
defined in the next paragraphs. The sampling time Thyb must be chosen large enough to neglect fast
transient dynamics, so that the lower and upper MPC designs can be conveniently decoupled. On
the other hand, the obstacle avoidance constraint (55) is only imposed at multiples of Thyb, and hence
an excessively large sampling time may lead to trajectories that go through the obstacles during
intersampling intervals.

4.4 Simulation results: Hierarchical MPC of a Single UAV

To test the behavior of the overall system we cascade the linear MPC controller described in Sec-
tion 4.3 with the hybrid MPC controller designed in this section, according to the hierarchical scheme
of Figure 13. The simulation consists of avoiding three obstacles (tetrahedra) of different dimensions,
placed along the path between the quadcopter and the target point (see Figure 19). The following
parameters are employed: α1x = α1y = α1z = 0.6, β1x = β1y = β1z = 0.4 for the approximation of the
lower level dynamics; NH=10 (prediction horizon), Thyb=2 s, and ∆ = 1

5 Thyb; k1 = k3 = 1, k2 =
2
3 are the
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Figure 19: Obstacle avoidance maneuvers commanded by the hybrid MPC controller

scaling factors for the tetrahedra; Q = I3×3 and R = 0.1 · I3×3 are the weight matrices; the initial position
is x(0) = y(0) = z(0)=0 and the target point is located at xt = yt = zt=10.

The overall performance is quite satisfactory: The trajectory generated on-line circumvents the ob-
stacles without collisions (see Figure 19), and finally the quadcopter settles at the target point (see
Figure 20). Note that in the first transient the altitude z first drops by about 3 m due to the effect of
gravity.

In the simulations we assumed that the positions of the obstacles were known at each sample step.
In more realistic applications with several obstacles it may be enough to only know the locations of the
obstacles which are closest to the vehicle, for a threefold reason. First, because of the finite-horizon
formulation, remote obstacles will not affect the optimal solution, and may be safely ignored to limit
the complexity of the optimization model. Second, because of the receding horizon mechanism, the
optimal plan is continuously updated, which allows one to change the maneuvers to avoid new obsta-
cles. Third, in a practical context obstacles may be moving in space, and since such dynamics is not
modeled here, taking into account remote obstacles in their current position has a weak significance.
The number M of obstacles to be taken into account in the hybrid model clearly depends on the
density of the obstacles and the speed of the vehicle. Note that, depending on the sensor system on
board of the vehicle, it may be even impossible to measure the position of remote obstacles.

The average CPU time to compute the hybrid MPC action for set-point generation is about 17 ms per
time step on the same platform used for linear MPC, using the mixed-integer quadratic programming
solver of CPLEX 11.2 [26].

4.4.1 Hybrid model for UAV navigation in formation

The hierachical structure described above for one quadcopter is extended to coordinate a formation
of V cooperating UAVs, V > 1. We use a leader-follower approach with decentralized scheme to
manage the formation; according to such an approach, one of the vehicles (Leader) is chosen to
direct the formation, following a prescribed path, and all the other aircraft (Followers) are expected
to maintain a constant relative distance reference from the Leader. Each UAV is equipped with
its own hybrid MPC controller and takes decisions autonomously, measuring its own state and the
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Figure 20: Position and reference signals

positions of the neighboring vehicles and obstacles, planning its own path with obstacle avoidance.
The whole formation must be capable of reconfiguring, making decisions (for instance, changing
relative distances to modify the formation shape), and achieving mission goals (e.g., target tracking).
Moreover, each follower must avoid collision with the other one. In this case the other vehicles in
the formation are treated as obstacles, so that M accounts now for both real obstacles and other
(neighboring) vehicles. We take account the real dimensions of the vehicles and avoid that they
move too close to each other and to the obstacles to minimize risk of collision.

The overall hybrid dynamical model is obtained by collecting (49), (53), (54), (55), (56). These are
modeled through the modeling language HYSDEL [22] and converted automatically by the Hybrid
Toolbox [23] into a mixed logical dynamical (MLD) system form [24]

ξH(k+1) = AξH(k)+B1∆uH(k)+B2δ (k)+B3γ(k) (57a)
yH(k) =CξH(k)+D1∆uH(k)+D2δ (k)+D3γ(k) (57b)

