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Executive summary

This report summarizes results achieved in Task 3.1 of WIDE.
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Background

Task 3.1 in WIDE concerns development of techniques for building models of different levels of ab-
straction for hierarchical control including system identification, input excitation design, the uncer-
tainty representation and interlayer propagation and built-in model management and maintenance for
consistency with structural changes in the system: system identification in the distributed, large-scale,
networked environment. It also includes model management of large-scale systems with uncertainty
propagation.

Two partners, Honeywell and KTH, have contributed to the task where KTH has contributed to sys-
tem identification in a distributed, large-scale, networked environment whereas Honeywell has con-
tributed to model management of large-scale systems with uncertainty propagation. Honeywell has
contributed with 22MM and KTH with 10 MM to this deliverable.

Common to WP3 is that number of articles accepted for publication in peer-reviewed journals, or-
ganization of invited sessions, and possible filed patent applications are measures of success. Par-
ticular measures of success to Task 3.1 are a documented set of model management techniques
demonstrated in MATLAB/Simulink, featuring (i) model ID capabilities of large-scale systems, includ-
ing generation of submodels consistent with measured data; (ii) managing large-scale interconnected
models with built-in complexity reduction and uncertainty propagation, ensuring cross-layer and inter-
layer compatibility, and able to responsively capture structural changes in the process.

1 Results summary

Deliverable D3.1 targets methodologies for identification and model management of large-scale sys-
tems. The results achieved in this deliverable are used across all work packages of WIDE project.
According to work-plan coordinated between KTH and HPL, the results were achieved in the following
subtasks:

3.1.1. Consistent modeling and self-maintaining models

3.1.2. Input signal design

3.1.3. System ID for large-scale systems

3.1.4. Fault-detection

The first subtask, T3.1.1, concerns consistent modeling and model management that addresses
two topics: first, merging models of different quality and second, structure-respecting identification
and order reduction. Regarding the former topic, HPL developed a novel methodology for merging
several models of different quality for the same system considering FIR and/or ARX models. The
proposed approach uses merging models in the time domain, using the concept of equivalent data.
This result was published in [HPL2]. Addressing the second topic, HPL invested a significant effort to
develop a new methodology for consistent combination of arbitrarily interconnected submodels with
uncertainty into a complex, large-scale model. The interconnected models are assumed to be FIR
and/or ARX models with parameters given by the mean and variance. The main result is obtaining a
global ARX/FIR with statistically correct mean and variance. This result was also published in [HPL2].
Another novel solution achieved in this subtask is a method for closed-loop order reduction of parallel
models with application to parallel working boilers. This result is described in [HPL5] and it is being
prepared for publication. HPL used about 8MM on this subtask. An extension is being prepared in
the joint KTH/HPL collaboration[KTH9]. KTH has also contributed with a new method for subspace
identification of cascade systems [KTH6].
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Second subtask, T3.1.2, addresses input signal design for identification. The optimal experiment
design is a non-convex, and hence non-tractable problem. HPL proposed a novel method which is
sub-optimal, but simple and tractable method and which results in designed input that can improve
the overall model quality, while minimizing abruptions to identified system. This result is described in
internal report [HPL4] and now it is in the patenting process. According to the plan, 5MM were spent
at HPL on this task.

KTH has also made significant contributions to optimal input signal design. A very general appli-
cations oriented experiment design methodology has been developed. This has been published in
[KTH1] and was presented in a Plenary Address at the European Control Conference 2009, Bu-
dapest, Hungary [KTH3] and in a Plenary Address at the Benelux meeting 2010 [KTH4]. This frame-
work has been adapted to MPC oriented experiment design, details are provided in [KTH5, KTH8].
A key problem in all optimal experiment design procedures is that the solution depends on the un-
known system parameters to be identified. An adaptive method to cope with this is presented in
[KTH2] for ARX systems. The KTH lab has also developed an input design procedure for Multi-Input
Multi-Output linear time-invariant systems based on a simplified model accuracy measure valid for
highly complex (many estimated parameters) systems [KTH7]. The invited session “Optimal Experi-
ment Design” is being submitted to the IFAC World Congress 2011. A further contribution has been
input design for cascade systems, see Section 2.10.

The third subtask, T3.1.3, regards subspace ID for Large systems. HPL developed algorithms able
to incorporate basic types of prior information (gains, time constants, ... to subspace identification
methods. The results were published in [HPL1]. Also scalability aspects have been considered. In-
corporating prior knowledge improves the posedness of the ID problem, which may be poor in cases
of low input excitation. This is often the case of large-scale interconnected systems. In an addi-
tional development, a modification of the subspace ID for large-scale systems was proposed which
uses better internal data representation and dramatically reduces memory requirements. Hence, the
modified algorithm improves scalability of subspace ID methods. Another approach for grey-box iden-
tification was being developed in parallel. This approach is based on numerical optimization of mixed
prediction and simulation error based criterion. The results were published in [HPL3] and [HPL6].
About 8MM were used on this task by HPL.

Subtask T3.1.4, regards failure detection in large-scale systems. 1MM was spent by HPL on this
task. The results in this subtask are minor in correspondence with significantly limited time for this
subtask.
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2 Results Details 

2.1 Unified model representation 

The selection of Large Scale (LS) unified model representation is important step in WIDE 
project.  The representation has to be simple for model management (applying updates to 
models and changes to model structure), model manipulations (order reductions, models 
merging) and efficient to support following model based design (distributed Kalman filtering, 
distributed model predictive control). 
 
It is natural to represent LS system as a set of interconnected submodels. We chose to 
represent it by separating representation of submodels and representation of interconnection 
between submodels and external inputs and outputs (Figure 1). The subsystems are 
represented as a state space model M with block diagonal structure 

{ } { }
{ } { }
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1 1

diag , , , diag , , ,
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The submodels has stacked outputs denoted as y and stacked inputs denoted as u. The 
external inputs of LS model are denoted as w and external output as z. The interactions 
between submodels and between submodels and external inputs and outputs is described by 
static interconnection matrix L 
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Figure 1 Internal Model Representation (w are external inputs and z are external outputs) 
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2.2 Models Merging 

Large-scale system can be described by mutually overlapping models. Combining these 
models into global model needs solution to a problem, how to combine information from 
multiple models describing the same system.   
 
Our solution assumes ARX or FIR models with normally distributed parameters and possibly 
different structural parameterization. It is obvious that direct merging of two ARX models in 
parameters is not possible as models can have different structure (different degrees of 
nominator / denominator and input delay). Merging in "parameters domain" has to be 
replaced by merging in time or frequency domain. 
 
The merging in frequency domain is quite straightforward with apparent physical 
interpretation. However, the resulting uncertainty in frequency domain cannot be easily 
transformed back to uncertainty in ARX model parameters. On the other side, merging in 
time domain does not have this drawback. The merged model parameters are again 
described by mean value and covariance matrix. 
 
