
Collaborative Project
Small-medium-scale focused research project (STREP)

Grant Agreement n. 224168 FP7-ICT-2007-2

WIDE
Decentralized Wireless Control of Large-Scale Systems

Starting date: 01 September 2008 Duration: 3 years

Deliverable number D3.2
Title Decentralized and distributed model predictive control and

estimation algorithms
Work package WP3 - Multilayer distributed control and model management (RTD)
Due date M24
Actual submission date 31/08/2010
Lead contractor Honeywell Prague Laboratory (HPL)
for this deliverable
Author(s) P. Trnka pavel.trnka@honeywell.com,

L. Baramov lubomir.baramov@honeywell.com
With the help of A. Bemporad bemporad@ing.unitn.it,

D. Barcelli barcelli@dii.unisi.it
V. Puig vicenc.puig@upc.edu

Revision v1.1 (October 10, 2010)

Dissemination Level
→ PU Public

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Executive summary

This documents covers results in decentralized and distributed model predictive control and dis-
tributed Kalman filtering.

Contents

1 Decentralized model predictive control 3

1.1 Introduction . 3

1.2 Model Predictive Control . 5

1.3 A Survey of Existing DMPC Approaches . 6

1.3.1 DMPC approach of Jia and Krogh . 6

1.3.2 DMPC approach of Venkat, Rawlings, and Wright 7

1.3.3 DMPC approach of Dunbar and Murray . 7

1.3.4 DMPC approach of Keviczy, Borrelli, and Balas 9

1.3.5 DMPC approach of Mercangöz and Doyle . 9

1.3.6 DMPC approach of Magni and Scattolini . 10

1.4 WIDE Approach to Decentralized MPC . 10

1.4.1 Decentralized Prediction Models . 10

1.4.2 Decentralized Optimal Control Problems . 12

1.4.3 Convergence Properties . 13

1.4.4 Decentralized MPC over Wireless Networks . 14

1.5 Conclusions . 14

2 Distributed model predictive control 16

2.1 Introduction . 16

2.2 Two-tanks distributed control . 17

2.3 Large Scale Model Partitioning . 21

2.4 Consensus Iterations . 22

2.5 DMPC Simulation Results . 23

2.6 Distributed Control Modularity . 25

2.7 Conclusion . 25

3 Distributed Kalman Filter 27

3.1 Introduction . 27

3.2 Problem formulation . 28

3.3 Baseline algorithm of distributed estimation . 30

3.4 Distributed estimator with restricted communication radius 36

3.5 Illustrative example . 38

3.6 Conclusion . 42

4 Performance evaluation of decentralized versus centralized MPC on the benchmark
problem 43

4.1 Simulation setup . 43

4.2 Simulation results . 43

1

4.2.1 Computation complexity . 47

4.3 Conclusion . 47

2

1 Decentralized model predictive control

Decentralized and distributed model predictive control (DMPC) addresses the problem of controlling
a multivariable dynamical process, composed by several interacting subsystems and subject to con-
straints, in a computation and communication efficient way. Compared to a centralized MPC setup,
where a global optimal control problem must be solved on-line with respect to all actuator commands
given the entire set of states, in DMPC the control problem is divided into a set of local MPCs of
smaller size, that cooperate by communicating each other a certain information set, such as local
state measurements, local decisions, optimal local predictions. Each controller is based on a partial
(local) model of the overall dynamics, possibly neglecting existing dynamical interactions. The global
performance objective is suitably mapped into a local objective for each of the local MPC problems.

This deliverable surveys some of the main contributions to DMPC appeared in the literature and
reports about a method developed within the WIDE Consortium to design decentralized MPC con-
trollers.

1.1 Introduction

Most of the procedures for analyzing and controlling dynamical systems developed over the last
decades rest on the common presupposition of centrality. Centrality means that all the information
available about the system is collected at a single location, where all the calculations based on such
information are executed. Information includes both a priori information about the dynamical model
of the system available off-line, and a posteriori information about the system response gathered by
different sensors on-line.

When considering large-scale systems the presupposition of centrality fails because of the lack of a
centralized information-gathering system or of centralized computing capabilities. Typical examples
of such systems are power networks, water networks, urban traffic networks, cooperating vehicles,
digital cellular networks, flexible manufacturing networks, supply chains, complex structures in civil
engineering, and many others. In such systems the centrality assumption often fails because of
geographical separation of components (spatial distribution), as the costs and the reliability of com-
munication links cannot be neglected. Moreover, technological advances and reduced cost of micro-
processors provide a new force for distributed computation. Hence the current trend for decentralized
decision making, distributed computations, and hierarchical control.

Several new challenges arise when addressing a decentralized setting, where most of the existing
analysis and control design methodologies cannot be directly applied. In a distributed control system
which employs decentralized control techniques there are several local control stations, where each
controller observes only local outputs and only controls local inputs. Besides advantages in controller
implementation (namely reduced and parallel computations, reduced communications), a great ad-
vantage of decentralization is maintenance: while certain parts of the overall process are interrupted,
the remaining parts keep operating in closed-loop with their local controllers, without the need of
stopping the overall process as in case of centralized control. Moreover, a partial re-design of the
process does not necessarily imply a complete re-design of the controller, as it would instead in case
of centralized control. However, all the controllers are involved in controlling the same large-scale
process, and is therefore of paramount importance to determine conditions under which there exists
a set of appropriate local feedback control laws stabilizing the entire system.

Ideas for decentralizing and hierarchically organizing the control actions in industrial automation sys-
tems date back to the 70’s [9, 26, 27, 33, 39], but were mainly limited to the analysis of stability of
decentralized linear control of interconnected subsystems, so the interest faded. Since the late 90’s,
because of the advances in computation techniques like convex optimization, the interest in decen-
tralized control raised again [13, 31], and convex formulations were developed, although limited to
special classes of systems such as spatially invariant systems [4]. Decentralized control and estima-

3

tion schemes based on distributed convex optimization ideas have been proposed recently in [19,32]
based on Lagrangean relaxations. Here global solutions can be achieved after iterating a series of
local computations and inter-agent communications.

Large-scale multi-variable control problems, such as those arising in the process industries, are often
dealt with model predictive control (MPC) techniques. In MPC the control problem is formulated
as an optimization one, where many different (and possibly conflicting) goals are easily formalized
and state and control constraints can be included. Many results are nowadays available concerning
stability and robustness of MPC, see e.g. [24]. However, centralized MPC is often unsuitable for
control of large-scale networked systems, mainly due to lack of scalability and to maintenance issues
of global models. In view of the above considerations, it is then natural to look for decentralized
or for distributed MPC (DMPC) algorithms, in which the original large-size optimization problem is
replaced by a number of smaller and easily tractable ones that work iteratively and cooperatively
towards achieving a common, system-wide control objective.

Even though there is not a universal agreement on the distinction between “decentralized” and “dis-
tributed”, the main difference between the two terms depends on the type of information exchange:

• decentralized MPC: Control agents take control decisions independently on each other. Infor-
mation exchange (such as measurements and previous control decisions) is only allowed before
and after the decision making process. There is no negotiation between agents during the de-
cision process. The time needed to decide the control action is not affected by communication
issues, such as network delays and loss of packets.

• distributed MPC: An exchange of candidate control decisions may also happen during the de-
cision making process, and iterated until an agreement is reached among the different local
controllers, in accordance with a given stopping criterion.

In DMPC M subproblems are solved, each one assigned to a different control agent, instead of
a single centralized problem. The goal of the decomposition is twofold: first, each subproblem is
much smaller than the overall problem (that is, each subproblem has far fewer decision variables and
constraints than the centralized one), and second, each subproblem is coupled to only a few other
subproblems (that is, it shares variables with only a limited number other subproblems). Although
decentralizing the MPC problem may lead to a deterioration of the overall closed-loop performance
because of the suboptimality of the resulting control actions, besides computation and communication
benefits there are also important operational benefits in using DMPC solutions. For instance local
maintenance can be carried out by only stopping the corresponding local MPC controller, while in a
centralized MPC approach the whole process should be suspended.

A DMPC control layer is often interacting with a higher-level control layer in a hierarchical arrange-
ment, as depicted in Figure 1. The goal of the higher layer is to possibly adjust set-points and
constraint specifications to the DMPC layer, based on a global (possibly less detailed) model of the
entire system. Because of its general overview of the entire process, such a centralized decision
layer allows one to reach levels of coordination and performance optimization otherwise very difficult
(if not impossible) using a decentralized or distributed action. For a recent survey on decentralized,
distributed and hierarchical model predictive control architectures, the reader is referred to the recent
survey paper [34].

In a typical DMPC framework the steps performed by the local controllers at each control instant are
the following: (i) measure local variables and update state estimates, (ii) solve the local receding-
horizon control problem, (iii) apply the control signal for the current instant, (iv) exchange information
with other controllers. Along with the benefits of a decentralized design, there are some inherent
issues that one must face in DMPC: ensuring the asymptotic stability of the overall system, ensure
the feasibility of global constraints, quantify the loss of performance with respect to centralized MPC.

4

!"#$%&

!"#$%&'("!%)*#+(%''

'()*+,-./(0$1.21(+3-(4(-$'5)*+5--(+

!"#$%6 !"#$%7

Figure 1: Hierarchical and decentralized/distributed model predictive control of a large-scale process

1.2 Model Predictive Control

In this section we review the basic setup of linear model predictive control. Consider the problem of
regulating the discrete-time linear time-invariant system{

x(t +1) = Ax(t)+Bu(t)
y(t) = Cx(t)

(1)

to the origin while fulfilling the constraints

umin ≤ u(t)≤ umax (2)

at all time instants t ∈ Z0+ where Z0+ is the set of nonnegative integers, x(t) ∈ Rn,u(t) ∈ Rm and
y(t) ∈Rp are the state, input, and output vectors, respectively, and the pair (A,B) is stabilizable. In (2)
the constraints should be interpreted component-wise and we assume umin < 0 < umax.

MPC solves such a constrained regulation problem as described below. At each time t, given the
state vector x(t), the following finite-horizon optimal control problem

V (x(t)) = min
U

x′t+NPxt+N +
N−1

∑
k=0

x′kQxk +u′kRuk (3a)

s.t. xk+1 = Axk +Buk, k = 0, . . . ,N−1 (3b)
yk = Cxk, k = 0, . . . ,N (3c)
x0 = x(t) (3d)
umin ≤ uk ≤ umax, k = 0, . . . ,Nu−1 (3e)
uk = Kxk, k = Nu, . . . ,N−1 (3f)

is solved, where U , {u0, . . . ,uNu−1} is the sequence of future input moves, xk denotes the predicted
state vector at time t + k, obtained by applying the input sequence u0, . . . ,uk−1 to model (1), starting
from x(t). In (3) N > 0 is the prediction horizon, Nu ≤ N−1 is the input horizon, Q = Q′ ≥ 0, R = R′ >
0, P = P′ ≥ 0 are square weight matrices defining the performance index, and K is some terminal
feedback gain. As we will discuss below, P, K are chosen in order to ensure closed-loop stability of
the overall process.

Problem (3) can be recast as a quadratic programming (QP) problem (see e.g. [6,24]), whose solution
U∗(x(t)) , {u∗0 . . . u∗Nu−1} is a sequence of optimal control inputs. Only the first input

u(t) = u∗0 (4)

5

acronym Section submodels constraints intersampling broadcast state stability references
iterations predictions constr. constr.

JK 1.3.1 coupled local inputs no yes yes yes [10,16,17]
VRW 1.3.2 coupled local inputs yes no no none [35,36]
DM 1.3.3 decoupled local inputs no yes yes yes [14]
KBB 1.3.4 decoupled no yes yes none [20]
MD 1.3.5 coupled local inputs yes yes no none [25]
MS 1.3.6 coupled local inputs no no no yes [23]
ABB 1.4 coupled local inputs no no no none [2,3], [5]∗, [1]∗

Table 1: Classification of existing DMPC approaches.

is actually applied to system (1), as the optimization problem (3) is repeated at time t + 1, based
on the new state x(t + 1) (for this reason, the MPC strategy is often referred to as receding horizon
control). The MPC algorithm (3)-(4) requires that all the n components of the state vector x(t) are
collected in a (possibly remote) central unit, where a quadratic program with mNu decision variables
needs to be solved and the solution broadcasted to the m actuators. As mentioned in the introduction,
such a centralized MPC approach may be inappropriate for control of large-scale systems, and it is
therefore natural to look for decentralized or distributed MPC (DMPC) algorithms.

1.3 A Survey of Existing DMPC Approaches

A few contributions have appeared in recent years in the context of DMPC, mainly motivated by
applications of decentralized control of cooperating air vehicles [7, 21, 30]. We review in this section
some of the main contributions on DMPC, summarized in Table 1, that have appeared in the scientific
literature, including the contributions developed within the WIDE project that will be described in
Section 1.4. An application of some of the results surveyed in this section in a problem of distributed
control of power networks with comparisons among DMPC approaches is reported in [12].

In the following sections, we denote by M be the number of local MPC controllers that we want
to design, for example M = m in case each individual actuator is governed by its own local MPC
controller.

1.3.1 DMPC approach of Jia and Krogh

In [10, 16] the system under control is composed by a number of unconstrained linear discrete-time
subsystems with decoupled input signals, described by the equations x1(k +1)

...
xM(k +1)

=

 A11 . . . A1M
...

. . .
...

AM1 . . . AMM


 x1(k)

...
xM(k)

+

 B1 0
. . .

0 BM


 u1(k)

...
uM(k)

 (5)

The effect of dynamical coupling between neighboring states is modeled in prediction through a
disturbance signal v, for instance the prediction model used by controller # j is

x j(k + i+ i|k) = A j jx j(k + i|k)+B j +u j(k + i|k)+K jv j(k + i|k) (6)

where K j = [A j1 . . . A j, j−1 A j, j+1 . . . A jM]. The information exchanged between control agents at the
end of each sample step is the entire prediction of the local state vector. In particular, controller # j

∗ Work supported by the European Commission under project “WIDE - Decentralized and Wireless Control of Large-
Scale Systems”, contract number FP7-IST-224168.

6

receives the signal

v j(k + i|k) =



x1(k + i|k−1)
...

x j−1(k + i|k−1)
x j+1(k + i|k−1)

...
xM(k + i|k−1)


where i is the prediction time index, from the other MPC controllers at the end of the previous time step
k−1. The signal v j(k + i|k) is used by controller # j at time k to estimate the effect of the neighboring
subsystem dynamics in (6).

Under certain assumptions of the model matrix A, closed-loop stability is proved by introducing a
contractive constraint on the norm of x j(k +1|k) in each local MPC problem, which the authors prove
to be a recursively feasible constraint.

The authors deal with state constraints in [17] by proposing a min-max approach, at the price of a
possible conservativeness of the approach.