E2δ (k)+E3γ(k)≤ E1∆uH(k)+E4ξH(k)+E5, (57c)

where ξH(k) = [x(k) y(k) z(k) C′1(k) . . .C′M(k) xd(k− 1) yd(k− 1) zd(k− 1)]′ ∈ R6+4M is the state vector,
∆uH(k)= [∆xd(k) ∆yd(k) ∆zd(k)]′ ∈R3 is the input vector, yH(k)= [x(k) y(k) z(k)]∈R3 is the output vector,
δ (k) ∈ {0,1}4M+4S and γ(k) ∈RS are respectively the vector of binary (defined in (54)) and continuous
auxiliary variables. The inequalities (57c) include a big-M representation [24] of (54) and a polyhedral
inequality representation of (55). Matrices A, B1, C, E1, E2, E4, E5 have suitable dimensions and
are generated by the HYSDEL compiler. In order to design a hybrid MPC controller, consider the
finite-time optimal control problem

min
{∆u(k)}NH−1

k=0

NH−1

∑
j=0

(yH(k+ j+1)− yHt)
′Qy(yH(k+ j+1)− yHt)+∆u′H(k+ j)R∆uH(k+ j)+ γ

′
H(k+ j)QγγH(k+ j)

(58a)

s.t. MLD dynamics (57) (58b)
constraints (50) (58c)

where NH is the prediction horizon, yHt = [x̄t ȳt z̄t ]
′ is the desired position (e.g., the position of the

37



target or of the leading vehicle), γH are the auxiliary continuous variables with reference γHt , Qy ≥ 0,
R > 0 ∈ R3×3 and Qγ ≥ 0 ∈ RS×S are weight matrices.

The MLD hybrid dynamics (57) has the advantage of making the optimal control problem (58) solvable
by mixed-integer quadratic programming (MIQP). At each sample step k, given the current reference
values yH(k) and the current state ξ (t), Problem (58) is solved to get the first optimal input sam-
ple ∆u∗H(k), which is commanded as the increment of desired set-point (xd ,yd ,zd) to the linear MPC
controller at the lower hierarchical level.

As an alternative, to manage the formation in this approach we use a centralized scheme consisting
of a single hybrid MPC controller based on a macromodel (including the dynamics and obstacles of
the entire formation) generates the references for all UAVs, that are passed to the individual linear
MPC controllers designed for stabilization. Clearly, this centralized approach has the drawback of
needing the solution of a single MIQP optimization problem for the entire team, which typically re-
quires significant computation. We will compare the performance of the centralized and decentralized
hybrid navigation schemes in the next section.

4.5 Potential Fields Method

For comparing the hybrid MPC approach with other existing navigation schemes, we consider the
3D potential fields method proposed in [15] for a formation of helicopters, adapted for the formation
of quadcopters defined earlier. In this case, tetrahedra are replaced by spherical obstacles. This
approach generates a potential field for each UAV depending on formation pattern, desired and actual
position, and obstacle positions, for collision and obstacle avoidance and target tracking. The total
field

F tot = Ft +F tot
ca +F tot

oa (59)

for each vehicle, used for generating the references for the lower-level stabilizing linear MPC, is
composed by the three components Ft (target tracking), F tot

ca (collision avoidance), and F tot
oa (obstacle

avoidance). The contribution for tracking the position of the target is Ft = Kt(t− p), where Kt is the
gain for target potential, t is the target position and p the vehicle position. For vehicle Leader, the
target is a given fixed position pt , for the Followers is a given distance pd from the Leader. To avoid
collision between vehicles or with obstacles, a safety space is defined around each vehicle, defined
as a sphere with positive radius rsav. The additional field component for vehicle i whose safety sphere
is invaded by vehicle j is defined by

Fca(k) =


(

Kcarsav
||d ji|| −Kca

)
d ji
||d ji|| if ||d ji|| ≤ rsav

0 otherwise
(60)

where Kca is the gain for collision avoidance and d ji, i 6= j, is the distance between vehicles. The total
amount of the collision avoidance term is given by

F tot
ca =

N

∑
j=1

F i j
ca for i 6= j (61)

Eqs. (60) and (61) change to

Foa(k) =


(

Koa
||dki|| −

Koa
rsav

)
dki
||dki|| if ||dki|| ≤ rsav

0 otherwise
(62)
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F tot
oa =

M

∑
k=1

F ik
oa for i 6= k (63)

for obstacle avoidance. Here, dki represents the distance between vehicle i and the center of obstacle
k, and Koa is the gain for obstacle avoidance. In both cases, to increase performance, rsav is chosen
dynamically, depending on the vehicle’s velocity ṗ:

rsav = rmin
sav +Ksav||ṗ|| (64)

using Ksav as a gain and rmin
sav as the minimum distance for a save avoidance. For collision avoidance

rmin
sav = 2rq, for obstacle avoidance rmin

sav = robs(k)+ rq, where rq and robs(k) are respectively the radius of
quadcopter and of the obstacle.
Finally, the reference trajectory pi,r for vehicle i is given by

pi,r = pi +F tot
i (65)

where pi is the position of vehicle.