Merging in time domain can be based on description of ARX model by equivalent data, 
which is input/output data set resulting to the same estimate of model parameters mean 
value and covariance. 
 
Assume model parameters described by Normal distribution 2ˆ~ ( , )N s Pθ θ , where θ̂  is 
mean value, P is normalized covariance and 2s  is normalization constant (residual variance). 
Finding equivalent data means to find regressor Z and RHS vector b such that 

1ˆ , ,TZ b Z Z Pθ −= =  

where Z and b  have correct Hankel structure induced by ARX model. 
 
Having equivalent data for each model makes merging simple as equivalent data can be 
reordered into regressor and RHS vector of any structure. Reordering equivalent data of all 
merged models into same structure of target model allows to stack the regressors and RHS 
vectors and compute final model parameters by weighted least squares (Figure 2). 
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Figure 2 Models merging by equivalent data - algorithm block scheme. 

 
The following example shows merging of three models of the same system, where the 
models were obtained from the experimental data with inputs on the different part of 
frequency spectra. The individual models are identified by PEM with ARX structure and data 
are generated by fourth order ARX system 

2 2
1 2

2 2 2 2
1 1 1 2 2 2

( ) ,
( ) ( 2 )( 2 )

B s
A s s s s s

ω ω
ω ξ ω ω ξ ω

=
+ + + +
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with 1 2 1 22, 5, 0.3, 0.1ω ω ξ ξ= = = =  discretized with 0.2 s.sT = The frequency spectrum of 
experimental inputs for individual models is in Figure 3. The experimental data were obtained 
with signal to noise ratio of 30 dB. The length of identification data is 300 and the length of 
equivalent data (Figure 4) was selected as 50. 
 

 
Figure 3 Frequency spectrum of inputs used to get identification data. 

 
The properties of each model are summarized in the following table: 
 

 Order Inputs Excitation 
Model 1 2 Around 1st resonance frequency 
Model 2 3 Around 2nd resonance frequency 
Model 3 1 Low frequencies 

The mean values and variances of frequency characteristics of individual models and 
merged model are in Figure 5. It can be seen that merged model obtained by equivalent data 
takes the best information from individual models (the parts of frequency spectra with low 
variance) and combines it together into model which is close to original system (black 
dashed line). 
 

 
Figure 4 Data used for identification vs. equivalent (ficitive) data. 
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Figure 5 Merging of three models of 4th order system with two significant resonance frequencies. Each model is 

identified from data obtained on the different part of frequency spectra (highlighted by ellipse). The first 2nd 
order model is obtained from data around 1st resonance frequency, the second 3rd order model is obtained from 

data around 2nd resonance frequency and the third 1st order model is obtained from low frequency data. 

 
More details, mathematical formulations and algorithm description can be found in attached 
publication [HPL2]. 

2.3 Consistent combination of interconnected models with uncertainty 

Global model of large-scale system can be obtained by separated identification of individual 
subsystems followed by their combination into global model. The process of models 
combination must take into account not only the structure of models interconnection, but also 
the quality of individual models (variance of estimated model parameters) to guarantee the 
resulting model consistency. 
Assume a set of single input and single output ARX or FIR models with normally distributed 
parameters connected in an arbitrary structure. The model of interconnected systems is a 
rational function, where coefficients of numerator and denumerator polynomials are given as 
sum of convolutions of vectors given by submodels numerators and denumerators.  
Statistically correct mean value and variance of interconnected models needs an ability to 
compute mean value and variance of multiple normal vectors convolution. The exact 
result can be derived for two random vectors convolution by using relations for expectations 
of quadratic and quartic forms. Convolution of multiple vectors is obtained by sequential use 
of the result for two vectors.  
The mean values of resulting model parameters can be also obtained by using only mean 
values of sub-models parameters and ignoring their covariance. However, this can be shown 
to give biased results, which would bring inconsistency into large-scale model management 
platform. Moreover, this bias would be more significant in case of mutually correlated 
parameters of submodels, which can arise from decomposition of multiple inputs / multiple 
outputs model into a set of single input / single output models. 
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Figure 6 Models interconnection structure of example 

 
Low complexity example with connection of five uncertain models is in Figure 6. Models M1, 
M4, M5 are of the 2nd order and models M2, M3 are of the 1st order with mutually correlated 
normal coefficients. The level of uncertainty is exaggerated to demonstrate the difference 
between statistically correct computations (denoted as “Proper Connection”) and 
computations with mean values only (denoted as “Simple Connection”). Comparison of the 
result obtained by ignoring models uncertainty and by proper models connection is in Figure 
7 and Figure 8. 
 

 
Figure 7 Global model poles position – comparison of results obtained by Monte Carlo simulations, statistically 

consistent combination and combination using only submodel mean values 

 

 
Figure 8 Mean values and standard deviation of numerator and denumerator vector of coefficient. Comparison 
of reuslt obtained by Monte-Carlo simulation (blue), proper connection based on random vectors convolution 

(red) and mean value obtained by ignoring submodel parameters covariances (black). 

 
More details, mathematical formulations and algorithm description can be found in attached 
publication [HPL2]. 
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2.4 Subspace Identification with Prior Information 

The Subspace State Space System IDentification (4SID) has shown its suitability for 
industrial applications (Favoreel, De Moor, & Van Overschee, 2000), mainly due to its 
numerical robustness and the ability to identify MIMO (Multiple Inputs Multiple Outputs) 
systems with the same complexity as that for SISO (Single Input Single Output) systems 
without a need for extensive structural parameterization. However, it is quite usual that 
input/output data obtained from identification experiments in the industrial environment do 
not always have sufficient quality to give a good model by themselves. This may be caused 
by the fact that process excitation during identification experiments is limited by economical 
and safety reasons, which often results in data without proper excitation and with strong 
noise contamination. The black-box approach as in 4SID, relying only on experimental data, 
may provide biased models in such cases. In practical applications there is often strong prior 
information (PI) about the system, which can be exploited by the identification algorithm to 
improve the quality of the identified model. Such information can be approximate knowledge 
of time constants, known static gains, an input/output stability, step response smoothness, 
etc. It can be obtained from process operator experience, first principles model, by the 
analysis of process history data, etc. 
 
The proposed algorithm uses the interpretation of subspace identification as an optimization 
problem of finding a model as an optimal multi-step predictor (Van Overschee & De Moor, 
1996) for the experimental data. Further, the problem is reformulated in the Bayesian 
framework allowing a combination of available PI with information from the experimental 
data. 
 