1.3.2 DMPC approach of Venkat, Rawlings, and Wright

In [35–37] the authors propose distributed MPC algorithm based on a process of negotiations among
DMPC agents. The adopted prediction model is

xii(k +1) = Aiixii(k)+Biiui(k) (local prediction model)
xi j(k +1) = Ai jxi j(k)+Bi ju j(k) (interaction model)

yi(k) = ∑
M
j=1Ci jxi j(k)

The effect of the inputs of subsystem # j on subsystem #i is modeled by using an “interaction model”.
All interaction models are assumed stable, and constraints on inputs are assumed decoupled (e.g.,
input saturation).

Starting from a multiobjective formulation, the authors distinguish between a “communication-based”
control scheme, in which each controller #i is optimizing his own local performance index Φi, and
a “cooperation-based” control scheme, in which each controller #i is optimizing a weighted sum
∑

M
j=1 α jΦ j of all performance indices, 0 ≤ α j ≤ 1. As performance indices depend on the decisions

taken by the other controllers, at each time step k a sequence of iterations is taken before computing
and implementing the input vector u(k). In particular, within each sampling time k, at every iteration p
the previous decisions up−1

j 6=i are broadcast to controller #i, in order to compute the new iterate up
i . With

the communication-based approach, the authors show that if the sequence of iterations converges, it
converges to a Nash equilibrium. With the cooperation-based approach, convergence to the optimal
(centralized) control performance is established. In practical situations the process sampling inter-
val may be insufficient for the computation time required for convergence of the iterative algorithm,
with a consequent loss of performance. Nonetheless, closed-loop stability is not compromised: as
it is achieved even though the convergence of the iterations is not reached. Moreover, all iterations
are plantwide feasible, which naturally increases the applicability of the approach including a certain
robustness to transmission faults.

1.3.3 DMPC approach of Dunbar and Murray

In [14] the authors consider the control of a special class of dynamically decoupled continuous-time
nonlinear subsystems

ẋi(t) = fi(xi(t),ui(t))

7

where the local states of each model represent a position and a velocity signal

xi(t) =
[

qi(t)
q̇i(t)

]
State vectors are only coupled by a global performance objective

L(x,u) = ∑
(i, j)∈E0

ω‖qi−q j +di j‖2 +ω‖qΣ−qd‖2 +ν‖q̇‖2 + µ‖u‖2 (7)

under local input constraints ui(t) ∈U , ∀i = 1, . . . ,M, ∀t ≥ 0. In (7) E0 is the set of pair-wise neighbors,
di j is the desired distance between subsystems i and j, qΣ = (q1 + q2 + q3)/3 is the average position
of the leading subsystems 1,2,3, and qd = (qc

1 +qc
2 +qc

3)/3 the corresponding target.

The overall integrated cost (7) is decomposed in distributed integrated cost functions

Li(xi,x−i,ui) = Lx
i (xi,x−i)+ γµ‖ui‖2 +Ld(i)

where x−i = (x j1, . . . ,x jk) collects the states of the neighbors of agent subsystem #i, Lx
i (xi,x−i) =

∑ j∈Ni
γω

2 ‖qi−q j +di j‖2 + γν‖q̇i‖2, and

Ld(i) =
{

γω‖qΣ−qd‖2/3 i ∈ {1,2,3}
0 otherwise

It holds that

L(x,u) =
1
γ

N

∑
i=1

Li(xi,x−i,ui)

Before computing DMPC actions, neighboring subsystems broadcast in a synchronous way their
states, and each agent transmits and receives an “assumed” control trajectory ûi(τ; tk). Denoting
by up

i (τ; tk) the control trajectory predicted by controller #i, by u∗i (τ; tk) the optimal predicted control
trajectory, by T the prediction horizon, and by δ ∈ (0,T] the update interval, the following DMPC
performance index is minimized

min
up

i

Ji(xi(tk),x−i(tk),u
p
i (·; tk)) = min

up
i

∫ tk+T

tk
Li(x

p
i (s; tk), x̂−i(s; tk),u

p
i (s; tk))ds+ γ‖xp

i (tk +T ; tk)− xC
i ‖2

Pi

s.t. ẋp
i (τ; tk) = fi(x

p
i (τ; tk),u

p
i (τ; tk))

˙̂xp
i (τ; tk) = fi(x̂

p
i (τ; tk), û

p
i (τ; tk))

˙̂xp
−i(τ; tk) = f−i(x̂

p
−i(τ; tk), û

p
−i(τ; tk))

up
i (τ; tk) ∈U

‖xp
i (τ; tk)− x̂i(τ; tk)‖ ≤ δ

2
κ

xp
i (tk +T ; tk) ∈Ωi(εi)

The second last constraint is a “compatibility” constraint, enforcing consistency between what agent
#i plans to do and what its neighbors believe it plans to do. The last constraint is a terminal constraint.

Under certain technical assumptions, the authors prove that the DMPC problems are feasible at each
update step k, and under certain bounds on the update interval δ convergence to a given set is
also proved. Note that closed-loop stability is ensured by constraining the state trajectory predicted
by each agent to stay close enough to the trajectory predicted at the previous time step that has
been broadcasted. The main drawback of the approach is the conservativeness of the compatibility
constraint.

8

1.3.4 DMPC approach of Keviczy, Borrelli, and Balas

Dynamically decoupled submodels are also considered in [20], where the special nonlinear discrete-
time system structure

xi
k+1 = f i(xi

k,u
i
k)

is assumed, subject to local input and state constraints xi
k ∈X i, ui

k ∈ U i, i = 1, . . . ,M. Subsystems
are coupled by the cost function

l(x̃, ũ) =
Nv

∑
i=1

li(xi,ui, x̃i, ũi)

and by the global constraints
gi, j(xi,ui,x j,u j)≤ 0, (i, j) ∈A

where A is a given set. Each local MPC controller is based on the optimization of the following
problem

min
Ũt

N−1

∑
k=0

l(x̃k,t , ũk,t)+ lN(x̃N,t) (8a)

s.t. xi
k+1,t = f i(xi

k,t ,u
i
k,t) (8b)

xi
k,t ∈X i, ui

k,t ∈U i, k = 1, . . . ,N−1 (8c)

xi
N,t ∈X i

f (8d)

x j
k+1,t = f j(x j

k.t ,u
j
k,t),(i, j) ∈A (8e)

x j
k,t ∈X j, u j

k,t ∈U j,(i, j) ∈A k = 1, . . . ,N−1 (8f)

x j
N,t ∈X j

f ,(i, j) ∈A (8g)

gi, j(xi
k,t ,u

i
k,t ,x

j
k,t ,u

j
k,t)≤ 0,(i, j) ∈A k = 1, . . . ,N−1 (8h)

xi
0,t = xi

t , x̃
i
0,t = x̃i

t (8i)

where (8b)–(8d) are the local model and constraints of the agent, (8e)–(8g) are the model and con-
straints of the neighbors, and (8h) represent interaction constraints of agent #i with its own neighbors.

The information exchanged among the local MPC agents are the neighbors’ current states, termi-
nal regions, and local models and constraints. As in (18), only the optimal input ui

0,t computed by
controller #i is applied; the remaining inputs u j

k,t are completely discarded, as they are only used to
enhance the prediction.

Stability is analyzed for the problem without coupling constraints (8h), under the assumption that the
following inequality holds

N−1

∑
k=1

2‖Q(x j, j
k,t − x j,i

k,t)‖p +‖R(u j, j
k,t −u j,i

k,t)‖p ≤ ‖Qxi
t‖p +‖Qx j

t ‖p +‖Q(xi
t − x j

t)‖p +‖Rui,i
0,t‖p +‖Ru j,i

0,t‖p

where ‖Qx‖2 , x′Qx, and ‖Qx‖1, ‖Qx‖∞ are the standard q and ∞ norm, respectively.

1.3.5 DMPC approach of Mercangöz and Doyle

The distributed MPC and estimation problems are considered in [25] for square plants (the number
of inputs equals the number of outputs) perturbed by noise, whose local prediction models are{

xi(k +1) = Aixi(k)+Biui(k)+∑
M
j=1 B ju j(k)+wi(k)

yi(k) = Cixi(k)+ vi(k)
(9)

9

A distributed Kalman filter based on the local submodels (9) is used for state estimation. The DMPC
approach is similar to Venkat et al.’s “communication-based” approach, although only first moves
u j(k) are transmitted and assumed frozen in prediction, instead of the entire optimal sequences. Only
constraints on local inputs are handled by the approach. Although general stability and convergence
results are not proved in [25], experimental results on a four-tank system are reported to show the
effectiveness of the approach.

1.3.6 DMPC approach of Magni and Scattolini

Another interesting approach to decentralized MPC for nonlinear systems has been formulated in [23].
The problem of regulating a nonlinear system affected by disturbances to the origin is considered
under some technical assumptions of regularity of the dynamics and of boundedness of the distur-
bances. Closed-loop stability is ensured by the inclusion in the optimization problem of a contractive
constraint. The considered class of functions and the absence of information exchange between
controllers leads to some conservativeness of the approach.

1.4 WIDE Approach to Decentralized MPC

Based on preliminary ideas developed by UNISI in [2,3], within the WIDE project a new approach to
decentralized MPC design has been proposed.

The approach aims at addressing possible dynamical coupling between subprocesses in a noncon-
servative way, and to actually exploit such coupling to improve the degree of cooperativeness of
local controllers. A (partial) decoupling assumption only appears in the prediction models used by
different MPC controllers. The chosen degree of decoupling represents a tuning knob of the ap-
proach. Sufficient criteria for analyzing the asymptotic stability of the process model in closed loop
with the set of decentralized MPC controllers are provided. If such conditions are not verified, then
the structure of decentralization should be modified by augmenting the level of dynamical coupling
of the prediction submodels, increasing consequently the number and type of exchanged information
about state measurements among the MPC controllers. Following such stability criteria, a hierarchi-
cal scheme was proposed to change the decentralization structure on-line by a supervisory scheme
without destabilizing the system. Moreover, to cope with the case of a non-ideal communication
channel among neighboring MPC controllers, sufficient conditions for ensuring closed-loop stability
of the overall closed-loop system when packets containing state measurements may be lost were
given.

We review here the main ingredients and results of this approach, pointing the reader for deeper
technical details to the results already published in [1,5].

1.4.1 Decentralized Prediction Models

Consider again process model (1). Matrices A, B may have a certain number of zero or negligible
components corresponding to a partial dynamical decoupling of the process, especially in the case
of large-scale systems, or even be block diagonal in case of total dynamical decoupling. This is the
case for instance of independent moving agents each one having its own dynamics and only coupled
by a global performance index.

For all i = 1, . . . ,M, we define xi ∈ Rni as the vector collecting a subset Ixi ⊆ {1, . . . ,n} of the state
components,

xi = W ′i x =

 xi
1
...

xi
ni

 ∈ Rni (10a)

10

where Wi ∈ Rn×ni collects the ni columns of the identity matrix of order n corresponding to the indices
in Ixi, and, similarly,

ui = Z′iu =

 ui
1
...

ui
mi

 ∈ Rmi (10b)

as the vector of input signals tackled by the i-th controller, where Zi ∈ Rm×mi collects mi columns of
the identity matrix of order m corresponding to the set of indices Iui ⊆ {1, . . . ,m}. Note that

W ′i Wi = Ini , Z′iZi = Imi , ∀i = 1, . . . ,M (11)

where I(·) denotes the identity matrix of order (·). By definition of xi in (10a) we obtain

xi(t +1) = W ′i x(t +1) = W ′i Ax(t)+W ′i Bu(t) (12)

An approximation of (1) is obtained by changing W ′i A in (12) into W ′i AWiW ′i and W ′i B into W ′i BZiZ′i ,
therefore getting the new prediction reduced order model

xi(t +1) = Aixi(t)+Biui(t) (13)

where matrices Ai = W ′i AWi ∈ Rni×ni and Bi = W ′i BZi ∈ Rmi×mi are submatrices of the original A and B
matrices, respectively, describing in a possibly approximate way the evolution of the states of sub-
system #i.

The size (ni,mi) of model (13) in general will be much smaller than the size (n,m) of the overall
process model (1). The choice of the pair (Wi,Zi) of decoupling matrices (and, consequently, of the
dimensions ni, mi of each submodel) is a tuning knob of the DMPC procedure proposed in the sequel
of the paper.

We want to design a controller for each set of moves ui according to prediction model (13) and based
on feedback from xi, for all i = 1, . . . ,M. Note that in general different input vectors ui, u j may share
common components. To avoid ambiguities on the control action to be commanded to the process,
we impose that only a subset I #

ui ⊆Iui of input signals computed by controller #i is actually applied
to the process, with the following conditions

M⋃
i=1

I#
ui = {1, . . . ,m} (14a)

I#
ui∩ I#

u j = /0, ∀i, j = 1, . . . ,M, i 6= j (14b)

Condition (14a) ensures that all actuators are commanded, condition (14b) that each actuator is
commanded by only one controller. For the sake of simplicity of notation, since now on we assume
that M = m and that I#

ui = i, i = 1, . . . ,m, i.e., that each controller #i only controls the ith input signal.
As observed earlier, in general Ixi ∩Ix j 6= /0, meaning that controller #i may partially share the same
feedback information with controller # j, and Iui ∩Iu j 6= /0. This means that controller #i may take
into account the effect of control actions that are actually decided by another controller # j, i 6= j,
i, j = 1, . . . ,M, which ensures a certain degree of cooperation.

The designer has the flexibility of choosing the pairs (Wi,Zi) of decoupling matrices, i = 1, . . . ,M. A
first guess of the decoupling matrices can be inspired by the intensity of the dynamical interactions
existing in the model. The larger (ni,mi) the smaller the model mismatch and hence the better the
performance of the overall-closed loop system. On the other hand, the larger (ni,mi) the larger is the
communication and computation efforts of the controllers, and hence the larger the sampling time of
the controllers.

11

1.4.2 Decentralized Optimal Control Problems

In order to exploit submodels (13) for formulating local finite-horizon optimal control problems that
lead to an overall closed-loop stable DMPC system, let the following assumptions be satisfied.

Assumption 1. Matrix A in (1) is strictly Hurwitz.

Assumption 1 restricts the strategy and stability results of DMPC to processes that are open-loop
asymptotically stable, leaving to the controller the mere role of optimizing the performance of the
closed-loop system.

Assumption 2. Matrix Ai is strictly Hurwitz, ∀i = 1, . . . ,M.