4.6 Simulation results

The overall system is tested by cascading the linear MPC controller with the hybrid MPC designed
for navigation, according to the hierarchical scheme of Figure 13. The simulation consists of avoiding
four obstacles (tetrahedra) of different dimensions, placed along the path between the quadcopters
and the target points.

The linear MPC controller is tuned according to the following setup. Regarding input variables, we
set umin

L j = 0 V, umax
L j = 11.1 V, w∆u

i, j = 0.1, ∀ j = 1, . . . ,4, i = 0, . . . ,NL− 1. For output variables we set
a lower bound zmin

L = 0 on altitude, and upper and lower bounds ymax
L1−2 = −ymin

L1−2 =
π

6 on pitch θ and
roll φ angles. The output weights are wy

j = 0, j ∈ {1,2}, on θ and φ , wy
j = 1, j ∈ {7,8}, on θ̇ and φ̇ ,

and wy
j = 10 on the remaining output variables. The chosen set of weights ensures a good trade-off

between fast system response and actuation energy. The prediction horizon is NL = 20, the control
horizon is NLu = 3, which, together with the choice of weights, allow obtaining a good compromise
between tracking performance, robustness, and limited computational complexity. The sampling time
of the controller is Ts =

1
14 s. The remaining parameters V y,min, V y,max, ρε are defaulted by the Model

Predictive Control Toolbox [25].

The following parameters are employed for hybrid MPC: α1x = α1y = α1z = 0.6, β1x = β1y = β1z = 0.4 for
the approximation of the lower level dynamics; NH=10 (prediction horizon), Thyb=1.5 s, and ∆ = 1

5 Thyb;
k1 = k4 =

5
11 , k2 =

10
27 , k3 =

5
16 are the scaling factors for tetrahedra (obstacles), and for each of them

we have the corresponding “safety area” with scaling factor ks =
ki

1+ki15/20 , i = 1, . . . ,4; Qy = 0.01 · I3×3,
Qγ = 10 · I4×4 and R = 0.1 · I3×3 are the weight matrices.

The initial positions of the UAVs are pL(0) , [xL(0) yL(0) zL(0)]′ = [0 0 0]′ for the leader, pF1(0) ,
[xF1(0) yF1(0) zF1(0)]′ = [−2 −2 0]′, and pF2(0), [xF2(0) yF2(0) zF2(0)]′ = [−4 −4 0]′ for the followers;
the target point for the Leader is located at [x̄t ȳt z̄t ]L = [35 35 6]; the followers take off with a delay of
2.5 and 5 seconds respectively, and should follow the leader at given distances [x̄t ȳt z̄t ]

′
F1 = pL− pd1,

[x̄t ȳt z̄t ]
′
F2 = pd1 = [6 1 0]′, and pL− pd2, pd2 = [1 6 0]′. The results were obtained on a Core 2 Duo

running Matlab R2009b, the Model Predictive Control and the Hybrid Toolbox under MS Windows,
using the MIQP solver of CPLEX 11.1 [26].
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Figure 21: Trajectories of formation with obstacle avoidance, hybrid approach

4.6.1 Decentralized hierarchical hybrid + linear MPC

The trajectories obtained by using the decentralized hierarchical hybrid + linear MPC are shown in
Figure 21. The performance is quite satisfactory: trajectories circumvent obstacles without collisions
and finally the quadcopters settle at the target point, while maintaining the desired formation as much
as the obstacles allow it. The lower-level tracking of references achieved by using the linear MPC
controller is shown in Figure 22 for the leader.

4.6.2 Centralized hybrid MPC + decentralized linear MPC

Next, we compare the results with the trajectories obtained by a single centralized hybrid MPC planner
cascaded by the decentralized set of linear MPC controllers for stabilization. The performance is very
similar, but with an increment of computational complexity: while with the decentralized scheme the
average CPU time to compute the hybrid MPC action for set-point generation is about 0.073 s per
time step (Thyb=1.5 s), with the centralized scheme is about 0.466 s.

4.6.3 Comparison with potential fields method

In order to assess further the performance of the proposed hybrid MPC approach to formation flying
control, we compare it with the potential fields method described in Section 4.5 to generate on-
line the desired positions, while maintaining the lower-level linear MPC controllers for stabilization
and reference tracking. In this case the tetrahedra are replaced by four spherical obstacles. The
parameters used for simulation are reported in Table 4.