Algorithm Outline 
This section shows an overview of the algorithm. The algorithm is based on a class of 
subspace identification methods. However, these methods use algebraic oblique/orthogonal 
projections, QR/SVD factorization and thus incorporation of additional knowledge is not 
straightforward. We are using similarity of SIM with optimization of multi-step predictor on 
experimental data. There are four main steps: 

1) Construction of multi-step predictor data matrices. The assumed model is a bank 
of conjugated linear time invariant predictors with certain special structure ensuring 
causality and avoiding parameter redundancy. The model is parameterized by Kalman 
filter parameters and impulse response elements and uses two windows of past and 
future data of certain lengths. 

2) Real-world prior information is transformed to prior estimate of multi-step 
predictor impulse response in the form of mean value and covariance matrix. 

3) The posterior mean value and covariance matrix of impulse response is estimated 
using Bayesian inference, i.e. combining information from experimental data with 
prior information. 

4) The state space model is realized from the mean value and covariance matrix of 
impulse response by structure weighted low rank approximation (SWLRA). 

The block scheme of the algorithm is in Figure 9. 
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Example – Oil-fired Steam Boiler 
Description: Experimental data were collected from oil-fired steam boiler (Figure 7) on the 
set point of 95% boiler rated power. The goal is to identify model relating fuel and steam 
demand to boiler steam pressure. This system is simple; however, it is well known 
identification problem [7], where fuel and steam demand inputs are typically strongly 
collinear, because technological limitations do not allow independent excitation of each input. 

 
The I/O data are on the following figure. 

I/O Data

Building Rearranged
Data Regressor

Prior Information

Forming initial estimate and 
covariance of     parameters

Bayesian Inference

Ho & Kalman Realization

Structured Weighted Lower Rank Approximation

Impulse Response

State Space Model

State Space Model  
Figure 9: Algorithm block diagram. 

Air and Fuel

Boiler Drum

Drum Pressure

Feed Water

Steam Demand

 

Fuel

1

Kf

Steam 
Demand

Steam 
Pressure

1
s

1
Ti

Differential 
Steam 

Pressure

dp 
dt

=
Δp 
Ts

 
Figure 10: Oil-fired boiler scheme and model scheme. 
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Figure 11: Experimental I/O data for identification. 

 
Identification: The system was identified by our algorithm and compared to models from 
N4SID and PEM with ARX and ARMAX model structure. The prior information used for 
identification was: 

• known relative gain between (fuel flow -> drum pressure) and (steam demand -> drum 
pressure) – amount of steam units generated from one unit of fuel Fuel2Steam=12.08 

• fast response from steam demand to steam pressure 
• enforced smoothness 
• no direct feed through (h(0)=0) 

Results: Even though the model identified by P4SID is more restricted due to constraints 
imposed by prior information it gives best fit factor and obviously complies with prior 
information. 

 
The fit factors for identified models compared to the output of deterministic subsystem are 
following 

Method Model Order Fit Factor  Relative Gain  
(correct value 12.08) 

P4SID 2 32 % 12.04 
N4SID 2 20 % 7.85 
ARX ( )2 2  24 % 9.93 

N4SID ( )2 2  19 % 14.52 

The model step responses are in Figure 12.  
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Figure 12: Step responses of models obtained by different algorithms. 

 
More details, mathematical formulations and algorithm description can be found in attached 
publication [HPL1]. 
 

2.5 Large-scale Subspace Identification 

Algorithms of Subspace Identification Methods (SIM) compute with highly redundant 
matrices (mainly Hankel matrices constructed from input / output data). Size and 
computational needs of these redundant matrices limit the usability of SIM on long data 
sets or a data sets from large-scale multiple inputs / multiple outputs systems. 
Standard SIM algorithm can be modified to parsimonious versions, which work only with 
vectors of stacked input / output data and do not create Hankel or other redundant matrices. 
The following table shows standard MOESP algorithm (left column) and our parsimonious 
modification (right column). 
 

Hankel matrices (i rows) Covariance matrices (without forming U,Y)
,u U y Y→ → , ,T T T

uu uy yyP UU P UY P YY= = =

Orthogonal projection (LQ factorization)

22
22

11 1
2

21 2

0
L

L QU
Y U Q

L QY L
⊥   

= ⇒ =   
    

Cholesky factorization
11

22 2

11 21

21 2

0
0

T T T
uu uy
T

yy
T

uy

P P LU U L L
P P L LY LY

      
= =      

      

MOESP Parsimonious MOESP

Extended observability matrix
22 ( ) iL SVD→ →Γ

Parameters A,C estimation
, (1: ,:)i i iA CΓ = Γ = Γ 

Parameters B,D estimation

set of equations linear in B,DYU⊥ +Γ →

Parameters B,D estimation
(proper excitation)

1 1

1

( )

set of equations linear in B,D

T T T

T
uy u

u

u

y uu

P P

YU YU UU P P⊥ + ⊥ −

⊥ −

⊥ −Γ = Γ

Γ

= Γ

→

 
 
The difference in memory consumption is significant as Cholesky factors of parsimonious 
MOESP (needed to get final results) can be computed without forming Hankel matrices U 
and Y. 
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2.5.1 Scalability of Large-scale Subspace Identification 

The scalability of Parsimonious and Standard MOESP methods can be evaluated in the 
terms of computational complexity and memory demands. The practical implementation of 
both algorithms requires the following matrix algorithms (with different matrix sizes) 
 
Standard MOESP: 
Algorithm Step Matrix Algorithm 
1) Forming Hankel matrices from data  
2) Orthogonal Projection Orthogonal triangularization 
3) Extended Observability matrix extraction Gram-Schmidt orthogonalization 
4) Parameters A,C estimation LS solution by QR factorization 
5) Parameters B,D estimation LS solution by QR factorization 
 
Parsimonious MOESP: 
Algorithm Step Matrix Algorithm 
1) Covariance matrices computation  
2) Covariance Cholesky factorization Cholesky factorization 
3) Extended Observability matrix extraction Gram-Schmidt orthogonalization 
4) Parameters A,C estimation LS solution by QR factorization 
5) Parameters B,D estimation  LS solution by QR factorization (reduced 

problem in comparison to standard MOESP) 
 
The computational complexity of the required algorithms is following table (taken from G.W. 
Steward, Matrix Algorithms, 1998). The complexity is measured in FLAMs, which is the 
number of floating point additions and multiplications. 
 
Matrix Algorithm Computational Complexity (FLAM) 

Orthogonal triangularization ,
0

n p×  
∈ =  

 

R
A R QA  2 31

3np p−  

Cholesky factorization n n×∈A R  3 / 6n  

Gram-Schmidt orthogonalization n p×∈A R  
2 31

3np p−  

LS solution by QR factorization ,n p×∈ =A R Ax b  26np  for n p>>  

 
Assume system with m  inputs,   outputs and identification data set with SN  samples and 
subspace “horizon” length as j . The main difference between standard and parsimonious 
algorithm is in the orthogonal triangularization versus Cholesky factorization  
 

Standard MOESP Parsimonious MOESP 
Orhogonal triangularization (step 2) Cholesky factorization (step 2) 

2 31
3NP P−  31

6 P  

N … approximately the number of data samples, SN N= . 