Assumption 2 restricts the degrees of freedom in choosing the decentralized models. Note that if
Ai = A for all i = 1, . . . ,M is the only choice satisfying Assumption 2, then no decentralized MPC
can be formulated within this framework. For all i = 1, . . . ,M consider the following infinite-horizon
constrained optimal control problems

Vi(x(t)) = min
{ui

k}∞
k=0

∞

∑
k=0

(xi
k)
′W ′i QWixi

k +(ui
k)
′Z′iRZiui

k = (15a)

= min
ui

0

(xi
1)
′Pixi

1 + xi(t)′W ′i QWixi(t)+(ui
0)
′Z′iRZiui

0 (15b)

s.t. xi
1 = Aixi(t)+Biui

0 (15c)

xi
0 = W ′i x(t) = xi(t) (15d)

ui
min ≤ ui

0 ≤ ui
max (15e)

ui
k = 0, ∀k ≥ 1 (15f)

where Pi = P′i ≥ 0 is the solution of the Lyapunov equation

A′iPiAi−Pi =−W ′i QWi (16)

that exists by virtue of Assumption 2. Problem (15) corresponds to a finite-horizon constrained prob-
lem with control horizon Nu = 1 and linear stable prediction model. Note that only the local state vector
xi(t) is needed to solve Problem (15).

At time t, each controller MPC #i measures (or estimates) the state xi(t) (usually corresponding to
local and neighboring states), solves problem (15) and obtains the optimizer

u∗i0 = [u∗i10 , . . . ,u∗ii0 , . . . ,u∗imi
0]′ ∈ Rmi (17)

In the simplified case M = m and I#
ui = i, only the i-th sample of u∗i0

ui(t) = u∗ii0 (18)

will determine the i-th component ui(t) of the input vector actually commanded to the process at
time t. The inputs u∗i j

0 , j 6= i, j ∈ Iui to the neighbors are discarded, their only role is to provide a
better prediction of the state trajectories xi

k, and therefore a possibly better performance of the overall
closed-loop system.

The collection of the optimal inputs of all the M MPC controllers,

u(t) = [u∗11
0 . . . u∗ii0 . . . u∗mm

0]′ (19)

While usually a matrix A is called Hurwitz if all its eigenvalues have strictly negative real part (continuous-time case),
in this paper we say that a matrix A is Hurwitz if all the eigenvalues λi of A are such that |λi|< 1 (discrete-time case).

12

is the actual input commanded to process (1). The optimizations (15) are repeated at time t +1 based
on the new states xi(t +1) = W ′i x(t +1), ∀i = 1, . . . ,M, according to the usual receding horizon control
paradigm. The degree of coupling between the DMPC controllers is dictated by the choice of the
decoupling matrices (Wi,Zi). Clearly, the larger the number of interactions captured by the submodels,
the more complex the formulation (and, in general, the solution) of the optimization problems (15) and
hence the computations performed by each control agent. Note also that a higher level of information
exchange between control agents requires a higher communication overhead. We are assuming here
that the submodels are constant at all time steps.

1.4.3 Convergence Properties

As mentioned in the introduction, one of the major issues in decentralized RHC is to ensure the
stability of the overall closed-loop system. The non-triviality of this issue is due to the fact that the
prediction of the state trajectory made by MPC #i about state xi(t) is in general not correct, because
of partial state and input information and of the mismatch between u∗i j (desired by controller MPC #i)
and u∗ j j (computed and applied to the process by controller MPC # j).

The following theorem, proved in [1, 2], summarizes the closed-loop convergence results of the pro-
posed DMPC scheme using the cost function V (x(t)) , ∑

M
i=1Vi(W ′i x(t)) as a Lyapunov function for the

overall system.

Theorem 1. Let Assumptions 1, 2 hold and define Pi as in (16) ∀i = 1, . . . ,M. Define

∆ui(t) , u(t)−Ziu∗i0 (t), ∆xi(t) , (I−WiW ′i)x(t)
∆Ai , (I−WiW ′i)A, ∆Bi , B−WiW ′i BZiZ′i

(20)

Also, let
∆Y i(x(t)) , WiW ′i (A∆xi(t)+BZiZ′i∆ui(t))+∆Aix(t)+∆Biu(t) (21a)

and
∆Si(x(t)) ,

(
2(AiW ′i x(t)+Biu∗i0 (t))′+∆Y i(x(t))′Wi

)
PiW ′i ∆Y i(x(t)) (21b)

If the condition

(i) x′
(

M

∑
i=1

WiW ′i QWiW ′i

)
x−

M

∑
i=1

∆Si(x)≥ 0, ∀x ∈ Rn (22a)

is satisfied, or the condition

(ii) x′
(

M

∑
i=1

WiW ′i QWiW ′i

)
x−αx′x−

M

∑
i=1

∆Si(x)+
M

∑
i=1

u∗i0 (x)′Z′iRZiu∗i0 (x)≥ 0, ∀x ∈ Rn (22b)

is satisfied for some scalar α > 0, then the decentralized MPC scheme defined in (15)–(19) in closed
loop with (1) is globally asymptotically stable.

By using the explicit MPC results of [6], each optimizer function u∗i0 : Rn 7→ Rmi , i = 1, . . . ,M, can be
expressed as a piecewise affine function of x

u∗i0 (x) = Fi jx+Gi j if Hi jx≤ Ki j, j = 1, . . . ,nri (23)

Hence, both condition (22a) and condition (22b) are a composition of quadratic and piecewise affine
functions, so that global stability can be tested through linear matrix inequality relaxations [18] (cf. the
approach of [15]).

As umin < 0 < umax, there exists a ball around the origin x = 0 contained in one of the regions, say
{x ∈ Rn : Hi1x ≤ Ki1}, such that Gi1 = 0. Therefore, around the origin both (22a) and (22b) become

13

a quadratic form x′(∑M
i=1 Ei)x of x, where matrices Ei can be easily derived from (20), (21) and (22).

Hence, local stability of (15)–(19) in closed loop with (1) can be simply tested by checking the positive
semidefiniteness of the square n× n matrix ∑

M
i=1 Ei. Note that, depending on the degree of decen-

tralization, in order to satisfy the sufficient stability criterion one may need to set Q > 0 in order to
dominate the unmodeled dynamics arising from the terms ∆Si.

In the absence of input constraints, Assumptions 1, 2 can be removed to extend the previous DMPC
scheme to the case where (A,B) and (Ai,Bi) may not be Hurwitz, although stabilizable.

Theorem 2 ([1, 3]). Let the pairs (Ai,Bi) be stabilizable, ∀i = 1, . . . ,M. Let Problem (15) be replaced
by

Vi(x(t)) = min
{ui

k}∞
k=0

∞

∑
k=0

(xi
k)
′W ′i QWixi

k +(ui
k)
′Z′iRZiui

k = (24a)

= min
ui

0

(xi
1)
′Pixi

1 + xi(t)′W ′i QWixi(t)+(ui
0)
′Z′iRZiui

0 (24b)

s.t. xi
1 = Aixi(t)+Biui

0 (24c)

xi
0 = W ′i x(t) = xi(t) (24d)

ui
k = KLQix

i
k, ∀k ≥ 1 (24e)

where Pi = P′i ≥ 0 is the solution of the Riccati equation

W ′i QWi +K′LQi
Z′iRZiKLQi +(Ai +BiKLQi)

′Pi(Ai +BiKLQi) = Pi (25)

and KLQi =−(Z′iRZi +B′iPiBi)−1B′iPiAi is the corresponding local LQR feedback.

Let ∆Y i(x(t)) and let ∆Si(x(t)) be defined as in (21), in which Pi is defined as in (25).

If condition (22a) is satisfied, or condition (22b) is satisfied for some scalar α > 0, then the decen-
tralized MPC scheme defined in (24), (19) in closed-loop with (1) is globally asymptotically stable.

1.4.4 Decentralized MPC over Wireless Networks

So far we assumed that the communication model among neighboring MPC controllers is faultless,
so that each MPC agent successfully receives the information about the states of its corresponding
submodel. However, one of the main issues in networked control systems is the unreliability of
communication channels, which may result in data packet dropout.

In line with the main leitmotif of the WIDE project, a sufficient condition for ensuring convergence
of the DMPC closed-loop in the case packets containing measurements are lost for an arbitrary but
upper-bounded number N of consecutive time steps was proved in [1,5], and is reported in Deliverable
D4.2.

1.5 Conclusions

This section of the deliverable has surveyed the state of the art in decentralized model predictive
control (DMPC), and has proposed a novel approach developed by UNISI/UNITN within the WIDE
project. The problem addressed is the one of controlling a distributed, possibly large-scale, process
through the cooperation of multiple decentralized model predictive controllers. Each controller is
based on a submodel of the overall process, and different submodels may share common states
and inputs, to possibly decrease modeling errors in case of dynamical coupling, and to increase the
level of cooperativeness of the controllers. The DMPC approach is suitable for control of large-scale

14

systems subject to constraints: the possible loss of global optimal performance is compensated by
the gain in controller scalability, reconfigurability, and maintenance.

Although a few contributions have been given in the last few years, the theory of DMPC is not yet
mature and homogenous. In this deliverable we have tried to highlight similarities and differences
among the various approaches that have been proposed, to place the contributions of the WIDE
consortium in the right perspective.

The algorithms associated with the approach proposed in this deliverable have been included in the
MATLAB/Simulink WIDE Toolbox.

15

2 Distributed model predictive control

2.1 Introduction

Distributed MPC is characteristic by communication between individual controllers during computa-
tion of control action in each sampling period. This type of control is communication intensive; how-
ever, it does not sacrifice control performance as decentralized control and can achieve practically
the same optimality results as centralized MPC.

Distributed MPC will be demonstrated in the first part of this section on an example of controlling
two interconnected tanks. Then this example will be extended to multiple tanks and finally it will be
applied to the model of Barcelona water distribution network.

The distributed MPC is based on a classical dual decomposition of constrained optimization problem
[11]. The dual problem is solved by Nesterov accelerated gradient method [28,29] for control without
coordinator and by limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method [8,22].

1

2 5

3 4 6

7

(e) Coordinated Group DMPC

(c) Group DMPC(b) DMPC

1

2 5

3 4 6

7

C12 C345 C67

C12 C345 C67

1

2 5

3 4 6

7

C1 C3

C2

C4

C5

C6

C7

COORDINATOR

1

2 5

3 4 6

7

C1 C3

C2

C4

C5

C6

C7

COORDINATOR
(d) Coordinated DMPC

1

2 5

3 4 6

7
(a) Water network for the demonstration of different distributed control strategies

Figure 2: Demonstration of the different types of distributed control on a simple water network.

Four different types of distribution schemes are considered. This will be illustrated on a simple water
network (Figure 2a). The first strategy denoted simply as ”Distributed control” assumes that each
tank has its own controller, which communicates only with neighboring tank controllers (Figure 2b).
Neighboring is meant in the sense of having interconnection by valve or pump. The second strategy
denoted as ”Distributed group control” is similar to the first one, but the tanks are aggregated to
groups. Each group has its own controller, which communicates with another group controller only if

16

there is any interconnection between groups (Figure 2c). The third strategy denoted as ”Coordinated
distributed control” assumes a controller on every tank. There is no direct communication between
these controllers. They communicate only with central coordinator (Figure 2d). The fourth strategy
denoted as ”Coordinated distributed group control” mixes tanks aggregation and groups controllers
communication only with coordinator (Figure 2e).

The advantages and disadvantages of different control strategies are summarized in Table 2.

number of iterations modularity computation time ()
DMPC +++ +++ +
Group DMPC + + ++
Coordinated DMPC + ++ - -
Coordinated Group DMPC - - + -

Table 2: Comparison of different DMPC strategies

2.2 Two-tanks distributed control

This section demonstrates the concept of distributed control on a simple example of two intercon-
nected tanks (Figure 3). The objective is to fulfill water demands (d1,d2) while minimizing costs of
fresh water pumping (u1,u2) and pumping between tanks (f). The variables di, ui and f are vectors of
trajectories on prediction horizon.

x2x1

d1 d2

u1 u2
f

Figure 3: Two tanks example.

The objective can be written as
min

u1,u2,f
J (u1,u2, f) , (26)

where J (u1,u2, f) is a global convex cost function. This cost can be separated for individual tanks as

min
u1,u2,f

J (u1, f)+ J (u2, f) . (27)

If tanks would not be interconnected by flow f then this minimization problem would be easily sep-
arable to two convex minimization problems. Flow f complicates this separation and it is therefore
called complicating variable. Dual decomposition deals with complicating variable by duplicating it
into both cost functions and imposing additional equivalence constraint

min
u1,u2,f1,f2

J1 (u1, f1)+ J2 (u2, f2) s.t. f1 = f2, (28)

and switching to dual problem by introducing Lagrangian with Lagrange multiplier λ

L(u1, f1,u2, f2,λ) = J1 (u1, f1)+ J2 (u2, f2)+λ
T (f1− f2) . (29)

Computational time without time required for communication.

17

The dual function is
g(λ) = min

u1,u2,f1,f2
L(u1, f1,u2, f2,λ), (30)

which is for given λ separable to
g(λ) = g1(λ)+g2(λ), (31)

where

g1(λ) = min
u1,f1

J1 (u1, f1)+λ
T f1,

g2(λ) = min
u2,f2

J2 (u2, f2)−λ
T f2.

Solving dual problem (maximization of g(λ)) can be done by sub-gradient methods. For example

λk+1 = λk +αk

(
∂g1

∂λ
+

∂g2

∂λ

)
= λk +αk (f∗1(λk)− f∗2(λk)) , (32)

which uses the favorable fact that separated dual functions gradients are equal to optimal values of
complicating variables for given Lagrange multiplier

∂g1

∂λ
= f∗1(λ),

∂g2

∂λ
= f∗2(λ). (33)

Coordinator

Sub-problem 1 Sub-problem 2

λ *1
1 ()g f λ

λ
∂ =
∂ λ *2

2 ()g f λ
λ

∂ =
∂

Figure 4: Dual price consensus coordination.

The distributed control scheme is depicted in Figure4. For two tanks it consists of two optimizers and
a coordinator. The algorithm outline is following:

1. coordinator chooses initial value λ1

2. λk is distributed to optimizers

3. optimizers compute their optimization problem and return gradient of their dual function gi(λ)
with respect to λ , which is equal to optimal flow f∗i (λ)

4. coordinator updates dual prices λk+1 = λk +αk (f∗1(λk)− f∗2(λk))

5. stop if ‖f∗1(λk)− f∗2(λk)‖> ε, where ε is error threshold, otherwise continue to step 2

Coordinator can be physically combined with one optimizer. Initial value of λ is selected from the last
value in the previous sampling period – warm start.

Two-tanks distributed control - example

Requirements for optimal tanks control (fresh water prices, pumping between tanks price, tank min-
imum water level soft limit price, MV changes penalty,...) are formulated as MPC with 10 steps
prediction horizon. Consensus iterations on the flow between tanks in the first sampling period can

18

be seen in Figure 5 (cold start). Figure 5a shows convergence of dual prices to stationary values (one
price for each step on prediction horizon). Figure 5b shows convergence toward consensus between
flows demanded by individual tanks. Second and later sampling periods can start dual prices from
the result of previous sampling period and achieve faster convergence.