40



0 40 80 120 160 200 240 280 300

0

20

40

X

 

 

0 40 80 120 160 200 240 280 300

0

20

40

Y

 

 

0 40 80 120 160 200 240 280 300
−5

0

5

10

Time (s)

Z

 

 

x
d
 [m]

x  [m]

y
d
 [m]

y  [m]

z
d
 [m]

z  [m]

Figure 22: Leader’s position and reference signals generated by the decentralized hybrid MPC ap-
proach, tracked by linear MPC

Table 4: Parameters for the potential fields method
Kt 0.15 Gain for target

rq 1.3 Quadcopter radius

Kca 10 Gain for collision avoidance

Koa 40 Gain for obstacle avoidance

Ksav 2 Gain for a save avoidance

robs(1) 2.5 Radius of obstacle 1

robs(2) 3 Radius of obstacle 2

robs(3) 3.5 Radius of obstacle 3

robs(4) 2.5 Radius of obstacle 4

The use of the potential field reduces the computational complexity thanks to the absence of the
overall hybrid model; the CPU time to calculate the desired positions is of the order of milliseconds.
Even if the performance of obstacle avoidance (see Figure 23) and reference tracking (see Figure 24)
is satisfactory, it takes a longer time to reach the target. Moreover, it is necessary to impose an upper
bound zmax

L = 22.4 on altitude in the linear MPC formulation, to avoid undesired overshoots due to
fast variations of the references. Finally, to make a quantitative comparison of the different control
strategies, we show in Table 5 different performance indices and compare them on the different nav-
igation algorithms: decentralized hybrid MPC, centralized hybrid MPC, and potential fields method.
We consider the following three indices defined on the simulation interval 25÷300 s (i.e., 350÷4200
samples)
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Figure 23: Trajectories of formation with obstacle avoidance, potential fields method

Table 5: Comparison of different approaches
Jtt Jfpt Ju

centralized hybrid MPC 1 1 1
decentralized hybrid MPC -0.09% -0.51% -0.03%
potential fields +210.32% +294,30% +212.75%

Jtt =
4200

∑
k=250

‖pL(k)− pt‖2
2

Jfpt =
4200

∑
k=250

‖pL(k)− pF1(k)− pd1‖2
2 +‖pL(k)− pF2(k)− pd2‖2

2

Ju =
4200

∑
k=250

‖u(k)−u(k−1)‖1

where Jtt represents the target tracking Integral Square Error (ISE) index, Jfpt the formation pattern
tracking ISE index, and Ju the absolute derivative of input signals (IADU) index for checking the
smoothness of control signals [6]. The indices are normalized with respect to the values obtained
using centralized hybrid MPC. It is apparent that the hybrid MPC approach outperforms the potential
fields method. Note also that the decentralized and the centralized hybrid MPC schemes have almost
equal performance, actually the decentralized scheme is even slightly better. This maybe due to
the receding-horizon mechanism of MPC and to the fact that the MPC weights were tuned for the
decentralized approach and used for both schemes.

In the simulations we assumed that the positions of the obstacles are known at each sample step. In
more realistic applications with several obstacles it may be enough to only know the locations of the
obstacles which are closest to the vehicle, for a threefold reason. First, because of the finite-horizon
formulation, remote obstacles will not affect the optimal solution, and may be safely ignored to limit
the complexity of the optimization model. Second, because of the receding horizon mechanism, the
optimal plan is continuously updated, which allows one to change the maneuvers to avoid new obsta-
cles. Third, in a practical context obstacles may be moving in space, and since such dynamics is not
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Figure 24: Leader’s position and reference signals generated by the potential fields method, tracked
by linear MPC

modeled here, taking into account remote obstacles in their current position has a weak significance.
The number M of obstacles to be taken into account in the hybrid model clearly depends on the
density of the obstacles and the speed of the vehicle. Note that, depending on the sensor system on
board of the vehicle, it may be even impossible to measure the position of remote obstacles.

4.7 Conclusions

In this deliverable we have proposed an approach to hierarchical multi-rate control design for linear
systems that enforces constraints on the variables of the process and guarantees closed-loop stabil-
ity. By constraining both the magnitude and the variation of the reference signals applied to the lower
control layer, we have provided quantitative guidelines for selecting the ratio between the sampling
rates of the upper and lower layers, driven by the idea that the state of the process must always lie in
an invariant set at the sampling instants of the higher-level controller. We believe that the approach
provides valuable insight in the design of hierarchical schemes for decentralized control systems.

To investigate the use of decentralized and hierarchical model predictive control based on hybrid dy-
namical models, we have examined the case of for autonomous navigation of formation of unmanned
aerial vehicles, such as quadcopters. A linear MPC controller takes care of vehicles stabilization and
reference tracking, and a hybrid MPC generates the path to follow in real-time to reach a given target
while avoiding obstacles. The simulation results have shown the reduced computational load of the
decentralized hybrid MPC compared to the corresponding centralized hybrid MPC scheme, and the
better performance of hybrid MPC in comparison to on-line planning methods like potential fields.
Compared to off-line planning methods, such a feature of on-line generation of the 3D path to follow
is particularly appealing in realistic scenarios where the positions of the target and of the obstacles
are not known in advance, but rather acquired (and possibly time-varying) during flight operations.
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5. Distributed RTO with Parametric Coordination 

5.1 Introduction 

Many practical optimization problems in control engineering, manufacturing, resources 
distribution, operations research and other fields can be formulated as Quadratic 
Programming (QP). Typical example in control engineering is Model Predictive Control 
(MPC), which is the most widely implemented advanced process control strategy.  
 