P  … number of Hankel data matrices rows, ( )P m j= +  .  
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Typically N P>>  and therefore 2 3 31 1
3 6NP P P− >> . 

 
and significantly different sizes of matrices in the last LS problem 
 

Standard MOESP Parsimonious MOESP 
LS solution by QR (step 5) LS solution by QR (step 5) 

26 UNP  3~ 6 UP  

P  … number of input Hankel data matrices rows, UP mj= .  

Typically N P>>  and therefore 2 36 6U UNP P>> . 

 
The main difference in memory demands is the need of standard MOESP to form Hankel 
data matrices, where the number of matrix elements is approximately ( )m jN+  .  
The comparison of both algorithms scalability as a function of system size (number of inputs 
and outputs) is in Figure 13. Left figure shows computational complexity and right figure 
shows memory demands for 10th order system. A similar comparison of both algorithms 
scalability as a function of number of data samples is in Figure 14. 
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Figure 13 Computational complexity and memory demands as a function of a number of inputs and 

outputs (10th order system, 104 number of samples). 
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Figure 14 Computational complexity and memory demands as a function of number of samples (10th 

order system with 10 inputs and 10 outputs). 
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2.6 Grey-box identification 

Grey-box modeling is an advantageous tool for system identification where available 
input/output experimental data are insufficiently excited. The lack of information in the data 
can be often improved with additional knowledge about the modeled system, which constricts 
the class of models under consideration. The real system is usually more complex and do 
not fit the model class, thus a bias error occurs. The main goal of our effort was to find an 
effective way to identify grey-box models, which would be relevant in commissioning 
predictive control. 
 
In our approach, we use a combination of two models, Output Error and ARMAX. Both 
models have the same deterministic part (conveniently parameterized space model), which is 
described trough the grey-box modeling, but noise filters are different. Using prediction error 
identification (PEM) approach, the Output Error model optimizes parameters with respect to 
the open-loop predictions, whereas the ARMAX model is focused on one-step predictions. 
Both, open-loop output predictions and one-step output predictions are effectively mixed in 
non-linear least square optimization criterion to find a model with improved deterministic part. 
 
More details, mathematical formulations and algorithm description can be found in attached 
publication [HPL3] and [HPL6]. 
 

2.7 Parallel models closed-loop order reduction 

Most large-scale industrial processes can be viewed as an interconnection of MIMO 
subsystems. It is quite frequent that a subset of these subsystems is working in parallel 
(Figure 13) – for example a set of boilers feeding a single header, a set of pumps, turbines, 
chemical reactors, etc. These parallel sub-systems can be operated in a multiple on/off 
configurations according to demands and allocation optimization. Design of Advanced 
Process Control (APC) has to consider this multiplicity and requires global model for every 
possible configuration. For example, MPC with model switching requires models, which are 
usually obtained by individual step testing.  

 

G1(s)

N(s)

Gn(s)
+

+

wz
u y

 
Figure 15 Parallel working subsystems as a part of large-scale system. 

 
Assume that the models of all subsystems are identified – state space models with a set of 
parameters (with physical interpretation) adjusted from experimental data. It is highly 
desirable to construct global models with reduced order. However, for a reasonable design of 
KF and MPC it is also important to preserve physical meaning to the most of model states 
and interconnection signals (KF and MPC tuning and constraints specification). These 
contradictory requirements can be fulfilled by reducing only the parallel models, as their 
functionality is similar. The advantage is that the controller can then be designed for each 
configuration such as if there is a single system with variable parameters instead of variable 
number of parallel systems.  
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Motivating industrial example is a set of boilers feeding a common header. Typically, fuel 
flow of all boilers is operated by a common signal. Each boiler (Figure 14) can be with 
significant simplification described by internal boiler volume and hydrodynamic pipe 
resistance between boiler and common header. There is also dynamics from fuel flow to 
generated steam, which is “normalized” by local combustion controller (to avoid oscillations / 
pushing among the parallel units). 

 

+

-

-

Header 
Pressure

Drum 
Pressure

Flow to 
Header

Fuel 
Flow

Steam 
Flow

+t t

 
Figure 16 Boiler Block Scheme. 

 
Low order models can be obtained by performing experiments for all possible on/off 
combinations and then fitting reduced order model or by using certain heuristics for parallel 
models reduction. Performing experiments for all combinations is not practical as the number 
of combinations can typically exceed tens / hundreds for larger solutions. 
 
Model reduction is currently done by the following heuristic (based on the first principles). 
The parallel boilers are replaced by a single boiler with normalized fuel flow to steam flow 
dynamics, drum volume is computed as a sum of individual boiler drum volumes and pipe 
resistance is computed as parallel resistance of individual boiler pipe resistances. 
 
Although described heuristic works quite well for boilers it would be preferable to replace it by 
a systematical approach such as balanced order reduction. Straightforward naive application 
of balanced reduction to parallel models and integration of reduced model to global model 
can give significantly biased and even unstable global model. The problem is that the “local” 
reduction of parallel models has to be done with respect to global model. This can be 
achieved by the algorithm of structured balanced reduction proposed in  
Henrik Sandberg, Richard M. Murray: "Model reduction of interconnected linear systems". 
Optimal Control, Applications and Methods, Special Issue on Directions, Applications, and 
Methods in Robust Control,  30:3, pp. 225-245, May/June 2009, 
where an optimal order reduction of parallel models is achieved with the lowest degradation 
of global model (the measure of degradation is models difference inf norm). 
 
Problem summary: 

• Large-scale system with sub-system of parallel working sub-systems 
• Individual parallel subsystems can be switched on/off 
• Global model for each potential on/off combination is needed with the following 

requirements: 
o order of parallel connected  models is reduced (optimally from global model 

view) 
o physical interpretation of non reduced subsystems has to be preserved to allow 

convenient design of KF and MPC and for specification of constraints on 
internal states 

 
Algorithm 
The algorithm is simplified algorithm for structure preserving balanced order reduction. The 
simplification is that there is only a single system ( )G s  for reduction (Figure 15b) compared 
to multiple systems 1( ), , ( )qG s G s considered in general structure preserving balanced 
order reduction algorithm (Figure 15a). 
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(a) (b)  
Figure 17 Structure preserving order reduction block scheme (a). Globally optimal local model 

reduction (b). 
 