The comparison between results of centralized and distributed MPC are in Figure 6. The results are
practically the same.

0 20 40 60 80 100 120 140 160 180 200
-140

-120

-100

-80

-60

-40

-20

0

20

40

60
Dual Prices

0 20 40 60 80 100 120 140 160 180 200
-100

-80

-60

-40

-20

0

20

40

60

80
Complicating variable concensus

Tank 1
Tank 2

(b) Complicating variable consensus(a) Dual prices / Lagrange multipliers convergence

Figure 5: Consensus iterations in the first sampling period (cold start). Figure (a) shows convergence of dual prices
and figure (b) shows convergence toward consensus between flows demanded by individual tanks on prediction
horizon (10 steps).

0 0.5 1 1.5 2 2.5 3-10
0
10
20
30
40
50
60
70
80

Tank 1 Inflow u1

Flo
w
[m
3/h

rs]

decentralized
centralized
demand

0 0.5 1 1.5 2 2.5 3-10
0
10
20
30
40
50
60
70
80

Tank 2 Inflow u2

0 0.5 1 1.5 2 2.5 3-10
0
10
20
30
40
50
60
70
80

Flow Between Tanks

0 0.5 1 1.5 2 2.5 30
20
40
60
80
100
120
140
160

Tank 1 Level x1

Time [days]

Wa
ter

 Le
ve
l [m

3]

decentralized
centralized
soft min

0 0.5 1 1.5 2 2.5 30
20
40
60
80
100
120
140
160

Tank 2 Level x2

Time [days]

Figure 6: Comparison of trajectories for centralized and distributed MPC. The first two figures show inflow of fresh
water to both tanks. The third figure show flow between tanks and the last two figures show water levels in both tanks.

Extending two tanks to arbitrary water network

Two tanks example is very simple; however, it forms the basic principle for distributed control of large
water network. This section shows the changes that are needed to extend two tanks example to
arbitrary water network.

It is straightforward to extend the example from the previous section to large network where every

19

Figure 7: Complex nodes and their interconnections in Barcelona WN.

pump or valve interconnects only two tanks. This type of interconnection is most common; however,
large water networks have several nodes, which interconnect together multiple tanks (Figure 7). The
flows into these nodes have to preserve mass flow consistency. Assuming that there is no direct in-
terconnection between any two nodes (Figure 8a) it is a simple extension of two tanks by consistency
constraint

N

∑
i=1

fi = 0 (34)

which leads to sub-problems

g1(λ) = min
u1,f1

J1 (u1, f1)+λ
T f1,

...
gN(λ) = min

uN ,fN
JN (uN , fN)+λ

T fN ,

and coordination update

λk+1 = λk +αk

N

∑
i=1

f∗i (λk). (35)

The complication is when two nodes are connected by valve or pump with flow limitation and cost
function for flow and flow changes (Figure 8b). These limits and costs cannot be incorporated into
consistency constraints of interconnected nodes (34). Similar problem is with nodes having their own
water source and water demand. There are two solutions:

1. Complex nodes can be modeled as tanks with zero maximum and minimum water level limits.

2. Nodes interconnecting pumps / valves are modeled as stand-alone subsystem withs own cost
function, limits and two external flows.

Another consideration for complex water networks is that water demands can be infeasible. The
demands can be beyond resources capacities especially in the case of failures. This infeasibility
would cause failure of distributed MPC convergence. The solution is to replace tanks low limit hard
constraints by soft constraints. The virtual negative water level in case of infeasibility would be an
indicator of missing water to cover user demands.

Another consideration is zero price of flow through valves. This can bring solution non-uniqueness
as two tanks can be interconnected by multiple paths with zero prices. This solution non-uniquness
can prevent distributed MPC to converge. Therefore flow through valve must have some minimum

20

f1

f2

fN

f1

f2

fN

water source

water demand

pump / valve

(b) Complex Node(a) Simple Node
Figure 8: Nodes interconnecting tanks only (a). Nodes can be also interconnected with another nodes by pump/valve
with limits and cost function. Node can also have its own water source and water demand (b).

1

2

3

4

5

6

7

8

9
10

11

12

13

14

1516
17

18

19

20

21

22

23

24

25

26

27

28

29
30 31

32

33

34
35

36

37

38

39

40

41 42
43

44

45

46

47

48
49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Barcelona Water Network Grouping

Group1
Group2
Group3
Group4
Group5
Group6
Group7
Group8
Group9
Group10

3

2 3

3

2
1 2

1

1
2

1

1

1
1

G1

G2

G3 G4

G5

G6

G7 G8

G9

G10

Aggregated Groups Interconnection

1 2 3 4 5 6 7 8 9 100
2
4
6
8
10
12
14

Group number

Nu
m
be
r o

f t
an
ks

Group sizes

(a) Tanks grouping for Barcelona water network (c) Aggregated groups interconnections

(b) Group sizes

Figure 9: Aggregation of tanks to groups for control.

price. This will force the optimizer to choose the shortest possible path. The problem of non-unique
solution can be further emphasizes by linear pricing

min
f1, f2

f 2
1 + f 2

2 s.t. f1 > 0, f2 > 0, f1 + f2 = 1, (36)

vs.

min
f1, f2

f1 + f2 s.t. f1 > 0, f2 > 0, f1 + f2 = 1, (37)

where quadratic pricing (36) has unique solution though linear pricing (37) does not.

2.3 Large Scale Model Partitioning

DMPC control strategies with grouping (Figure 2c and 2e) require methods for aggregation of sub-
systems into groups. The quality measure of grouping can be selected in multiple different ways.
The best selection for DMPC with consensus iterations is to choose such partitioning, which gives
minimum number of iterations or such partitioning, which gives minimum computing time (as a sum
of worst computation times in all iterations). The partitioning methods with such quality measures are
so far unsolved problems and they are currently replaced by heuristics based on graph algorithms.

21

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000
Concensus error for each group connecting flow

Iterations

Er
ror

 [m
3/h

rs]

Figure 10: Example of consensus error in iterations during one sampling period for coordinated DMPC. There are 38
flows

The algorithm we use is based on graph condensation and epsilon decomposition [38]. The vertexes
of the graph represent tanks and complex nodes and edges represent valves/pumps. The weigh
of each edge is given by total flow through this valve/pump (from archive data). The algorithm is
following:

1. Leafs condensation - graph leaf is vertex, which has only one edge. In the first step all leafs
are merged to their neighboring vertexes until graph has no leaf.

2. Epsilon decomposition - condensed graph is decomposed to a selected number of groups by
epsilon-decomposition [38].

The result of the algorithm for Barcelona water network and target of 10 groups is in Figure 9a. Fig-
ure 9b shows the sizes of individual groups and Figure 9c shows graph of interconnections between
aggregated tank groups together with the number of interconnections between groups (red number
on each edge).

2.4 Consensus Iterations

In each sampling period the controllers exchange data to reach consensus, where duplicate instances
of complicating variables are equal. Although communication schemes may differer, the underlying
problem (in dual decomposition) is in general concave maximization problem without constraints

max
λ

g(λ) (38)

where gradient ∇g(λ) or sub-gradient ∂g(λ) is known in each iteration. If DMPC strategy has co-
ordinator than complete (sub-)gradient is collected by the coordinator and it can be used for Quasi-
Newton methods. In DMPC strategies without coordinator each element of λ has its own coordinator,
which knowns only appropriate element of (sub-)gradient – therefore only (sub-)gradient based meth-
ods can be used.

The algorithms used in our solutions are:

DMPC without coordinator uses Nesterov accelerated gradient method [28,29].

22

0 1 2 30

100

200

300

400

Time [days]

Flo
w
[m

3/h
rs]

Network 10
tank 70 -> tank 10

0 1 2 30

20

40
60

80
100

Time [days]

Network 11
tank 12 -> tank 11

0 1 2 30

50

100

150

Time [days]

Network 12
tank 13 -> tank 12

0 1 2 3-50

0

50

100

150

Time [days]

Network 13
tank 56 -> tank 13

0 1 2 30

10

20

30

40

Time [days]

Network 14
tank 15 -> tank 14

0 1 2 30

10

20

30

40

Time [days]

Network 15
tank 18 -> tank 15

0 1 2 30

10

20

30

40

Time [days]

Network 16
tank 20 -> tank 16

0 1 2 30

10

20

30

40

Time [days]

Network 17
tank 20 -> tank 17

0 1 2 3-20

0

20

40

60

Time [days]

Network 18
tank 21 -> tank 18

0 1 2 30

10

20

30

40

Time [days]

Network 19
tank 21 -> tank 19

0 1 2 30

20

40

60

80

Time [days]

Network 20
tank 21 -> tank 20

0 1 2 30

20

40
60

80
100

Time [days]

Network 21
tank 56 -> tank 21

0 1 2 3-50

0

50

100

150

Time [days]

Network 22
tank 65 -> tank 22

0 1 2 30

50

100

150

Time [days]

Network 23
tank 22 -> tank 23

0 1 2 30

50

100

150

Time [days]

Network 24
tank 23 -> tank 24

0 1 2 3-20

0

20
40

60
80

Time [days]

Network 25
tank 27 -> tank 25

0 1 2 30

5

10

15

20

Time [days]

Network 26
tank 28 -> tank 26

0 1 2 3-100

0

100

200

300

Time [days]

Network 27
tank 64 -> tank 27

0 1 2 30

20

40
60

80
100

Time [days]

Network 28
tank 64 -> tank 27

0 1 2 3-10

0

10

20

30

Time [days]

Network 29
tank 30 -> tank 28

0 1 2 30

50

100
150

200
250

Time [days]

Network 30
tank 30 -> tank 29

0 1 2 30

500

1000

1500

2000

Time [days]

Network 31
tank 38 -> tank 30

0 1 2 3-200

0

200
400

600
800

Time [days]

Network 32
tank 31 -> tank 66

0 1 2 30

200

400
600

800
1000

Time [days]

Network 33
tank 38 -> tank 31

0 1 2 3-500

0

500

1000

1500

Time [days]

Network 34
tank 67 -> tank 31

0 1 2 3-10

0

10

20

30

Time [days]

Network 35
tank 32 -> tank 33

0 1 2 30

200

400

600

800

Time [days]

Network 36
tank 58 -> tank 32

0 1 2 3-1000

0

1000

2000

3000

Time [days]

Network 37
tank 38 -> tank 32

0 1 2 30

1000

2000

3000

Time [days]

Network 38
tank 32 -> tank 67

0 1 2 3-50

0

50

100

150

Time [days]

Network 39
tank 35 -> tank 34

0 1 2 30

200
400

600
800
1000

Time [days]

Network 40
tank 67 -> tank 35

0 1 2 30

100

200

300

400

Time [days]

Network 41
tank 37 -> tank 36

Decentralized
Centralized

Figure 11: Figure shows 40 flows from total ∼110 flows. Red lines are nominal trajectories from centralized MPC
(10 hrs predictions), Blue lines are trajectories computed by distributed MPC - practically identical results.

DMPC with coordinator uses limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method
[8,22], which is quasi–Newton method, which does not store or directly form Hessian estimate,
but works with last m gradients only.

Example of consensus error in iterations during one sampling period is in Figure 10.

2.5 DMPC Simulation Results

For DMPC simulations we had a scheme of Barcelona water network together with limits on tank
volumes and limits on pump/valve flows. We also had three days data with all demands and all flows
in the network with 1 hour sampling period.

The goal of the simulation was to compare performance of centralized and decentralized MPC. For the
purpose of this comparison we ignored demands prediction problem as demand prediction algorithm
makes no difference in this comparison. We used historic demand data as measurable disturbances.

Optimality conditions

Loss function considers the following optimality measures:

• water pumping prices (time variable electricity price)

• water sources prices

• penalties for MV changes (pumps, valves and water sources)

• penalties for long water storing (chlorine concentration decrease)

• penalties for water levels below safety limits

23

Nominal solution

Nominal trajectories were obtained by centralized MPC. To make centralized MPC computable, the
prediction horizon had to be reduced to 10 hours, which was the maximum length allowing com-
putation in Matlab. The parameters of quadratic programming problem for centralized MPC were
following:

Centralized MPC
no. of variables 1910
no. of inequalities 3820
avg. optimization time per iteration [s] 120

Results comparison

Figure 11 compares flow trajectories on valves and pumps for solutions from centralized and dis-
tributed MPC. It shows 40 flows from total ∼110 flows. It can be seen that the results are practically
identical. All four distributed control strategies (Figure 2) give very similar results. The difference is
in the sizes of sub-problems and in the number of iterations. The summary of these differences is in
the following table:

iterations seq. comp. [s] parallel comp. [s]
Coordinated Group DMPC ∼100 35 8
Group DMPC ∼300 85 20
Coordinated DMPC ∼300 20 ∼2
DMPC ∼1000 60 5

Sequential computation represents time needed to iterate to global solution while computing dis-
tributed algorithm on a single computer only. Parallel computation represents time required by totally
parallel computation - longest sub-problem optimization time (in one sampling period). The stopping
condition for iterations is consensus error bellow 1 m3/hrs. This error is then reduced by projection
of dual solution to feasible set. The comparison of computation times for different DMPC strategies
is in Figure 12.

0 10 20 30 40 50 60 700

20

40

60

80

100

120

140
Sequential Computations

Sampling period [-]

Tim
e [

s]

0 10 20 30 40 50 60 700

20

40

60

80

100

120

140
Parallel Computations

Sampling period [-]

Tim
e [

s]

MPC
DMPC +groups +central coordinator
DMPC +groups
DMPC +central coordinator
DMPC

Figure 12: Comparison of computation times for different DMPC strategies. Times do not include time required for
communication.

24

2.6 Distributed Control Modularity

Distributed control based on dual decomposition and especially the strategies without coordination is
perfectly modular solution. It is very simple to reflect changes in network configuration without any
global adjustments while preserving centralized MPC optimality. The changes can be:

• adding or removing new tank / group of tanks / pump from the system

• interconnecting independent networks

• setting any pump / valve to constant flow (MAN mode)

An example is in Figure 13. It shows two networks operating separately for 2 days, then these net-
works are connected together and after 4 days the connecting pump is switched to manual flow
−10 m3/hrs. The figures on the right side of Figure 13 shows smooth (price optimal) transition be-
tween optimal regimes of disconnected and interconnected networks and finally optimal control for
valve in manual.