Quadratic programming is an optimization problem involving minimization of quadratic cost 
function ( )J x  under linear equality and inequality constraints 

 min ( ), s.t. , .e eJ ≤ =
x

x Ax b A x b  (66) 

There are many solvers for this class of problems; however, time and memory demands of 
general QP solvers increase rapidly with the size of optimization problem. Large scale 
general QP problems involving many thousands of variables and constraints are 
computationally very demanding. 
 
The large size QP problems arise surprisingly quickly in the formulation of optimization 
problems involving dynamic optimization of multiple systems and in optimization of so 
called systems of systems. Typical examples are: 

• Optimal control of complex distribution networks for drinking water or gas 
involving prediction of demands on 24 hours horizon 

• Optimal control of electric power distribution 
• Coordination of renewable electric power sources  
• Energy efficient control in building automation involving heating, ventilating, and 

air conditioning of large buildings or multiple buildings 
• Optimal control of irrigation channels and urban drainage systems 

 
The systems in the previous examples can be seen as a set of interconnected sub-
systems (Figure 25). The formulation of their optimization problem usually follows similar 
pattern. The cost function is composed as a sum of cost functions corresponding to 
individual sub-systems and a set of consistency conditions representing mass or energy 
balances for interactions between sub-systems 

 ( ) ( )
,

1

, ,
min , , s.t.

,i i

N
i i i

i i i
i

C
J

=

∈
=∑

x y

x y
x y

My n
 (67) 

where ix  are private variables of each sub-system, variables iy  are interaction variables, 

iJ  are the cost functions of individual subsystems, iC  are constraints of individual sub-
systems and M,n  define sub-systems interaction constraints. 
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Figure 25 Large-scale system as a set of sub-systems and their interactions. 

 
The class of large-scale problems defined by (67) can be solved by decomposition 
methods. These methods lead to algorithms where multiple relatively small separated 
sub-problems are iteratively solved and coordinated together. These methods use the 
fact that solving multiple small optimization problems is significantly faster than solving a 
single large optimization problem. 
 
A general scheme of decomposition methods is in Figure 26. Typical steps are following: 

1) Distribution of coordination variables to sub-problems 
2) Solve sub-problems and return (part of) solution to coordinator 
3) Update coordination variables 
4) Continue to step 1 until interaction variables are coordinated  

 
Advantages of decomposition methods are: 

• Allows to solve truly large scale optimization problems 
• Sub-problems are independent and may be solved in parallel 
• Optimization time may be reduced even on a single computer 

 
Disadvantages: 

• The number of iteration may be very high 
• Optimal solution is obtained asymptotically 

 

Coordinator

Sub-problem 1 …… Sub-problem N
 

Figure 26 Coordinated optimization. 
 
We propose a novel method for solving the class of large-scale problems defined by (67) 
with the following properties: 

• Exact optimal solution is obtained in a finite number of iterations 
• The number of iterations and hence optimization time is low 
• Only some sub-problems need to be resolved in each iteration � communication 

reduction between coordinator and sub-problem solvers 
 

An illustration of the novel method performance is in Figure 27. It shows optimization time 
as a function of optimization problem size for three different algorithms. The black line is 
time needed to get solution without decomposition (centralized solution), the blue line is 
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the solution by the decomposition method based on L-BFGS algorithm and the red line 
(denoted as MP) is the performance of the proposed algorithm. The results were obtained 
for optimization problem imposed by model predictive control of interconnected water 
tanks. The values are mean times required to get solution for different number of tanks 
(different number of variables). Note that precise solutions are obtained only by centralized 
and MP method. 
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Figure 27 Optimization time for different methods as a function of problem size. Left figure has linear and 

right figure logarithmic scale. 
 
The properties of novel algorithm help to: 

• solve large scale optimization problems in real time (model predictive control), 
where centralized computation is impossible or extensively time demanding 

• solve large scale optimization problems without sacrificing precision 
• physically distribute computation while keeping communication traffic low 

5.2 Method 

This section describes the state-of-the-art decomposition algorithm and novel algorithm. 
Both approaches are then compared as functional block diagrams in Figure 30. 
 