Parallel systems model .......................................................... ( ) G G

G G

A B
G s C D

 
=  
 

 

Remaining model .................................................................. 
,1 ,2

,1

,2

( )
N N N

N E F

N H K

A B B
N s C D D

C D D

 
 =  
  

 

External input ........................................................................ w  
External output ...................................................................... z  
Internal input ......................................................................... u  
Internal output ....................................................................... y  
 
Global state space model , , ,A B C D  with input w  and output z  can be computed as  

( )
( )

1,2 ,2 ,2 ,1 ,2

,2 1

,1 ,2

: ,
, where

: .

N N G N N G N N G H
G K

G N G G K G G H

K G
N F G N F G E F G H

A B LD C B LC B B LD DA B L I D D
B MC A B MD C B MDC D M I D DC D D MC D LC D D D MD

−

−

 + +
= −   

= +   
= −   + + 

Controllability Gramian P  and observability Gramian Q  are computed for global model and 
separated as  

, .N NG N NG
T T

NG G NG G

P P Q Q
P Q

P P Q Q
   

= =   
   

 

GP  and GQ  are used to compute globally optimal balancing transformation fro parallel 
models state vector ˆG Gx Tx=  (where ˆGx  is reduced state vector for model ( )G s ) by standard 
balanced reduction algorithm: 
 

1) computing Cholesky factor R  of controlability Gramian T
GP RR=  

2) computing singular value decomposition 2T T
GR Q R U U= Σ  

3) transformation T  is computed as 1/ 2T RU −= Σ  
 
Balancing subsystem ( )G s  

 

( )

11 12 11 1

221 22

1 2

ˆ ˆ ˆ
ˆ ˆ, ,

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ, .

G G G G

G

A A B
A T A T B T A T

BA A

C CT C C D D

− −
   

= = = =        

= = =

 

Obtaining reduced subsystem , , ,G G G GA B C D  either by truncation 
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11 1

1

ˆ ˆ, ,
ˆ ˆ, .

G G

G G

A A B B

C C D D

= =

= =
 

or by singular perturbation 
1 1

11 12 22 21 1 12 22 2

1 1
1 2 22 21 2 22 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ, ,
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ, .

G G

G G

A A A A A B B A A B

C C C A A D D C A B

− −

− −

= − = −

= − = −
 

Reduced order global model model is then 

( )
( )

1,2 ,2 ,2 ,1 ,2

,2 1

,1 ,2

ˆ ˆ : ,
, whereˆ ˆ : .

N N G N N G N N G H
G K

G N G G K G G H

K GN F G N F G E F G H

A B LD C B LC B B LD D L I D DA B
B MC A B MD C B MD

C D M I D DC D D MC D LC D D D MD

−

−

 + +  = − 
  = + 
  = −   + + 

 
Note: 
Balanced reduction can be used only for strictly stable systems. This is usually circumvented 
by separating the system into strictly stable and the remaining part (for example by 
transformation to Jordan canonical form). However, this transformation / separation would 
inevitably destroy physical meaning of states, as it has to be applied to global model (even to 
parts we do not need to reduce). 
 
Example – Parallel Boilers 
Following simulations assumes 3 boilers feeding steam to a single header (Figure 6).  
 
Linearized Boiler Model 

( ) ( )

1/ 0 0
, ,

1/ / 0 /
0 , 0 ,

i s
i i

i i i i i

i i i i

T K
A B

V K V K V
C K D K

−   
= =   −   
= = −

 
header pressure
fuel flow
steam flow to header

p
u

FF
y SF

 
=  
 

=







 

where  
iV  ........................................... i-th boiler volume 

iK  .......................................... i-th boiler pipe to header conductivity 

SK  ......................................... units of stem from unit fuel 

iT  ........................................... i-th boiler 1st order time constant for fuel flow -> steam flow 
 
Linearized header model 

( ) ( )
( ) ( )
0 , 1/ 1/ ,
1 , 0 0 ,

h h H H

h h

A B V V
C D

= = −
= =

  
steam flow to header
steam demand
header pressure

SF
u

SD
y p

 
=  
 

=







 

where 
HV  .......................................... header volume 

The parameters were chosen as 

( ) ( )10, 300 500 700 , 100 130 150 , 100.s HK V K V= = = =  

The global model has inputs Fuel Flow (FF) and Steam Demand (SD) and outputs Drum 
pressure (p) and overall Stem Flow to header (SF).  
 
Simulations compare global model step responses for models obtained by: 

• Naive (local) order reduction inserted into global model (green color) 
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• Structured reduction (red color) 
• Global balanced reduction ignoring / damaging structure (blue color) 

 
The results for truncation are in Figure 17. It can be seen that naive balanced reduction has 
large bias and tends to be unstable. The structure-preserving algorithm gives consistent 
results with minimized degradation to full order model. 
 
 

 
Figure 18 Parallel boilers feeding a single header 

 

 
Figure 19 Reduced Models Step Responses 

 
 
More details, mathematical formulations and algorithm description can be found in attached 
publication [HPL5]. 
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2.8 Optimal Experiment Design 

Optimal input design for identification is a difficult non-convex problem, which needs to be 
simplified in order to become tractable.  The simplification used in our approach is that in 
each sampling period two models are selected from parameters uncertainty p.d.f., such that 
discriminating between these two models would bring the largest improvement in the model 
quality (improvement in parameters variance or control oriented model quality criterion). The 
input trajectory is then designed to cause the largest difference on the outputs of selected 
models, which would allow to efficiently distinguish between them.  
 
The input design is based on a relaxed LQ controller (further denoted as LQID), which 
allows limited deviation from LQ optimal input trajectory. This degree of freedom is used for 
perturbation causing the largest output difference between two models selected from the 
uncertainty. Besides, of standard LQ weight parameters there is a single additional parameter 
k for continuous adjustment of the amount of additional energy used for the identification - 
setting this parameter to zero forces LQID to behave like LQ controller. LQID starts with 
preliminary model p.d.f., which is updated with each new I/O data pair and used for input 
design. 
 
Relaxed LQ controller is based on standard LQ control criterion 

( ) ,T T T

t
J u x Qx x Su u Ruτ τ τ τ τ τ

τ

∞

=

= + +∑  

with parameters Q,S,R. Price for the optimal control from state tx  is given by Bellman 
function  

,
T

t t tV x Px=  
where P is the solution of algebraic Riccati equation. According to the optimality principle the 
LQ optimal input trajectory u  satisfies 

1( )t h
t t h tJ u V V+ −

++ ≤  
where h is the length of horizon. This equivalence constraint can be relaxed to allow certain 
degree of freedom for identification optimal perturbation 

)1( ) , 0,t h
t t h tJ u V V k k+ −

++ ≤ + ∈ ∞  
where k is the parameter for continuous adjustment of the amount of additional energy used 
for the identification. The Lyapunov stability of relaxed LQ controller can be easily proved. 
 