Nice feature is that connecting that two networks means only that tank 5 starts to exchange informa-
tion with node 3 coordinator (tank controllers and node coordinators can be physically aggregated).
Reflecting the same change in centralized MPC would mean to completely change the prediction
model, update constraints, etc.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-40

-30

-20

-10

0

10

Time [days]

Flo
w
[m

3 /h
rs]

Tank 5 → Network 3

Connected
Unconnected
Switched

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

0

10

Time [days]

Flo
w
[m

3 /h
rs]

Tank 2 → Network 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
50

100

150

Time [days]

Flo
w
[m

3 /h
rs]

Tank 6 → Network 4

1 2 3

1

2

3

4

5

6

7

8

1
2

3

4

5

1

2

3

4

5

6

7

8

1
2

3

4

5

1

2

3

4

5

6

7

8

1
2

3

4

5

Reconfiguration

t ≥ 48

Selected Flows

t < 48

Figure 13: Example of DMPC modularity. Two water networks operate separately for 2 days, then they are connected
together and after 4 days the pump from tank 5 to node 3 is switched to manual flow −10 m3/hrs (red lines). Figures
on the right show flows in three selected pipes. Green lines are optimum flows for disconnected networks and blue
lines are optimum flows for connected networks (on the whole interval).

2.7 Conclusion

Distributed MPC or more generally dual decomposition of optimization problems can be used to
reduce size and computational requirements of large scale convex non-differentiable optimization

25

problems. The distribution can be especially efficient for systems with obvious structure, such as
systems interconnected by mass flows / energy flows / etc. Well designed distributed optimization
can then have superior performance to centralized computation even on a single controller.

Although dual decompositions are theoretically straightforward, it is not trivial to transform them to
practically useful algorithm with a reasonable number of consensus iterations and guaranteed solu-
tion robustness. The presented solution together with the state-of-the-art numerical methods delivers
such an algorithm, which is moreover perfectly modular. The drawback is obviously the requirement
for iterative information exchanges. This designates the algorithm for applications with sampling times
in the order of tens of minutes.

Our contribution to distributed model predictive control is a general full scale application of dual
decomposition based DMPC to water distribution networks, novel algorithm for tanks grouping for
control and application of Nesterov Accelerated gradient method to consensus iterations.

26

3. Distributed Kalman filter

3.1 Introduction
3.1.1 Problem description and motivation

This section describes the effort in HPL in distributed state estimation. This is related to
inferring process states that are not accessible for direct measurements, based on process
output observation and process model. The value of process states is necessary for advanced
process control algorithms, real-time optimization, process monitoring and fault detection
and isolation. Our activities in distributed state estimation complement our efforts in
decentralized and coordinated MPC control in Task 3.2 as well as to support real-time
optimization in T3.3.

WIDE aims at development of a scaleable, distributed state estimator for large
interconnected systems, consisting of a network of local estimators whose topology is
consistent with those of the process. Local estimators are generalized Kalman filters
associated with particular subsystems of the process. Further, the inter-filter communication
is limited to data exchanges between the network neighbours. The local estimators are
assumed to know model topology as well as local models of other subsystem within a certain
network neighbourhood. The distributed estimator can respond to the process
reconfiguration by updating its internal representation of the network neighbourhood. The
uncertainties are mapped to covariances of coupling variables that are exchanged between
the neighbours.

3.1.2 State of the art

Several strategies for distributed state estimation have been proposed. One class of
problems involves the case when several nodes of local filters having their own observations
of the process produce local estimates of the whole process state. The problem is to fuse the
information from these estimators to get a global estimate – either in a ‘central information
fusion’ node, or by exchanging the information on the estimated state with neighbouring
states in the filter network topology. The former approach with the central fusion node uses
the information filter implementation of the local estimators–see e.g. [52], [50]. This allows
obtaining results equivalent to the central KF; it requires, however, an intensive information
exchange. The latter strategy is decentralized: individual agents exchange estimates with
their neighbours and modify their own estimates to be close to the estimates received from
their peers. It has been shown that, under certain assumptions, the local state estimates
converge to each other, i.e., there is a consensus on the state estimate over the network,
[41]. Also in these cases, estimates of the global state are present in each local filter. This
may require a large computational load in the case when the state dimension is large. A
version of the distributed, consensus-based filtering for continuous-time systems, where the
local nodes estimate different but overlapping subspaces of the global state appeared in the
recent paper [48]. An alternative approach to distributed estimation where local agents
estimate overlapping subspaces of global state was proposed in [46], [47]. Their algorithm
uses a special form of consensus strategy formulation for observation vectors (using bi-
partite fusion graphs) and distributed inverse computation of an L-banded approximation of
the global state covariance matrix. In [45], several distributed estimation strategies were
compared. It was found that the bi-partite graph-based KF has the best performance but is
sensitive to (random) communication loss. Another suboptimal distributed estimator
intended for applications in complex chemical processes was proposed in [49], proposing to

approximate the optimal filter by a suboptimal multi-rate one where the internode
communication proceeds at a slower rate than the local filter prediction.

3.1.3 Solution at a glance

In a paper [53], currently under review, we proposed a novel distributed KF for
interconnected discrete-time dynamical systems. A local KF (agent) is assigned to each
subsystem, and communication proceeds (bi-directionally) between agents whose
subsystems are connected by an interconnection. Each local filter estimates the mean and
the covariance of the local state of interconnection inputs. These inputs represent the
overlaps with state spaces of neighbouring subsystems. Local filters can have an access to
measurements taken by subsystems within a certain network distance. Further, agents use
the estimates of coupling variables from their neighbours as ‘measurements’. An iterative
algorithm is proposed as a series of stochastic optimizations within one time step of the
filter, where the local estimates are repeatedly refined using the updated coupling variables
produced by network neighbours. The overall process is converging fast. This approach
resembles, the consensus algorithms – the discrepancies in the shared variable estimates are
used for adjusting local estimates. The adjustment is done here in the KF setting, not, e.g., by
an ad-hoc replacement of the local estimate of the shared variable by a (weighted) average
of local estimates. Thus, the agents are optimal KFs, while the overall distributed estimator is
not, in general. Under certain conditions, the estimate equivalent to the central KF is
recovered. On the other hand, this algorithm needs some data to be passed from one agent
to another across the network; also the local agents need to have the knowledge of other
subsystems’ models as well as the overall network topology. This increases the
communication overhead and restricts the class of problems, for which this solution is
suitable.

This problem is addressed by a newly proposed sub-optimal distributed filter (paper
prepared for publication [54]) so that the agents require the data as well as the model
knowledge only within a limited network radius. The full global state covariance matrix is
approximated by an upper-bounding multi-band matrix. This is done by introducing fictitious
noises in the algorithm that vary from one ‘consensus’ iteration to another. These noises are
assumed to be of zero mean; their covariance matrices are designed to de-correlate local
measurements and couplings with the corresponding variables in the specific network
distance.

3.2 Problem formulation
3.2.1 Process and noise models

This paper addresses state estimation of interconnected systems as in Figure . The overall
model consists of a network of N interconnected subsystems whose state-space
representation is given by (deterministic external inputs being omitted):

(1) () () ()

() () ()
() (), .

i

i i i ij ij i
j N

i yi i i

is ois i i

x k A x k B i k k

y k C x k k
o k C x k s M

ξ

η
∈

+ = + +

= +
= ∈

∑
 (39)

There, in
ix R∈ and im

iy R∈ are local process state and measurement output, respectively. Sets

iN and iM are sets of subsystems that, respectively, provide an interconnection input iji

to/receive an interconnection output iso from subsystem i . Notice, that there is strictly no
feed-through from interconnection inputs to interconnection outputs; this assumption

needs to be enforced for the problem to be tractable. On the other hand, the non-existence
of feed-throughs in the measurement equation is merely for convenience and can be
removed. The state is disturbed by process noise iξ ; measurements are corrupted by noise

iη . Both noises are zero-mean, Gaussian and white, with positively definite covariance
matrices oiQ and iR , respectively. Moreover, they are assumed to be independent. The
overall process model is thus given by the collection of local models (39) as well as by
interconnection equations

 () () 0,1, ; 1,..., ; .ij ji ii k o k k i N j N= ∀ = ∀ = ∀ ∈K (40)

1u

3u

4u1y
4y

3y

1v

13i
13o

31o

34o

31i

34i

43i
1S

3S

4S

23o2S
2u 2y

32i

43o

1u

3u

4u1y
4y

3y

1v

13i
13o

31o

34o

31i

34i

43i
1S

3S

4S

23o2S
2u 2y

32i

43o

Figure 14 Interconnected system.

3.2.2 Distributed estimator structure

Distributed estimator consists of a network of Kalman filters—one KF agent per subsystem.
We shall assume here that the agents rely on local process measurements. Coupling inputs
are modelled as stochastic variables whose mean and covariance are supplied by
neighbouring agents. In particular,

 () (| 1) () 0,1, ; ; .ij ji ij ii k o k k k k i j Nϑ= − + ∀ = ∀ ∀ ∈K (41)

There, (| 1)jio k k − denotes the mean of ()jio k conditioned by data up to time 1k − . Further,

ijϑ is Gaussian noise with zero mean and conditional covariance { }E () () 1T T
oji j j ojiC x k x k k C− that

is computed by j th KF; symbol { }E denotes here the expected value. Noise ijϑ is treated as

process noise by i th KF. Note that it is correlated with local state ix ; therefore, it is
estimated in i th KF along with ix . Variables ijϑ , for all ij N∈ , thus augment the local state.

Local KF then estimates both interconnection outputs ipo (as functions of their state) and

inputs iji (as sums of their means supplied by jth KF and noise ijϑ as an element of the local

augmented state). Hence, interconnection variables are estimated simultaneously by two
neighbouring filters. The idea behind the distributed filter is that coupling variables are
treated by local KFs as measured process variables. Instead of the real process data, the
estimates provided by neighbouring filters are used. After one filtering step, local KFs modify
their states using data from their neighbours. The local estimates of interconnection
variables change; then, the new estimates are exchanged and the update is repeated, until a
network-wide equilibrium is reached. The KF filtering step thus proceeds in an iterative way;
let the iteration within one time step k be indexed by variable s .

iF

1
(, | , 1)j io k s k s −

(, | , 1)
mj io k s k s −

()iy k

1
(, | , 1)iji k s k s −

(, | , 1)
miji k s k s −

1
(, | , 1)l ii k s k s − (, | , 1)

pl ii k s k s −

MM

L

(, | , 1)
pilo k s k s −

1
(, | , 1)ilo k s k s −

L

()ix k

iF

1
(, | , 1)j io k s k s −

(, | , 1)
mj io k s k s −

()iy k

1
(, | , 1)iji k s k s −

(, | , 1)
miji k s k s −

1
(, | , 1)l ii k s k s − (, | , 1)

pl ii k s k s −

MM

L

(, | , 1)
pilo k s k s −

1
(, | , 1)ilo k s k s −

L

()ix k

1u

3u

4u
1y

4y

3y

1v

13î

13ô

31ô

34ô

43ô
31î

34i
43î1F

3F

4F

23ô
2F

2u 2y

32î

1u

3u

4u
1y

4y

3y

1v

13î

13ô

31ô

34ô

43ô
31î

34i
43î1F

3F

4F

23ô
2F

2u 2y

32î

Figure 15 Local Kalman filter (left) and a network of filters (right)

The interaction of the iterative filtering algorithm is shown in Figure 15. It follows from this
scheme, local KF must take into account the correlation between coupling variables and the
local state in order to update the local state covariance correctly. In order to keep track on
this correlation, local KF must record and update covariance matrices of the local state with
all other states in the network, conditioned by data up to time k and iteration s .

After the termination of s-iterations, a standard prediction step occurs by incrementing
time-step k. To predict the local state mean and covariance, process model (39) is used to
predict covariance matrices with other states, models of other subsystems in the network
are needed.

The algorithm outlined above shall be described in the following section in more detail. It
shall be noted that although the local agents are optimal Kalman filters, the overall
distributed filter is generally not -- although in certain cases, the globally optimal KF can be
achieved in this distributed framework. The main drawback of this approach is a significant
communication overhead and the need for local filters to know the global model and the
network topology. The goal of this paper is to restrict the communications among agents as
well as the model knowledge to a pre-specified network radius.

3.3 Baseline algorithm of distributed estimation
3.3.1 An overview

A crude flowchart of a local filter is shown in Figure 16. The main difference relative to the
centralized Kalman filter is the repeated performance of the data step to update the local
state by newly received data. It needs to be repeated as some of the data are computed by
other agents and may differ from one s-iteration to another. This step is repeated until the
network-wide equilibrium is reached. The initialization performed upon start-up and/or
upon a structural change (network topology) involves collecting information about models of
other subsystems and network map (at this point we do not consider the restricted network
radius for sharing data and model knowledge). The necessary data structures depending on
the topology and other agent’s internal data are built here as well us pointers into the
neighbours data structures saying which portion of data are to be imported. Details about
this function are omitted here.

The outer filtering loop indexed by time-step k starts by re-initialization: exchanging
predicted interconnection outputs and their covariance to build the extended state. Then,
the execution passes to the inner loop, indexed by time index s in which data update is
performed. This involves multiple interactions with the neighbours; Kalman gains and state-
to-output covariance matrices are passed across the network from one neighbour to
another. An important point is that the algorithm processes data upon their receiving and
does not have to wait idling before it receives the next batch.

The prediction step is non-iterative; it is similar to the prediction step of standard KFs.

Start

Re-initialization

: 0k =

Initialization

: 0s =

Data step

: 1s s= +

Finished?

Prediction

: 1k k= +

no

yes

Start

Re-initialization

: 0k =: 0k =

Initialization

: 0s =: 0s =

Data step

: 1s s= +: 1s s= +

Finished?

Prediction

: 1k k= +: 1k k= +

no

yes

Figure 16 Local filter flowchart; highlighted block involve communication with neighbors.

3.3.2 Re-initialization

The filtering step of each KF starts from data predicted in the previous time-step. A local KF
computes predicted values of the local state mean (| 1)ix k k − , its covariance (| 1)iiP k k − and
cross-covariance matrices with other subsystem states (| 1)ijP k k − . Then, as was mentioned

above, the local state is augmented by the estimate of the coupling input as,

1 1, ,...

n

TT T T
i i ij ij n iX x j j Nϑ ϑ = ∈ L (42)

We shall use a projection operator to obtain the coupling input variation from the
augmented state as ij ij iE Xϑϑ = . Means of these variables are initialized to zero, (| 1) 0.ij k kϑ − =

However, it is assumed that predicted coupling inputs, i.e., (| 1) (| 1)ij oji ji k k C x k k− = − , are

obtained from all ‘upstream’ neighbours.