5.2.1 Decomposition methods 
One class of decomposition methods is based on price coordination of dual 
decomposition, where the objective of coordinator (Figure 28) is to maximize function ( )g λ  
, which is dual to original cost function ( )J x , by manipulating prices λ   

 max ( ).g
λ

λ  (68) 

The key property of dual decomposition is that the coordinator gets a gradient of function 
( )g λ  in the point λ  by sending λ  to sub-problem solvers and aggregating returned 

information. This gradient is then used to update variable λ  by using gradient type 
methods and the process is repeated until the coordination error is bellow given threshold. 
The general description of dual decomposition methods steps is following: 
 

0) Initialize (0)λ  (upper index indicates iteration index) 
1) Coordinator distributes ( )kλ  to sub-problem solvers  
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2) Solve sub-problems and send back part of the gradient ( )( )k
ig λ∇  computed in point 

( )kλ  

3) Coordinator computes dual function gradient ( ) ( )( ) ( )

1

N
k k

i
i

g gλ λ
=

∇ = ∇∑  

4) Gradient ( )( )k
ig λ∇  is used to update ( )kλ  to ( 1)kλ +  by gradient type methods. 

5) Continue to step 1 if coordination error is above selected threshold.  
 

Coordinator

Sub-problem 1 …… Sub-problem N

( )kλ ( )( )
1

kg λ∇ ( )( )k
Ng λ∇( )kλ

 
Figure 28 Gradient based coordinated optimization. 

5.2.2 Parametric Coordination  
The novel algorithm is based on the fact, that in the case of quadratic programming the 
sub-problem solvers are able to return not only a solution in a single point (as in the 
previous algorithm), but also a parametric solution, which is valid on a region around 
given point. 
 
With these solutions the coordinator is able to form dual function value, gradient and 
hessian, which are valid on an intersection of sub-problem validity regions. This 
information allows coordinator to apply highly effective Newton type methods for ( )kλ  
update and to test if exact solution lies within current validity region (then it can be instantly 
reached). 
 
Another advantage of having parametric solution with the validity region is that only those 
sub-problems have to be recomputed where updated ( )kλ  lies out of their validity region of 
the last solution. This saves a lot of computation effort as in the most iterations only a 
fraction of sub-problems need to be recomputed. 
 

( )kλ ( )kλ

 
Figure 29 Parametric coordination. 

 
The algorithm with a block scheme in Figure 29 has the following steps: 
 

0) Initialize (0)λ  and distribute it to all sub-problem solvers 
1) Sub-problems receiving new ( )kλ  are solved and parametric solutions together with 

their validity regions iP  are returned to coordinator 
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2) Coordinator computes dual function value, gradient and hessian in the point ( )kλ  
and corresponding validity region P as an intersection of iP  

3) The exact solution is achieved if undamped Newton step solution lies within P , 
otherwise continue. 

4) ( )kλ  is updated to ( 1)kλ +  by Newton type method. 
5) ( 1)kλ +  is sent to sub-problems where last solution is not valid for new ( 1)kλ +  
6) Continue to step 1 

 

5.2.3 Methods Comparison 
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Figure 30 Comparison state-of-the-art and novel methods. 

5.3 Method details 

The target class of optimization problems is quadratic programming 

 ( ) ( )
,

1

, ,
min J , , s.t.

,

N
i i i

i i i
i

C

=

∈
=∑

x y

x y
x y

My n
 (69) 

where J i  are quadratic functions, iC  are linear constraints, ix  and iy  are parts of x  and y  

respectively. Corresponding dual function 
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is for given λ  separable as 
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1
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where gi are independent optimization sub-problems 

 ( ) ( )
,

g ( ) min J , s.t. , ,
i i

T
i i i i i i i i iCλ λ= + ∈

x y
x y M y x y  (72) 

and where iM  are parts of M  corresponding to iy . The key point is that gi  is a piecewise 

smooth quadratic function and can be on a polytopic region iP  expressed as 

 { }g ( ) , , ,T T
i i i i i i i ic P Pλ λ λ λ λ λ= + + ∈ = ≤A b H k  (73) 

where , , , ,i i i i icA b H k  are obtained from parametric optimization of (72). The coordinator 
can then compute dual function value, gradient and hessian as 
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 (74) 

with validity region P  given as an intersection of local solutions validity regions 

 
1

.
N

i
i

P P
=

=∩  (75) 

Dual function value, gradient and hessian are used by effective Newton type methods (for 
example adaptively damped Newton method) to solve dual problem and therefore also the 
original problem (69). 
 
Notes: 

• Parameters , , , ,i i i i icA b H k  are highly sparse (most elements are zeros). Only 
values, which are non-zero (by problem structure) needs to be communicated to the 
coordinator. Similarly sub-problems require only part of λ . 

• Sub-problem solvers do not need to enumerate all polytopic regions, but only a 
single polytop around given λ . 

• The convergence is guaranteed by convexity of the original problem. 