Relaxed LQ controller can be realized as quadratic optimization constraint. Denoting  

 
The quadratic constraint can be written as  
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LQID experiment design 
The degree of freedom obtained by relaxed LQ is used to inject signal, which is optimal for 
differentiation between two models, which are selected from parameters p.d.f. as two models 
with largest uncertainty and large probability.  The resulting optimization problem is 
quadratic programming with minimization of negative definite quadratic function and 
quadratic constraints.  
 
Example of optimal signal to distinguish two models 
LQID is applied to system 

2

2 2( ) , 0.2 , 1.
2

G s
s s

ω ω π ξ
ωξ ω

= = =
+ +

 

Two models, which need to be distinguished, are fixed to the same model with parameters 
S1:  0.2 , 1,ω π ξ= =  

S2: 0.2 , 0.05.ω π ξ= =  
The optimal input signal computed by relaxed LQ to distinguish between model is in Figure 
18 compared to result of a plain LQ controller. 

 
Figure 20 LQID with fixed selected model. The eneregy to additive identification signal is increased in t=150. 

 
Identification with LQID 
Two models are selected in each sampling period from the direction of the largest 
parameters variance (Figure 19). Energy limit for perturbation is reduced in t=160. Note the 
quality of step reference tracking in t=200. Can be used for closed loop identification, where 
model quality monitoring (predictions monitoring) initiates re-identification. 
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Figure 21 LQID identification compared to LQ. Models are recursively updated in each step. 

 
More details, mathematical formulations and algorithm description can be found in attached 
publication [HPL4]. 
 



2.9 Subspace Identification of Cascade Systems

In Section 2.4, subspace identification for systems with prior information was discussed. In this
section, we restrict the attention to systems that has a cascade structure, see Figure 1. For this class
of systems, it is possible to say more than in the generic case, as seen next.

2.9.1 Introduction

The objective of this section is to study a few methods to identify systems with a cascade, or serial,
structure as illustrated in Fig. 1, using subspace methods. The current work has been motivated by
a discussion on use of subspace identification in process industry presented in [28].

G1 G2

u

Σ Σ
e1 e2

y1 y2

Figure 1: Cascade system.

In particular systems with one input signal and two output signals will be studied. The input-output
relations for this system are

y1 (t) = G1 (q)u (t) + e1 (t)
y2 (t) = G1 (q)G2 (q)u (t) + e2 (t)

(1)

The input signal is denoted u (t) and the outputs, y1 (t) and y2 (t) respectively. The signals e1 (t) and
e2 (t) are assumed zero mean white Gaussian measurement noise processes with variances λ1 and
λ2. The transfer functions G1 (q) and G2 (q) are assumed stable. Here q denotes the standard shift
operator, i.e. q−1u (t) = u (t− 1). The notation G3 (q) = G2 (q)G1 (q) will be used throughout this
paper.

The problem is hence to identify the subsystems G1 (q) and G2 (q) from data {u (t) , y1 (t) , y2 (t)}, t =
1 . . . N . Any single-input multiple output method could be used, but it is often not straightforward to
impose the cascade model structure.

The contribution here is two new methods that integrate structure into the subspace identification of
cascade structured systems. The methods are applied to a real system, the double tank process.
The method shows comparable performance with state of the art methods. It is hard to say something
about the statistical properties for these methods, however these estimates could be used as initial
estimates for a Prediction Error Method (PEM) or the Maximum Likelihood (ML) method.

2.9.2 Other Methods and Related Work

One direct approach to identify the subsystems would be to first identify G1 (q) from data {u (t) , y1 (t)}
and then in a second step identify G2 (q) from data {û2 (t) , y2 (t)}, where û2 is an estimate of the input
to the second subsystem G2 (q). If the model estimate Ĝ1 (q) is good, one could use û2 = Ĝ1 (q) u (t).
If the noise variance is low for the first measurement noise process one could use û2 (t) = y1 (t). It is
also possible to use an optimal predictor of u2 (t) based on the statistical properties of e1 (t).
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It is also possible to apply a Prediction Error Method (PEM) orthe Maximum Likelihood (ML) method to
this problem [26]. But because of the product G1 (q)G2 (q), simple linear model structures such as OE
or ARX are not directly applicable. It can however be shown that structured PEM and structured ML
are statistically optimal methods for this problem. The statistical properties of these identified models
are analyzed in [29], [30]. The Prediction Error based methods or Maximum Likelihood methods
often involve solving non-convex optimization problem. It can therefore be difficult to guarantee that
during the optimization the global optimum will be found. A way to solve this is to try to find good
initial estimates, hopefully lying in the region of attraction for the global optimum. The two proposed
methods here could be a way to find such initial estimates.

The problem of imposing some structure into the subspace method is discussed in Section 2.4, but
see also [31] where they try to identify OE and ARMAX models using subspace methods. In [32] and
[33] they want to guarantee that the identified model with a subspace method is stable when the true
linear system is known to be stable.

Another approach proposed in [34] is to identify the transfer functions G1 and G3 = G1G2 and then
obtain an estimate of G2 by solving the following standard H∞-model matching problem

Ĝ2 = arg inf
Q∈RH∞

‖ Ĝ3 −QĜ1 ‖∞ (2)

where Ĝ1 and Ĝ3 are the identified models of G1 and G3 respectively. Typically the order of Ĝ2 is
equal to the order of Ĝ1 plus the order of Ĝ3. The order of G2 should be the order of G3 minus the
order of G1 if there is no pole-zero cancellation. In [34] they solve this by using structured model
reduction to reduce the order of G2.

2.9.3 Subspace Identification of Cascade Systems

In this section some basic properties for cascade systems that are needed for the new identification
methods, are presented. The two new methods will be based on subspace identification. A good
overview of the algorithm can be found in [27] and [26].

One natural realization of the system (1) on state space form is
[

x2 (t+ 1)
x1 (t+ 1)

]

=

[

A2 B2C1

0 A1

] [

x2 (t)
x1 (t)

]

+

[

0
B1

]

u (t)

[

y2 (t)
y1 (t)

]

=

[

C2 0
0 C1

] [

x2 (t)
x1 (t)

]

+

[

e2 (t)
e1 (t)

] (3)

where x1(t) ∈ R
n1 , x2(t) ∈ R

n2 and,

G1(q) = C1(qI −A1)
−1B1, G2(q) = C2(qI −A2)

−1B2.

This special structure of the state space matrices, where the states x1 (t) correspond to the first
subsystem and the states x2 (t) correspond to the second subsystem, will be called a realization in
cascade form. Note that the matrix B2C1 should have rank (B2C1) = 1.