Cross-covariance matrices of augmented state variables are denoted as (| 1)ijM k k − . In

particular, we shall have, for all m , for 1,.., k ij j N∈ and for 1,.., n ml l N∈ , the following block
matrix (the argument (| 1)k k − being omitted)

1 1

1 1 1 1 1 1 1 1

1 1

n n

n n

k k k k k k n n

T T
im is os m is os m

T T
ol i l m ol i l s os m ol i l s os m

im

T T
ol i l m ol i l s os m ol i l s os m

P P C P C
C P C P C C P C

M

C P C P C C P C

 
 
 =
 
 
 

L

L

M M O M

L

 (43)

The first block of rows in this equation is available from local data; further blocks of rows are
obtained from network neighbours 1l to kl .

3.3.3 Data update in step s

The data step of the local filter proceeds iteratively for 1,2,.....s = by updating the conditional
mean (, | , 1)iX k s k s − and covariance (, | , 1)ijM k s k s − . The starting values for 0s = are

 (,0 | , 1) (| 1) and (,0 | , 1) (| 1) .i i ij ijX k k X k k M k k M k k j− = − − = − ∀ (44)

The data used for the local update in sth step (measurements plus estimates of coupling
inputs/outputs from adjacent agents) are given by

1 1

1

()
(, | , 1) (| 1)

(, | , 1) (| 1)(,) .
(, | , 1)

(, | , 1)

k k

m

i

l i l i

l i l ii

j i

j i

y k
o k s k s o k k

o k s k s o k kY k s
k s k s

k s k s

ϑ

ϑ

 
 − − −
 
 

− − − =
 − 
 
 − 

M

M

 (45)

The output error can be expressed as

() (, | , 1)

(, | , 1)
(, | , 1) (,) (, | , 1) .

(, | , 1)

i yi i

il

i i i

ji

y k C x k s k s

k s k s
Y k s k Y k s Y k s k s

k s k s

δ

δ

− − 
 
 − 

− = − − =  
 
 − 
  

M

% M
M

M

 (46)

There, variables (, | , 1)ij k s k sδ − are defined as

 ()(, | , 1) (, | , 1) (| 1) (, | , 1).ij oji j j ij ik s k s C X k s k s X k k E X k s k sϑδ − = − − − − − (47)

Notice that as follows from the above initialization rules, there holds (,0 | , 1) 0ij k kδ − = . Finally,

let us introduce the following notation for covariance matrices:

 ()()
()

(, | , 1) E () (, | , 1) (, | , 1) | , 1 ,

(, | , 1) E (, | , 1) (, | , 1) | , 1 .

T
ij i i j

T
ij i j

H k s k s X k X k s k s Y k s k s k s

W k s k s Y k s k s Y k s k s k s

− = − − − −

− = − − −

%

% %
 (48)

For notational considerations, we shall partition these matrices compatibly with (46) as

 (, | , 1) (, | , 1) (, | , 1) (, | , 1) ,
j j jij iy i iH k s k s H k s k s H k s k s H k s k sδ δ• •

 − = − − −  (49)

(, | , 1) (, | , 1) (, | , 1)

(, | , 1) (, | , 1) (, | , 1) (, | , 1)
(, | , 1) (, | , 1) (, | , 1)

i j i j i j

i j i j i j

i j i j i j

y y y y

ij y

y

W k s k s W k s k s W k s k s
W k s k s W k s k s W k s k s W k s k s

W k s k s W k s k s W k s k s

δ δ

δ δ δ δ δ

δ δ δ δ δ

• •

• • • • •

• • • • •

 − − −
 

− = − − − 
 − − − 

 (50)

For all interconnections:
Get from the neighbor

2

: 0r =

0r =

Get output error
(, | , 1)iY k s k s −%

Compute gain
(,)iK k s

Update st mean
(, 1 | ,)iX k s k s+

Update covariance

*

*

(, 1| ,),
(, 1| ,).

i

i

y

H k s k s
W k s k s

+
+

1r =

Update covariance
*

*

(, 1| ,)
(, 1| ,).

i

i

W k s k s
W k s k s

δ

δ

•

•

+
+

update covariance

: (,) 1j d i j r∀ = −

(, 1 | ,)
(, 1 | ,)
(, 1| ,)

j

j

ij

iy

iy

M k s k s
H k s k s
W k s k s

+
+
+

1

update covariance
()
:

max (,), (,)
jm

d i j d i m r
δ∀

=

(, 1 | ,)
(, 1 | ,)

jm

i jm

iH k s k s
W k s k s

δ

δ δ•

+
+

: (,) 1j d i j r∀ = +

(,), (, | , 1)j jK k s H k s k s• −

1

: 1r r= +

max 1r r≤ +

Start s-step

End s-step

2

yes

yes

yes

no

no

no

For all interconnections:
Get from the neighbor

2

: 0r =: 0r =

0r = 0r =

Get output error
(, | , 1)iY k s k s −%

Compute gain
(,)iK k s

Update st mean
(, 1 | ,)iX k s k s+

Update covariance

*

*

(, 1| ,),
(, 1| ,).

i

i

y

H k s k s
W k s k s

+
+

1r = 1r =

Update covariance
*

*

(, 1| ,)
(, 1| ,).

i

i

W k s k s
W k s k s

δ

δ

•

•

+
+

update covariance

: (,) 1j d i j r∀ = −

(, 1 | ,)
(, 1 | ,)
(, 1| ,)

j

j

ij

iy

iy

M k s k s
H k s k s
W k s k s

+
+
+

1

update covariance
()
:

max (,), (,)
jm

d i j d i m r
δ∀

=

(, 1 | ,)
(, 1 | ,)

jm

i jm

iH k s k s
W k s k s

δ

δ δ•

+
+

: (,) 1j d i j r∀ = +

(,), (, | , 1)j jK k s H k s k s• −

1

: 1r r= +: 1r r= +

max 1r r≤ +

Start s-step

End s-step

2

yes

yes

yes

no

no

no

Figure 17 Flow chart for one s-step. Highlighted blocks are those which import data from network neighbors.

One s-step is described in Figure 17. Here we shall expand some of the blocks, if needed.
Note, that the agents have to update cross-covariance matrices of local state iX with other

states jX for all other agents j ; for this, it needs the Kalman gain jK and also the state-to-

output covariance from previous iteration that need to be passed through the network.
Thus, the s-step is computed in a loop where the number of passes (also called r-iteration)
equals to the maximum network distance plus 2. Network distance between two agents, i
and j , denotes the minimum number of edges between these nodes in the (non-oriented)
interconnection graph. The first pass uses only local data for the covariance update; the data
for the next passes are downloaded from the neighbors at the end of the loop. At each pass
a different part of the local data is updated.

In the first pass (for 0)r = , the output error (, | , 1)iY k s k −% is computed as in (46). Then,

Kalman gain (,)iK k s is determined as a (minimum norm) solution of the possibly singular
equation

 (,) (, | , 1) (, | , 1).i ii iiK k s W k s k s H k s k s− = − (51)

Then, the local state is updated as

 (, 1| ,) (, | , 1) (,) (, | , 1).i i i iX k s k s X k s k s K k s Y k s k s+ = − + − (52)

Then, an intermediate result towards the updated matrices *iH and *iW is obtained as

0
* * *
0
* * *

(, 1| ,) (, | , 1) (,) (, | , 1)
(, 1| ,) (, | , 1) (,) (, | , 1)

i i i

i i i i

y y m i i

H k s k s H k s k s K k s W k s k s
W k s k s W k s k s C K k s W k s k s

+ = − − −
+ = − − −

 (53)

The first pass is concluded by downloading the newly computed Kalman gains (,)jK s k from

network neighbours i ij M N∈ ∪ . The old state-to output covariance matrix

(, | , 1)jH k s k s• − is downloaded from the same source (not necessarily at the same time) –

but only selected columns that may be used locally, or by other agents that may download
this in next r-iterations; the particular columns to be imported are pre-determined in the
initialization step.

The second pass starts the row operations over covariance sub-matrix *Wδ••
 as

0 0
* * *

*

0 0
* * *

*

(, 1| ,) (, 1| ,) (,) (, | , 1)
(,) (, | , 1),

(, 1| ,) (, 1| ,) (,) (, | , 1)
(,) (, | , 1),

ij ij

mi mi

oij i i

ji j j i

omi m m

im i m

W k s k s W k s k s C K k s W k s k s
E K k s W k s k s j M

W k s k s W k s k s C K k s W k s k s
E K k s W k s k s

δ δ

ϑ

δ δ

ϑ

+ = + + −
− − ∀ ∈

+ = + + −
− −

im N∀ ∈

 (54)

These row operations complement those in (53) for 0r = . The agent i imports, from an
upstream neighbour m, the quantity *(,) (, | , 1)omi m mC K k s W k s k s − as well as

*(,) (, | , 1)ji j jE K k s W k s k sϑ − from a downstream agent j. These data can be prepared for

export by the neighbours already in the previous pass (for 0r = ; not shown in the
flowchart).

Then, the second pass continues by steps common for all max 11, 2,...,r r += , (where max 1r + is the

maximum network distance from ith agent): a series of cross-covariance updates is done for
variables related to all j , (,) 1d i j r= − . First, the state covariance matrix is updated as

(, 1| ,) (, | , 1) (,) (, | , 1)
 (, | , 1) (,) (,) (, | , 1) (, | , 1) .

T
ij ij i ji

T T
ij j i ij j

M k s k s M k s k s K k s H k s k s
H k s k s K k s K k s W k s k s K k s k s

+ = − − − −
− + − −

 (55)

Then, cross-covariance related to output jy are computed as

0 0

0 0

(, 1| ,) (, 1| ,) (, 1| ,)
(,)(, 1| ,) (, 1| ,) (, 1| ,)

j j

j j

iy iy ij T T
j mj

iy iy ij

H k s k s H k s k s H k s k s
K k s CW k s k s W k s k s W k s k s

 + +    +
= −    + + +     

 (56)

Then, cross-covariances with consensus variables pqδ , where ()max (,), (,)d i p d i q r= are

obtained as

0 0

0 0

0

0

(, 1| ,) (, 1| ,) (, 1| ,)
(,)(, 1| ,) (, 1| ,) (, 1| ,)

(, 1| ,)

(, 1| ,)

pq pq

pq pq

i i ip T T
p opq

i i ip

iq

iq

H k s k s H k s k s H k s k s
K k s CW k s k s W k s k s W k s k s

H k s k s
W k s k s

δ δ

δ δ

 + +    +
= +    + + +     

 +
−  + 

(,) .T T
q qpK k s Eϑ

 (57)

At the end any r-iteration, Kalman gain (,)jK s k and relevant columns of (, | , 1)jH k s k s• −

are imported from specific neighbours, for all j , (,) 1d i j r= + .

Interestingly, updating covariance matrices *(, 1| ,)iH k s k s+ and *(, 1| ,)iW k s k s+ does not

use *(, | , 1)iM k s k s − for 0s > ; it is thus possible to do update only H and W matrices at each

s-iteration and after terminating the s-loop do a ‘cumulative update’ of .the state covariance
matrix.

It can be proven, see [53], that the s-loop converges, and that the network-wide equilibrium
is (,) 0jK k ∞ = for all 1,...,j N= . This can be used as a termination test in the s-loop.

3.3.4 Prediction step

The state mean prediction proceeds, after termination of the s-loop for es s= , as follows:

 ()(1,) (, 1| ,) (| 1) (, 1| ,) ,
i

i i i e e ip pi ij e e
p N

x k k A X k s k s B o k k k s k sδ
∈

+ = + + − + +∑% (58)

where

1 * ,

m
i i ip iip

A A B B p N = ∈
 

% L . (59)

The predicted covariance is given by

0(1|) (, 1| ,) (, 1| ,)

 (, 1| ,) + (, 1| ,) .

pi
i

qm pi qm
m i m

T T T
im i im e e m im ip m e e m

p N
T T

i i e e mq ip e e mq
q N p N q N

P k k A M k s k s A Q B H k s k s A

A H k s k s B B W k s k s B

δ

δ δ δ

∈

∈ ∈ ∈

+ = + + + + +

+ +

∑
∑ ∑ ∑

% % %

%
 (60)

Matrix 0imQ is the process noise covariance.

Finally, predicted values of coupling inputs (1 |)iso k k+
&

 and their covariance with predicted
(augmented) states are computed and made accessible for the respective neighbours in
order to be used in the re-initialization of the s-iteration process.

3.4 Distributed estimator with restricted communication radius
3.4.1 Overview

The goal of this section is to modify the above algorithm to obtain a distributed estimator
that is possibly of lower performance but has no need for communication and model sharing
between filters whose network distance is greater than a pre-defined network radius R . For
this, we need to have

 (| 1) 0 for : (,)ijM k k j d i j R− = ∀ ≥ (61)

and, for all 0,1,....s =

 (, | , 1) 0, (, | , 1) 0 for : (,)ij ijH k s k s W k s k s j d i j R− = − = ∀ ≥ (62)

This is sufficient for having (, | , 1) 0ijM k s k s − = for all j with radius R or greater and for all

iterations s .This is achieved by approximating the real covariance matrix by a matrix that is
larger than or equal to (in the LMI sense) the original one and satisfying the above conditions
on de-correlation of variables in a certain network distance. A geometrical interpretations of
this idea for a pair of variables is in Figure 18. Formally, this is done by introducing fictitious
noises whose covariance varies from one s-iteration to another.

jpδ

ix

jpδ

ix

Figure 18 Geometrical interpretation of the decorrelation technique.

3.4.2 Modified algorithm: introducing fictitious noise

Let us assume that, for a given iteration s , there holds . (, | , 1) 0ijM k s k s − = for all j such that

(,)d i j R≥ ; further, assume that (62) holds. Then, the data step is performed as described
above, for maxr R= . Mark the newly updated covariance matrices by the superscript ‘ − ’, in

particular, (, 1 | ,)iiM k s k s− + , (, 1| ,)ijH k s k s− + and (, 1| ,)ijW k s k s− + We end up with updated state-

to-output and output-to-output covariance matrices, that no longer satisfy assumption (62);
there holds only

 (, 1| ,) 0, (, 1| ,) 0 for : (,)ij ijH k s k s W k s k s j d i j R− −+ = + = ∀ > (63)

First, we would like to get rid of the non-zero cross-covariance (, 1| ,)ijH k s k s− + for (,)d i j R= .