5.4 Method steps 

Algorithm Distributed Optimization with Parametric Coordination  
0) Coordinator initializes (0)λ  
1) Coordinator requests new solution from sub-problem solvers, where the last 

solution is invalid for ( )kλ   
2) All sub-problem solvers with invalid solution compute their parametric solution and 

its validity region (73) and send back parameters , , , ,i i i i icA b H k  

3) Coordinator forms dual function value, gradient and hessian in ( )kλ  as (74) and its 
appropriate validity region (75). 

4) Exact solution is achieved if un-damped Newton step lies in the validity region (75). 
5) Coordinator updates ( )kλ  to ( 1)kλ +  by Newton type method (for example adaptively 

damped Newton method). 
6) Continue to step 1 
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5.5 Application to Model Predictive Control 

Following sections describe application of novel coordination method to Model Predictive 
Control (MPC) of large-scale systems (Figure 31). Application of novel method is roughly 
100x faster than MPC formulated as a single optimization problem and roughly 10x faster 
than Quasi-Newton coordination methods for large-scale systems, while giving an exact 
solution. The method can be implemented in a single controller or it can be physically 
distributed to multiple controllers with a single coordinator (Figure 34). The method is 
demonstrated on control of Barcelona water distribution network. 
 

 
Figure 31 Large-scale system as a set of interacting sub-systems (left figure); control of large-scale system 

by a single MPC controller (right figure). 
 
The main problem with the application of MPC to large-scale systems is that the 
computational complexity increases quickly with the size of the system and the length of 
prediction horizon.  
 
MPC computes quadratic optimization (QP) problem in each sampling period. To illustrate 
the size of optimization problems consider MPC for Barcelona water distribution network, 
which will be shown in more details in Section 5.6.2. The parameters of MPC and 
appropriate QP problem are following: 
 

Prediction horizon 24 hours 
Sampling period 1 hour 
Number of variables ~5.000 
Number of constraints ~10.000 

 
MPC for large-scale systems can be reformulated to the form of (69) and parametric 
coordination method can be directly applied. To follow notation usual in control community 
the sub-problem solver is denoted as Local MPC Controller. The operation block diagram 
of Distributed MPC with Parametric Coordination is in Figure 32. 
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Figure 32 Block diagram of Distributed MPC with Parametric Coordination. 

 

 
Figure 33 Functional block scheme of parametric coordinator. 

 

5.5.1 Algorithm Implementation 
The proposed iterative algorithm can be either implemented on a single controller or it can 
be physically distributed to local controllers and one coordinator. Both cases are in Figure 
34.  
 
Implementation on a single controller allows implementing MPC for large-scale system, 
where legacy control is already realized as centralized control architecture. This 
configuration eliminates data transfer delays between coordinator and local MPC 
controllers. The algorithm can be computed in parallel even in a single controller with 
multiple computing units. 
 
Distributed implementation brings improved robustness as local MPC controllers can 
continue operating even in the case of communication failure. 
 
Proposed method allows to implement MPC strategy to large-scale processes, where 
classical MPC is not possible due to their size. 
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Figure 34 Coordinated Distributed MPC implementation either as physically distributed controllers with 
central coordinator (left figure); or as a single controller computing solution by internal coordination of 

multiple sub-problems (right figure). 
 

5.6 Application Example 

The performance of the proposed method is demonstrated on two examples. Both 
examples are control of water distribution networks. The first example is control of a 
medium-scale network and the second example is control of water distribution network in 
Barcelona, Spain. 
 
Water distribution networks are complex interconnections of tanks, pump, valves, 
interconnection nodes, water sources and points of water consumption. The basic control 
objective of water networks is to fully satisfy water demands in all points of consumption. 
To achieve this objective water is pumped from sources across the network to water tanks, 
where each tank usually represents also a point of consumption. This basic objective can 
be achieved in multiple ways. The objective of optimal control is to select the one with the 
following properties: 

• Minimize electricity price for water pumping (time variable electricity price) 
• Minimize price of fresh water (different prices of water from different sources: wells, 

rivers,…) 
• Keep tank levels above safety level 
• Minimize manipulated variables changes (to reduce wear of pumps and valves) 
• Minimize long water storage in tanks (requires additional chlorination) 
• Fulfill all constraints (limits on pumps, valves, tanks, water sources) 

These objectives can be well achieved by MPC. The application of MPC requires good 
predictions of water demands in points of consumption, which can be with satisfying 
accuracy obtained from history process data. 
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5.6.1 Example 1 - Medium-Scale Water Distribution Network 
The scheme of water network used in this example is in Figure 25. The network has the 
following parameters: 

Number of tanks 12 
Number of pumps and valves 16 
Number of source 
Number of complex nodes 

3 
3 

Number of points of demand 15 
 
 

 
Figure 35 Example 1 - Medium-scale water distribution network. Green triangles indicate water source. Each 

tank and each complex node (red color) has also a point of consumption. 
 