Just applying a standard subspace method to the system (1) would return an estimate in the form

x (t+ 1) = Ax (t) +Bu (t)

y1 (t) = C1x (t)

y2 (t) = C2x (t)

A state space realization is not unique with respect to the input-output relation, i.e. the system is only
identified up to an unknown similarity transform. In general the states from the first subsystem will
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be mixed with the states from the second subsystem, due to this unknown transform. The first and
second subsystems could hence not be directly separated. If the similarity transform somehow was
known, the system could be transformed back to cascade form (3) and the state space matrices for
G1 and G2 could easily be recovered. In the first proposed method a transform that transforms the
system back to cascade form is found and from this the subsystems are recovered.

Basically, the subspace method forms an estimate of the extended observability matrix from input-
output data. As discussed before the estimate is a transformed estimate of the true observability
matrix. The estimated extended observability matrix, Õr, has the form [26]

Õr =











C
CA

...
CAr−1











T̃ + ẼN

where T̃ is an unknown transformation of full rank and ẼN is an unknown matrix due to noise. The
model order is determined by studying the singular values for the extended observability matrix and
keep the n most significant values. When the model order has been selected the estimate of Ĉ and
Â can be calculated from the extended observability matrix by solving a linear least square problem.
The matrices B̂ and D̂ can then be found by solving a linear regression problem. [27], [26].

For the system on cascade form (3) the extended observability matrix becomes

ÕrT̃ =











C
CA

...
CAr−1











[

T̃11 T̃12

T̃21 T̃22

]

=

























C1T̃11 C1T̃12

C2T̃21 C2T̃22

C1A1T̃11 C1A1T̃12

⋆ C2B2C1T12 + C2A2T̃22

C1A
2
1T̃11 C1A

2
1T̃12

⋆ (C2B2C1A1 + C2A2B2C1)T̃12 + C2A
2
2T̃22

...
...

























(4)

Some repeated values are replaced by stars (⋆) due to space limitations. This fundamental struc-
ture of the extended observability matrix will be used to derive the second method to identify the
subsystems.

2.9.4 Identification Methods

The observations made in the previous section are used to formulate two methods for identification
of cascade systems.

Method 1: Indirect Method The main idea of this method is to find a similarity transform for the
identified system G3 such that the transformed system is in cascade form (3).

This method of finding a similarity transform that brings the system to cascade form was proposed
in [35]. The transformation matrix is parameterized and a set of equations that has to be solved to
get the system to cascade form is formulated. It is shown that the number of parameters is less
than the number of equations needed to be solved. Due to uncertainties this problem does not in
general have an exact solution. In [35] no method of solving this problem is presented. The proposed
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method here solves this problem by finding a similarity transform that takes the system to cascade
form while minimizing the mean square error between the estimated output and the measured output.
The method introduced here is related to the method proposed in [31] where OE and ARMAX models
are estimated with subspace methods by finding suitable transformations, to get the system to the
desired form. The method denoted method 1 has three steps:

Step 1: Identify the state space matrices Â1, Ĉ1, B̂1 from data {u (t) , y1 (t)}, t = 1 . . . N with order n1

and Â3, Ĉ3 and B̂3 using {u (t) , y2 (t)}, t = 1 . . . N with order n3. The order of the second subsystem
is calculated as n2 = n3 − n1.

Step 2: Find a transformation, T by solving the following optimization problem,

min
T,B̃1

1

λ1

N
∑

t=1

(

Ĉ1

(

qI − Â1

)−1
B̂1u (t)− y1 (t)

)2

+

1

λ2

N
∑

t=1

(

Ĉ3T
(

qI − T−1Â3T
)−1

(

0

B̃1

)

u (t)− y2 (t)

)2

s.t T−1Â3T and Ĉ3T are in cascade form.

(5)

where λ1 and λ2 are the measurement noise variances or can be seen as some weighting if the
variances are unknown.

The D-matrices are assumed zero here but an extension to non-zero D-matrices should be easy.
Some of the constraints should be chosen such that the lower right corner of T−1Â3T has approxi-
mately the same dynamics as the identified system Ĝ1 and that the lower left corner should contain
zeros. The upper right corner of T−1Â3T corresponding to B2C1 should have rank 1. It is not obvious
how these constraints should be chosen when the first subsystem has a order larger than one. Hence
the optimization problem stated above is in general hard to solve.

Let us study the constraints in more detail. First look at the constraint that Ĉ3T should be on cascade
form. This means that the last n1 elements of Ĉ3T should be equal to zero. This in turns means
that the last n1 columns of T must be in the kernel space of Ĉ3. The second set of constraints is
that T−1Â3T should be on cascade form. This means that the lower right corner should have similar
dynamics as the first identified subsystem Ĝ1 and that the lower left corner should be the zero matrix.

If we use Schur factorization[36] on Â3

Â3 = UÃ3U
∗ (6)

then Ã3 is similar to Â3 and has the lower left corner equal to the zero matrix. If the Schur factorization
is performed such that the eigenvalues closest to the eigenvalues of the first subsystem is located in
the lower right corner of Ã3, the first n2 columns of T should be chosen as the first columns of U .
This is summarized in a proposition.

Proposition 1 If the last n1 columns in T spans the kernel space of C3 and the first n2 columns span
the space corresponding to the n2 columns of U , where U is given from the Schur factorization of
A3 = UÃ3U

∗ such that the dynamics from the first system is in the lower right corner of the block-
triangular matrix Ã3. The system transformed with T will be on cascade form.

Using Proposition 1, the optimization problem (5) could be simplified. If the optimization is instead
performed over linear combinations of the vectors spanning the kernel space of C3 and over scaled
versions of the appropriate columns of U from the Schur factorization. Denoting the order of the
kernel space by nK = n2 + n1 − 1 gives

T = [k1u1 . . . kn2
un2

,

nK
∑

i=1

ki+n2
ci . . .

nK
∑

i=1

ki+n2+(n1−1)nK
ci] (7)
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where ui is the i:th column of U from the Schur factorization (6) and ci ∈ Ker(Ĉ3). The optimization
is performed over ki i = 1 . . . (n2 + n1(n2 + n1 − 1)). The number of optimization parameters are
reduced from (n1 + n2)

2.

Finally, the constraint that the rank of the upper right corner of T−1Â3T , denoted Â12, should be one
is hard to incorporate. Instead some heuristics could be used. Here we will use that the upper right
corner should equal B2C1. Denote the estimate of the system matrix of the first subsystem from
T−1Â3T as Ā1. We denote C̄1(T ) as the transformed matrix of Ĉ1 where the transform is a similarity
transform between the identified Â1 and Ā1. Ideally the eigenvalues of Â1 should be the same as
the eigenvalues Ā1. If this is the case a similarity transform could easily be found. In general this
is not the case. One solution to this is to transform both Â1 and Ā1 to upper triangular form, then
replace the eigenvalues in the diagonal of Ā1 by the corresponding in Â1. This way the two matrices
are similar and a similarity transform could be found. An estimate of B2 is then given by

B̂2 = Â12C̄1(T )
†

where (†) denotes the pseudo inverse. We now formulate the following optimization problem

min
T,B̃1

1

λ1

N
∑

t=1

(

Ĉ1

(

qI − Â1T
)−1

B̃1u (t)− y1 (t)
)2

+

1

λ2

N
∑

t=1

(

Ĉ2

(

qI − Â2

)−1
B̂2Ĉ1

(

qI − Â1T
)−1

u (t)− y2 (t)
)2

(8)

where

Ĉ2 = (CT )1:n2

B̂2 = Â12C̄
†
1

Â2 =
(

T−1Â3T
)

1:n2,1:n2

.