(In fact, only some columns of this matrix are non-zero: those corresponding to all jlδ and qjδ

for which (,) (,) 1d i j d i q R= = −). We shall introduce a fictitious noise varying from one s-
iteration to another which is added to the local state and the output

 (, 1) (, 1) (,)
(, 1) (, 1) (,) (,).

i i xi

i i Yi Yi

X k s X k s k s
Y k s Y k s k s k s

ξ
ξ η

−

−

+ = + +
+ = + + +

 (64)

These noises are assumed to be Gaussian, zero-mean, white (with respect to both k and s);
moreover, noises Xiξ and Yjξ are independent with Yiη and mutually independent for all i

and j , except of those where (,)d i j R= . First, we shall discuss the role of Xiξ and Yjξ , the role

of Yiη will be clarified later. In particular, the joint covariance will be set to

(,) (, 1| ,)(,)

E (,) (,) .(,) (, 1| ,) (,)
Xi ijT TXi

Xi Yj T
Yj ij Yj

Q k s H k s k sk s
k s k sk s H k s k s R k s

ξ
ξ ξξ

−

−

 − +     =       − +    
 (65)

Variances XiQ and YjiR are chosen as the smallest ones so that the joint covariance matrix

(65) is positive semi-definite. In particular, if the singular value decomposition of the cross-
covariance term is given by

 (, 1| ,) , (, 1| ,) , (,)T T
ij ij ij ij ji ji ji jiH k s k s U S V H k s k s U S V d i j R− −+ = + = = (66)

then

: (,) : (,)

, .T T
Xi ij ij ij Yi ji ji ij

j d i j R j d i j R
Q U S U R V S V

= =

= =∑ ∑ (67)

Note that the non-zero columns of jiH − are available from neighboring agents. Thus, this de-

correlates states iX and outputs jY for (,)d i j R= .

Further, it is necessary to take into account that variables (, 1 | ,)iY k s k s+ and (, 1 | ,)kY k s k s+ for
all : (,) 1k d i k = depend on (,)xi k sξ , and hence, we have to map the matrix XiQ on iiH − , ikH − ,

T
iiW − , ikW − , kiW − and kiW − (the argument omitted for brevity). This involves then certain

information exchange between neighbouring agents. Similarly, the de-correlation terms
E

j

T
Xi Y ijHξ ξ −= − is mapped, for all l , (,) 1d j l = , on matrices pqW − and qpW − where { , }p i k∈ and

{ , }q j l∈ . Details are omitted here.

After finishing these updates, matrix * (, 1 | ,)iH k s k s− + satisfies (62); it is then renamed to

* (, 1 | ,)iH k s k s+ for the use in the next s-iteration. Further, set

 (, 1| ,) (, 1| ,)ii ii XiM k s k s M k s k s Q−+ = + + (68)

In the next step, we need to de-correlate output vectors iY and jY for (,)d i j R= . For this,

the fictitious noise Yiη will be used. Again, it is zero-mean, Gaussian noise and, Yiη and Yjη

are independent except of those where (,)d i j R= . The joint covariance is given by

 E Yi ijT TYi
Yi Yj T

Yj ji Yj

P W
W P

η
η ηη

−

−

 −     =       −    
 (69)

Let us make the decomposition T
ij Yij Yij YijW U S V− = . Then

: (,)

P .T
Yi Yij Yij Yij

j d i j R
U S U

=

= ∑ (70)

Then, (, 1 | ,) (, 1 | ,)ii ii YiW k s k s W k s k s P−+ = + + and (, 1 | ,) 0ijW k s k s+ = . Note that the rows in *iW and

This concludes the s-iteration.

After the termination of the s-iterations, we shall proceed with the prediction and re-
initialization steps as described above; first, (1,0 | , 1) 0ikM k k+ − = for all k such that (,)d i k R> ;
for (,)d i k R= , this cross-covariance will be non-zero. The correction will be done, again, by
introducing a fictitious process noise

 (1) (1) ();i i XiX k X k kϕ−+ = + + (71)

As before, the added process noises are zero-mean, Gaussian and white; they are
independent, except of pairs ()Xi kϕ and ()Xm kϕ for all pairs i and m such that (,)d i m R= .

Then, ()() () (1 |)T
Xi Xm imE k k P k kϕ ϕ −= − + . Designing variances ()() ()T

Xi XiE k kϕ ϕ and

()() ()T
Xm XmE k kϕ ϕ is done analogously to the previous cases. Having done this, condition (61)

is satisfied. Further, we obtain state-to-output and output-to-output covariance matrices
(,0 | , 1)ijH k k− − and (,0 | , 1)ijW k k− − , respectively, that do not satisfy condition (62). Their

modification proceeds in the same way as it was described above for (, 1| ,)ijH k s k s− + and

(, 1| ,)ijW k s k s− + for 0,1,...s = . This concludes the k-loop of the modified algorithm for

distributed estimation with a limited communication radius.

3.4.3 Remarks on the algorithm

The modified algorithm described in this section reduces the overall computational load as
well as the communication overhead. On the other hand, it affect the performance of the
filter from the global view (in terms, for instance, of the trace of the global state covariance).
The degree of performance degradation with respect to the communication radius is hard to
establish a priori -- sensitivity of the performance to the radius depends significantly on the
dimension and the distribution of process measurements.

The network-wide equilibrium at the end of the s-iterations is such that all Kalman gains iK
are zero for all i and that all variances of the fictitious noises are zero as well. Although we
have not yet a rigorous proof for the convergence to this equilibrium, it has converged in our
simulational tests. Compared to the case without restrictions for the communication radius,
the convergence is slower – the former case converges usually in a finite number of s-steps.
Another point that needs to be mentioned, covariance matrices (, | ,)iiM k s s k s+ have not all
eigenvalues decreasing during the iterations – this is caused by adding the correction term in
(68) in order to achieve the global multi-band structure. In other words, the global
uncertainty ellipsoid given by the overall state covariance approximation shrinks in some
directions and grows in other ones. From this we can derive an ad-hoc test for possible on-
line adjustment of the communication radius; if the largest positive eigenvalue of matrix

 (,) (,0 | , 1) (, | , 1)ii ii ii end endk s M k k M k s k s∆ = − − − (72)

is not significantly smaller that the opposite of the smallest (negative) eigenvalue (say by an
order of magnitude), then an increase of the communication radius is recommended.

3.5 Illustrative example
Here, we present an example of coupled spring-mass systems. We merge three spring-mass
systems into one subsystem; the coupling inputs are displacement and velocity at one end
and force on the other; the outputs are the same, in reversed order. This subsystem is
discretized using zero-order hold; we are fully aware that this introduces some error, when
more of those discrete-time subsystems are connected, compared to other discretization

methods; the point is to have no feedthrough term between the coupling inputs and
outputs. Therefore, we chose a sampling rate so that the error was not significant in the
simulation for a cascade of 9 subsystems; moreover, we used a low-pass filter at the force
input. Parameters of the elements are not all the same.

M

K

B

d

M

K

B

d

F1
….

d1, d1’

F1

d1, d1’

dy

F1
….

d1, d1’

F1

d1, d1’

dy
Figure 19 Elementary spring mass system; multiple spring/mass elements merged into a subsystem.

The cascade of 9 subsystems is shown in Figure 20. It has total 61 states and 5 scalar
measurements distributed among subsystems with an odd index; hence, every other local KF
has no direct access to process data and uses the information received from the neighbours.
The measurements are either displacement or velocity chosen somewhat arbitrarily. In the
following we address only the evolution of the covariance matrices. First, we shall take the
case without restrictions on the communication radius.

Some illustrative plots of the evolution of certain filter variables during s-iterations are
shown in Figure 21. It is for a sufficiently large time k, where the filter trajectories in s-
iteration did not change much from one time step to another; Local KFs were thus near-
periodic systems. We can observe some interesting properties: First; the network settles in 8
s-iterations (not incidentally, the largest network distance between subsystems). Kalman
gains are pulsating -- this is due to the fact that the filter receives new relevant information
on the process every other iteration, due to the distribution of the measurements. Further,
the local state-to-global output covariance vanishes completely for each subsystem; this
means that this distributed estimator is equivalent to the centralized KF. This can inferred
from the fact that the measurements are of dimension smaller than/equal to the coupling
variables, and that a measurement ()ly k is mapped on the coupling error estimate

(, | , 1)ij r rk s k sδ − , where (,) rd i l s= ,.without any rank loss. It can be seen that the agents reach

the zero state-to-output covariance in the iteration corresponding to the largest network
distance to a process measurement. Finally, the bottom plot in Figure 21 shows the norm of
the covariance matrix between a local state to the global set of consensus variables. It can
be observed that this norm reduces, for all states, by an order of magnitude in 3 steps; this is
sufficient, in this particular case, to terminate the s-iterations after 3 steps with only a small
degradation of performance. If we had performed only one s-iteration, then the dissensus is
large and the filter becomes unstable.

S1 S2 S3 S8 S9

F1 F2 F3 F8 F9

…

…

S1 S2 S3 S8 S9

F1 F2 F3 F8 F9

…

…

Figure 20 Process and filter networks

0 2 4 6 8 10
-20

-15

-10

-5

0

5

Consensus iteration s

 lo
g(

||E
(x

i ∆
T)||

)

Local state-Global consensus correlation

0 2 4 6 8 10
-15

-10

-5

0

5

 lo
g(

||E
(x

i Y
T)||

)

Local state-Global output correlation

0 2 4 6 8 10
-20

-15

-10

-5

0

5
Local Kalman Gain norm

lo
g(

||
K i ||

)

Figure 21 Top: log (,)iK k s ; center: logs of the norms of local states to the global output covariance; Bottom:
logarithms of the norms of the cross-covariances from the local states to the global set of coupling variable
errors.

Now, we shall restrict the communication radius from 8 to 6. The evolution of filter variables
is then shown in Figure 22. We can observe that the Kalman gains take much longer to
vanish; further, the state-to-output covariance does not vanish at all—the filter is not
optimal; nevertheless, the s-iteration still reduce the correlation significantly. Figure 23
shows that this communication restriction does not hurt the performance badly. However,
reducing the communication radius further by one causes a significant degradation of
performance. One would conclude that the proposed method does not allow much of the
communication reduction. Note however, that the process measurements available globally
in the network are fairly scarce, and thus the local filters heavily rely on data from distant
subsystems. For a richer and evenly distributed measurement set, the communication radius
can be reduced much more.

0 5 10 15
-5

0

5

Consensus iteration s

 lo
g(

||E
(x

i ∆
T)||

)

Local state-Global consensus correlation

0 5 10 15
-2

-1

0

1

2

 lo
g(

||E
(x

i Y
T)||

)

Local state-Global output correlation

0 5 10 15
-20

-15

-10

-5

0

5
Local Kalman Gain norm

lo
g(

||
K i ||

)

Figure 22 Evolution of filter variables during s-iterations analogous to Figure 21 for restricted communication

radius.

0 5 10 15 20 25 30 35 40 45 50
100

200

300

400

500

600

700

k

||P
(k

|k-
1)|

|

Norm of predicted state covariance

r = 8 r = 7

r = 6
r =5

0 5 10 15 20 25 30 35 40 45 50
100

200

300

400

500

600

700

k

||P
(k

|k-
1)|

|

Norm of predicted state covariance

r = 8 r = 7

r = 6
r =5

Figure 23 Norm of the predicted state covariance for distributed estimator with different communication radii

3.6 Conclusion
We have introduced a novel suboptimal distributed state estimator for interconnected
systems. It is scalable and on-line reconfigurable; it admits a time-varying process models.
Local filters estimate local state augmented by interconnection inputs. These inputs
represent the only overlaps with state spaces of neighboring filters. Date update of the
conditional mean and covariance is done iteratively within one time period, using
interconnection variable estimates from the neighbors. The estimation uncertainty is
propagated, from one local filter to another in the form of certain covariance matrices. To
manage this uncertainty, local filters have to estimate covariance of local states with other
states in the network; this requires model knowledge of other subsystems as well as the
knowledge of certain intermediate results. A technique was proposed to limit the need for
the data related to other subsystems to a certain network neighborhood.

4 Performance evaluation of decentralized versus centralized MPC on
the benchmark problem

The decentralized MPC law proposed in Section 1.4 is compared in this section against the corre-
sponding centralized version on the simulation benchmark example described in D1.1. The bench-
mark is about a linear, relatively large-scale system representing the temperature at different pas-
senger areas in a railcar. The results are also reported in Section 5 of Deliverable D4.2, where the
emphasis is on testing the control algorithms in the presence of packet loss.

We investigate different simulation outcomes of the comparison depending on three ingredients:

• type of controller (centralized/decentralized);

• changes in reference values;

• changes of external temperature (acting as a measured disturbance).

4.1 Simulation setup

The initial condition is 17◦C for all seat-area temperatures, except for the antechamber, which is
15◦C. The sample time used for discretizing the continuous time differential equations describing the
dynamics of the system and obtain the prediction model is 9 minutes, which is also the sample time
of the controller.

The temperature profile used in the simulation is the discretization of a typical sunny day of January
in center Italy. Figure 14 shows the temperature in Celsius degrees in the vertical axis, as a function
of the number of samples starting from midnight, i.e. 00:00 AM = 0 samples and 12:00 PM = 160
samples. Since a change in the external temperature requires a centralized update of the controller
bounds, the temperature profile is discretized with a step of 20 samples.

User defined references for areas temperatures are described in the following:

• #1 : #4 constant at 18 degrees;

• #5 : #8 start at 18. then change to 18.1 at sample time 40;

• #9 : #12 start at 17.8, then change to 17.9 at sample time 120;

• #13 : #16 constant at 18.1.

Figure 15 gives a graphical interpretation of the used references, showing the time instants at which
the setpoints change. Note that setpoints variations are chosen so that reference values differ in each
adjacent area, which makes the control task more challenging.

4.2 Simulation results

Since the number of outputs variables of interest is considerably high, we show in Figure 16 only
the first state and input trajectories obtained with both DMPC and CMPC, in order to permit a better
understanding.

The closed-loop trajectories of centralized MPC feedback vs. decentralized MPC are shown in Fig-
ure 16(a), while Figure 16(b) shows the trajectory of the first applied input. In both the decentralized
and centralized MPC case the temperature values of the four-seat areas converge to the set-point
asymptotically.

43

0 50 100 150

4

5

6

7

8

9

10

Figure 14: External temperature profile

0 50 100 150
17.7

17.8

17.9

18

18.1

Figure 15: User defined references used in simulations

44

0 30 60 90 120 150
17

17.2

17.4

17.6

17.8

18

(a) Output trajectory

0 30 60 90 120 150

0.015

0.02

0.025

0.03

(b) Applied input

Figure 16: Comparison between centralized MPC (dashed lines) and decentralized MPC (continuous lines): output
h1 (left hand side plots) and input v1 (right hand side plots).

The comparison of centralized vs. decentralized MPC becomes more interesting when packet loss
are present on the wireless feedback channels. To simulate packet loss, we assume that the proba-
bility of losing a packet depends on the state of the Markov chain depicted below.

1 consecutive
packet lost

2

N consecutive
packets lost

N+1

Previous
packet correctly

arrived

1

p 1-p

1

...

p

...
j consecutive
packets lost

j+1

p

1-p 1-p 1-p 1-p

The Markov chain is in the jth state if j− 1 consecutive packets have been lost. The probability of
losing a further packet is 1− p, 0 ≤ p ≤ 1, except for the (N + 1)th state where no packet can be
lost any more. Such a probability model is partially confirmed by the experimental results on relative
frequencies of packet failure burst length observed in [55].