MPC is designed with 1 hour sampling period and 24 hours prediction horizon. Three 
methods are compared: 

1) Centralized MPC – formulation as a single QP problem (Centralized) 
2) Distributed MPC with Quasi-Newton coordination (L-BFGS) (state-of-the-art 

method) 
3) Distributed MPC with Parametric coordination (Parametric)  

The flow trajectories (manipulated variables) obtained by Centralized MPC and Parametric 
Coordinated MPC are the same as can be seen in Figure 36 and Figure 37 (top-right). The 
stopping condition for L-BFGS coordination was maximum flow error lower than 

30.01 m /hour . The number of iterations of distributed algorithms is compared in Figure 37 
(top-left). Effective number of parametric iterations refines the number of real iterations to 
match the fact that parametric method does not re-compute all local MPC problems as 
compared to other coordination methods. Optimization times of all three methods are 
compared in Figure 37 (bottom). “Sequential” means time required on a single computing 
unit and “parallel” means time required by parallel computing units. 
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Figure 36 Valves and Pumps flow trajectories computed by centralized MPC (blue lines) and distributed 

MPC with parametric coordination (red dashed lines). 
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Figure 37 Control results comparison. 
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5.6.2 Example 2 - Barcelona Drinking Water Distribution Network 
Barcelona drinking water distribution network scheme is in Figure 38. The network has the 
following parameters: 

Number of tanks 67 
Number of pumps and valves 111 
Number of source 
Number of complex nodes 

10 
15 

Number of points of demand 88 
 
Nominal solution was computed by centralized MPC with 10 hours prediction horizon, 
which was the maximum length allowing computation of centralized solution in Matlab. The 
parameters of quadratic programming problem for centralized MPC were following: 
 

Prediction horizon 10 hours 
Number of variables 1.920 
Number of constraints 3.820 

 
Tanks in the network were partitioned into groups. Each group is controlled by its own 
local MPC controller. Three methods are compared:  

1) Centralized MPC – formulation as a single QP problem (Centralized) 
2) Distributed MPC with Quasi-Newton coordination (L-BFGS) (state-of-the-art 

method) 
3) Distributed MPC with Parametric coordination (Parametric)  

The comparison of control method performance is in Figure 39. The top figure compares 
the number of iterations for each distributed method. Bottom two figures compare 
optimization times in each iteration for sequential (bottom-left) and parallel computations 
(bottom-right). The results are summarized in the following table:  
 
 Mean Number of 

Iterations 
Mean Optimization Time [s] 
Sequential Parallel 

Centralized MPC - 120 120 
Distributed L-BFGS  118 36.2 7.9 
Distributed 
Parametric 40 (9 effective) 4.8 2.1 

 
The table shows the reason why centralized MPC is not used to control large-scale water 
networks despite the fact that it can perfectly fulfill all main performance criterions. Even 
though the prediction horizon is only 10 hours (optimal would be 24 hours) the 
computation time for centralized MPC is already very long and the size of optimization 
problems is on the edge of practical computational limits (in the number of variables and 
constraints).  
 
On the other hand distributed MPC with parametric coordination offers method, which will 
not have problems with 24 hours prediction horizon (in terms of computational demands 
and number of iterations). 
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Figure 38 Scheme of Barcelona drinking water distribution network. 
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Figure 39 Control methods performance comparison for Barcelona Water Distribution Network.  
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5.7 Conclusion 

The presented method was filled for patent in European Patenting Office: 
 

Patent Application Title: “OPTIMIZATION PROBLEM SOLVING” 
Application No.: 11157244.2 
Filing Date: March 7, 2011 
Inventors: TRNKA PAVEL; PEKAR JAROSLAV 
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[50] M. Kvasnica, P. Grieder, and M. Baotić, Multi Parametric Toolbox (MPT), 2006, http://control.ee.
ethz.ch/∼mpt/.

60
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[58] J. Liu and D. Muñoz de la Peña and P.D. Christofides, Distributed model predictive control of
nonlinear process systems, 2009, AIChE Journal, vol. 55, pp. 1171–1184.

[59] A. Bemporad and D. Barcelli, Decentralized model predictive control In A. Bemporad, W.P.M.H.
Heemels, and M. Johansson, editors, Networked Control Systems, Eds. Springer- Verlag, 2010.
http://ist-wide.dii.unisi.it/school09.

[60] D. Barcelli and A. Bemporad and G. Ripaccioli, Hierarchical Multi-Rate Control Design for Con-
strained Linear Systems, 2010, Proc. 49th IEEE Conf. on Decision and Control.
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