The simulation results obtained with p = 0.5 are shown in Figure 17 and Figure 18. The stability
condition reported in Deliverable D4.2 was tested and proved satisfied for values of j up to 160
(corresponding to a one-day lack of measurements, more than enough for any practical scenario).

It is evident that, despite the intermittent lack of information, the decentralized controller achieves
tracking of the user defined references. Note that in instants where losses occurs the input is set to
the asymptotical value, thanks to the coordinate shift, and thus the convergence is slower. In facts,
the output get farther to the reference with respect to the previous instant. Moreover, the centralized
controller, whose trajectories are not reported for brevity, behaves similarly during the “blind” instants.

In order to compare closed-loop performances in different simulation scenarios, define the following
performance index

J =
Nsim

∑
t=1

e′z(t)Qez(t)+ e′v(t)Rev(t) (73)

45

0 30 60 90 120 150
17

17.2

17.4

17.6

17.8

18

(a) Output trajectory

0 30 60 90 120 150

0.015

0.02

0.025

0.03

(b) Applied input

Figure 17: Decentralized MPC output (left hand side plots) and input (right hand side plots), with loss probability
p = 0.5, where grey background indicates a full blackout of the transmission system, which implies that all packets are
lost at that instant.

0 30 60 90 120 150
17

17.2

17.4

17.6

17.8

18

(a) Output trajectories

0 30 60 90 120 150

0.015

0.02

0.025

0.03

(b) Applied inputs

Figure 18: Decentralized MPC results. Left hand side plots: output variables (continuous lines) and refer-
ences (dashed lines). Right hand side plots: command inputs. Gray areas denote packet drop intervals.

where ez(t) = z(t)− r(t), ev(t) = v(t)− vr and Nsim = 160 (one day) is the total number of simulation
steps.

Figure 19 shows that the performance index J defined in Eq. (73) increases as the packet-loss prob-
ability grows, implying performance to deteriorate due to the conservativeness of the backup control
action u = 0 (that is, v = vr). The results of Figure 19 are averaged over 10 simulations per probability
sample.

It is apparent, as expected, that centralized MPC dominates over decentralized MPC. However, for
certain values of p the average performance of decentralized MPC is slightly better, probably due to
the particular packet loss sequences that have realized. However, the loss of performance due to
decentralization, with regard to the benchmark simulation example, is largely negligible. This is due
to the weak dynamical coupling between non-neighboring passenger areas.

46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
4.2

10
4.9

Figure 19: Performance indices of Centralized MPC (dashed line) and Decentralized MPC (solid line)

4.2.1 Computation complexity

The simulations were performed on a MacBook Air 1.86 GHz running Matlab R2008a under OS X
10.5.6 and the Hybrid Toolbox for Matlab [56]. The average CPU time for solving the centralized QP
problem associated with (3) is 6.0 ms (11.9 ms in the worst case). For the decentralized case, the
average CPU time for solving the QP problem associated with (15) is 3.3 ms (7.4 ms in the worst
case).

4.3 Conclusion

In this section a comparison between centralized and decentralized MPC was presented for the
benchmark example described in D1.1 and D4.2. Simulation results showed that closed-loop perfor-
mance and complexity of MPC computations can be traded off. Moreover, the comparison was tested
simulating an unreliable communication channel, where the lack of information makes the distinction
between optimality and suboptimal more fuzzy.

Further comparisons of decentralized versus centralized MPC strategies will be reported in deliver-
able D3.3, where centralized hierarchical schemes are compared against decentralized ones, and
hybrid decentralized MPC versus hybrid centralized MPC is tested on a UAV formation flight applica-
tion. Moreover, in D5.6 the decentralized and centralized MPC approaches will be compared on the
simulation demo related to the Barcelona water distribution network.

References

[1] A. Alessio, D. Barcelli, and A. Bemporad. Decentralized model predictive control of dynamically-
coupled linear systems. Journal of Process Control. Conditionally accepted for publication.

[2] A. Alessio and A. Bemporad. Decentralized model predictive control of constrained linear sys-
tems. In Proc. European Control Conf., pages 2813–2818, Kos, Greece, 2007.

[3] A. Alessio and A. Bemporad. Stability conditions for decentralized model predictive control under
packet dropout. In Proc. American Contr. Conf., pages 3577–3582, Seattle, WA, 2008.

[4] B. Bamieh, F. Paganini, and M. A. Dahleh. Distributed control of spatially invariant systems.
IEEE Trans. Automatic Control, 47(7):1091–1107, 2002.

47

[5] D. Barcelli and A. Bemporad. Decentralized model predictive control of dynamically-coupled
linear systems: Tracking under packet loss. In 1st IFAC Workshop on Estimation and Control of
Networked Systems, pages 204–209, Venice, Italy, 2009.

[6] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The explicit linear quadratic regulator
for constrained systems. Automatica, 38(1):3–20, 2002.

[7] F. Borrelli, T. Keviczky, K. Fregene, and G.J. Balas. Decentralized receding horizon control of co-
operative vechicle formations. In Proc. 44th IEEE Conf. on Decision and Control and European
Control Conf., pages 3955–3960, Sevilla, Spain, 2005.

[8] R. H. Byrd, P. Lu, and J. Nocedal. A limited memory algorithm for bound constrained optimiza-
tion. SIAM Journal on Scientific and Statistical Computing, 16:1190–1208, 1995.

[9] F.M. Callier, W.S. Chan, and C.A. Desoer. Input-output stability theory of interconnected systems
using decomposition techniques. IEEE Trans. Circuits and Systems, 23(12):714–729, 1976.

[10] E. Camponogara, D. Jia, B.H. Krogh, and S. Talukdar. Distributed model predictive control. IEEE
Control Systems Magazine, pages 44–52, February 2002.

[11] R. Cheng, J. F. Forbes, and W. S. Yip. Price-driven coordination method for solving plant-wide
mpc problems. Journal of Process Control, 17:429–438, 2006.

[12] A. Damoiseaux, A. Jokic, M. Lazar, P.P.J. van den Bosch, I.A. Hiskens, A. Alessio, and A. Bem-
porad. Assessment of decentralized model predictive control techniques for power networks. In
16th Power Systems Computation Conference, Glasgow, Scotland, 2008.

[13] R. D’Andrea. A linear matrix inequality approach to decentralized control of distributed parame-
ter systems. In Proc. American Contr. Conf., pages 1350–1354, 1998.

[14] W.B. Dunbar and R.M. Murray. Distributed receding horizon control with application to multi-
vehicle formation stabilization. Automatica, 42(4):549–558, 2006.

[15] P. Grieder and M. Morari. Complexity reduction of receding horizon control. In Proc. 42th IEEE
Conf. on Decision and Control, pages 3179–3184, Maui, Hawaii, USA, 2003.

[16] D. Jia and B. Krogh. Distributed model predictive control. In Proc. American Contr. Conf., pages
2767–2772, Arlington, VA, 2001.

[17] D. Jia and B. Krogh. Min-max feedback model predictive control for distributed control with
communication. In Proc. American Contr. Conf., pages 4507–4512, Anchorage, Alaska, 2002.

[18] M. Johannson and A. Rantzer. Computation of piece-wise quadratic Lyapunov functions for
hybrid systems. IEEE Trans. Automatic Control, 43(4):555–559, 1998.

[19] B. Johansson, T. Keviczky, M. Johansson, and K.H. Johansson. Subgradient methods and
consensus algorithms for solving convex optimization problems. In Proc. 47th IEEE Conf. on
Decision and Control, pages 4185–4190, Cancun, Mexico, 2008.

[20] T. Keviczky, F. Borrelli, and G.J. Balas. Decentralized receding horizon control for large scale
dynamically decoupled systems. Automatica, 42(12):2105–2115, 2006.

[21] W. Li and C.G. Cassandras. Stability properties of a receding horizon contoller for cooperating
UAVs. In Proc. 43th IEEE Conf. on Decision and Control, pages 2905–2910, Paradise Island,
Bahamas, 2004.

[22] Dong C. Liu, Jorge Nocedal, and Dong C. On the limited memory bfgs method for large scale
optimization. Mathematical Programming, 45:503–528, 1989.

48

[23] L. Magni and R. Scattolini. Stabilizing decentralized model predictive control of nonlinear sys-
tems. Automatica, 42(7):1231–1236, 2006.

[24] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained model predictive con-
trol: Stability and optimality. Automatica, 36(6):789–814, June 2000.

[25] M. Mercangöz and F.J. Doyle III. Distributed model predictive control of an experimental four-
tank system. Journal of Process Control, 17(3):297–308, 2007.

[26] A.N. Michel. Stability analysis of interconnected systems. SIAM J. Contr., 12:554–579, August
1974.

[27] A.N. Michel and R.D. Rasmussen. Stability of stochastic composite systems. IEEE Trans. Auto-
matic Control, 21:89–94, 1976.

[28] Y. Nesterov. A method for solving a convex programming problem with convergence rate o(1/k2).
Soviet Math. Dokl., 27:372–376, 1983.

[29] Y. Nesterov. Introductory lectures on convex opimization: A basic course. Kluwer Academic
Publishers, 2003.

[30] A. Richards and J.P. How. Decentralized model predictive control of cooperating UAVs. In Proc.
43th IEEE Conf. on Decision and Control, Paradise Island, Bahamas, 2004.

[31] M. Rotkowitz and S. Lall. A characterization of convex problems in decentralized control. IEEE
Trans. Automatic Control, 51(2):1984–1996, 2006.

[32] S. Samar, S. Boyd, and D. Gorinevsky. Distributed estimation via dual decomposition. In Proc.
European Control Conf., pages 1511–1516, Kos, Greece, 2007.

[33] N.R. Sandell, P. Varaiya, M. Athans, and M.G. Safonov. Survey of decentralized control methods
for large scale systems. IEEE Trans. Automatic Control, 23(2):108–128, 1978.

[34] R. Scattolini. Architectures for distributed and hierarchical model predictive control – a review.
Journal of Process Control, 19:723–731, 2009.

[35] A.N. Venkat, I.A. Hiskens, J.B. Rawlings, and S.J. Wright. Distributed MPC strategies with ap-
plication to power system automatic generation control. IEEE Transactions on Control Systems
Technology, 16(6):1192–1206, 2008.

[36] A.N. Venkat, J.B. Rawlings, and J.S. Wright. Stability and optimality of distributed model pre-
dictive control. In Proc. 44th IEEE Conf. on Decision and Control and European Control Conf.,
Seville, Spain, 2005.

[37] A.N. Venkat, J.B. Rawlings, and J.S. Wright. Implementable distributed model predictive con-
trol with guaranteed performance properties. In Proc. American Contr. Conf., pages 613–618,
Minneapolis, MN, 2006.

[38] D. D. Šiljak. Large-Scale Dynamic Systems: Stability and Structure. North-Holland, New York,
1978.

[39] S. Wang and E. J. Davison. On the stabilization of decentralized control systems. IEEE Trans.
Automatic Control, 18(5):473–478, 1973.

[40] S. Samar, S. Boyd, and D.S. Gorinevsky. Distributed estimation via dual decomposition. In
Proceedings of European Control Conference, Kos, Greece, 2007.

[41] R. Olfati-Saber. Distributed Kalman Filtering for Sensor Networks. In Proc of 46th IEEE Conf on
Decision and Control, New Orleans, LA, USA, 2007.

49

[42] R. Olfati-Saber and R.M. Murray. Consensus Problem in Network Agents with Switching Topol-
ogy and Time Delays. IEEE Trans on Automatic Control, Vol. 49, pp. 1520–1553, 2004.

[43] R. Olfati-Saber. Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory. IEEE Trans
on Automatic Control, Vol 51, pp. 401–420, 2006.

[44] R. Carli, R. Chiuso, L. Schenato, and S. Zampieri. Distributed Kalman Filtering Using Consensus
Strategies. In Proc. of 46th IEEE Conf on Decision and Control, New Orleans, LA, USA, 2007.

[45] Sijs,J., Lazar, M. van der Bosch, P.P.J and Papp, Z. An overview of non-centralized Kalman
Filters. In Proceedings of 17th International Conf on Control Applications, Part of 2008 IEEE
Multi-conference on Systems and Control, San Antonio, TX, USA, 2008.

[46] Khan, U.A. and Moura, J.M.F. Distributed Kalman Filters in Sensor Networks: Bipartite Fusion
Graphs. In Proc. of 15th IEEE Workshop on Statistical Signal processing, Madison, WI, 2007.

[47] Khan, U.A. and Moura, J.M.F. Distributing the Kalman Filter for large-Scale Systems. IEEE Trans
on Signal Processing, Vol 56, Oct. 2008, pp 4919-4935.

[48] Stankovic, S. S., Stankovic, M. S. and Stipanovic, D. M. Consensus-based Overlapping Decen-
tralized Estimator. IEEE Transactions on Automatic Control, Vol. 54, Feb 2009, pp 410-412.

[49] Vadigepalli, R. and Doyle, F. J. III. A distributed State Estimation and Control Algorithm for
Plantwide processes. IEEE Transactions on Control Technology, l Vol 2, Jan 2003, pp 119-127.

[50] Zhu,Y., You, Z., Zhao, J., Zhang, K. and Rong Li, X. The optimality for the distributed Kalman
filtering fusion with feedback. Automatica, Vol 37, 2001, pp 1489-1493.

[51] Sanders, C.W., Tacker, E.C., Linton, T.D. and Ling R. Y.-S. Specific structures for Large-Scale
State Estimation Algorithms having Information Exchange. IEEE Trans on Automatic Control,
Vol. AC-23, April 1978, pp 255-261.

[52] Hashemipour, H.R., Roy, S. and Laub, A.J. Decentralized Structures for parallel Kalman Filter-
ing. IEEE Transactions on Automatic Control, Vol.33, January 1988, pp 88-94.

[53] Baramov, L. and Havlena. V. Distributed Kalman Filter for interconnected systems with consen-
sus. Under review, International Journal of Control, 2009.

[54] Baramov, L. Pachner, D. and Havlena, V. Approximate distributed Kalman filter for intercon-
nected systems. Under preparation.

[55] A. Willig and R. Mitschke. Results of bit error measurements with sensor nodes and casuis-
tic consequences for design of energy-efficient error control schemes. In Proc. 3rd European
Workshop on Wireless Sensor Networks (EWSN), volume 3868 of Lecture Notes in Computer
Science, pages 310–325. Springer-Verlag, 2006.

[56] A. Bemporad. Hybrid Toolbox – User’s Guide. December 2003. http://www.dii.unisi.
it/hybrid/toolbox.

50