The optimization is performed over columns of T defined in (7) and B̃1. This heuristics solves the
problem with the rank condition in many cases.

Step 3: When the transformation is found the system is transformed to cascade form. From this the
estimates of the state space matrices for the second subsystem Â2 and Ĉ2 can easily be recovered.
The matrix estimate B̂2 could be calculated from the matrix product B2C1 as described above.

Method 2: Direct Method The second method uses the fact that the structure of the extended
observability matrix is known for cascade systems, see (4). The method only works for systems
where both subsystems have order one. But this is in practice a common case.

The method consists of the following steps:

Step 1: Identify the first subsystem using data u and y1 with order n1.

Step 2: Identify the extended observability matrix for the Single-Input Multiple-Output (SIMO) system
from u to y1 and y2 with order n3. Denote the identified extended observability matrix

OrT̃ =















ξ1,1 ξ1,2
η1,1 η1,2

...
...

ξr,1 ξr,2
ηr,1 ηr,2














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where ξi,1 has size (1× n1) and ηi,2 has size (1× n3 − n1).

Step 3: From (4) it can be seen that for the first subsystem the state space matrices can be solved
with least squares just as in the standard subspace formulation

Ĉ1 = C1T̃11 = ξ1,1

Â1 = argmin
A1

r−1
∑

i=1

∥

∥ξi+1,1 − ξi,1A1

∥

∥

2

2

Step 4: From (4) it is seen that for the second subsystem the estimate Ĉ2 is given by

Ĉ2 = C2T̃22 = η1,2

In general it is not obvious how a a least square problem should be formulated for the second subsys-
tem. To illustrate the concept we consider the special case when the order of the second subsystem
is one. Denoting the matrix product χ = B2C1 gives the following least square problem in Â2 and χ.

argmin
A2,χ

r−1
∑

i=1

∥

∥ηi+1,2 − ηi,1A2 − χξi,2
∥

∥

2

2

Step 5: When χ = B2C1 has been found, B̂2 can be solved. Finally B̂1 can be calculated as in the
standard subspace formulation as a linear regression problem.

2.9.5 Examples

In this section the two methods presented will first be applied to a real application, the double tank
process, and then the first direct method will be applied to a simulated system to show how the
method performs for higher order systems.

The Double Tank Process The double tank system from Quanser Inc consists of two equivalent
water tanks. A DC-motor drives a pump which pumps water from the basin into the upper tank. Water
then flows out from the upper tank into the lower tank through a small outlet. The water from the lower
tank then flows out into the basin. The input to the system is the input voltage to the DC-motor, u and
the outputs are the water level in each tank, h1 and h2.

The process is nonlinear. The outflow from one tank is proportional to the square root of the water
level. The identification of the system will hence be performed around a linearization point.

Identification A white Gaussian noise process is used as input during the identification. The sam-
pling time is chosen as Ts = 1s. 300 samples of the input and outputs were collected, 200 used for
identification and 100 used for validation. When all data has been collected, the identification pro-
cess starts. The methods presented in section 2.9.4 are used and their results are compared. First
Method 1 is considered.

Method 1 The state space matrices, Â1, B̂1, Ĉ1, Â3 and Ĉ3 are identified with N4SID [26], [27]. The
orders of these systems are chosen by looking at the singular values of their respective extended
observability matrices.

The order of G1 is chosen as n1 = 1 and the order for G3 is chosen as n3 = 2.

A similarity transform is found by solving the optimization problem (8) numerically. Since the orders
of the subsystems are both one, the rank condition is automatically fulfilled. When the transformation
matrix T and B̃1 are found then it is straightforward to find Â2, B̂2 and Ĉ2.
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Figure 2: Bode magnitude plot of the second subsystem G2 for the two proposed method, the physical
model and the H∞-method.

Method 2 Again the N4SID is used, but now on the SIMO system to get an estimate of the extended
observability matrix. The singular values of the extended observability matrix suggest that the order
should be chosen as 2. From previous results we know that the first subsystem is approximated well
by a first order system. Method 2 is now applied to the extended observability matrix and the state
space matrices for the two subsystems are calculated.

Results The methods previous applied to the two tank process are compared to a physical model
[37] and the H∞-method (2), [34].

For the first subsystem the two proposed methods and the H∞-method gives similar result. This is
obvious since all three methods are estimating the first subsystem in the same way. They also have
about the same dynamics as the physical model and only a very small difference in gain. The differ-
ence in gain could originate from wear and tear in the real process as well as from the discretization
and linearization in the physical model.

The bode plot for the second system for the two different methods are shown in Fig. 2. For the
second subsystem the methods gives slightly different results. First we can note that the estimated
system using the H∞-method is of order 3 as expected. The dynamics are about the same for the
two proposed methods, i.e. the eigenvalues of system matrix are close but they differ from the H∞-
method. As the two tanks are equal we would expect the dynamics of the first and second subsystem
to be equal. This can be seen in the physical model. This is the case in both of the proposed methods
but not in the H∞-method.

The gain difference, that can be seen between the two proposed methods, is due to the different way
the two methods calculates the state space matrices.

Finally the prediction error for the models given by the three methods, are calculated for the validation
data, i.e.

V
(

Ĝ1, Ĝ2

)

=
1

N

N
∑

t=1

(

y1 (t)− Ĝ1 (q) u (t)
)2

+

(

y2 (t)− Ĝ1 (q) Ĝ2 (q)u (t)
)2

(9)

The resulting prediction error is 4.2 · 10−4 for the indirect method, 3.8 · 10−4 for the direct method and
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3.9 · 10−4 for the H∞-method. The difference in prediction errors for the three methods is small.

It looks like the second method performs slightly better for this simple system. The execution time is
also much shorter for this method since the optimization, i.e. the solving of the least square problem,
is much more computational efficient than for the first method. But on the other hand, it is not obvious
how the second method should be extended to handle larger systems.

Higher order systems Here we consider a numerical example of a cascade system with higher
order subsystems

G1 (q) =
q − 0.1

(q + 0.6) (q − 0.8)

G2 (q) =
1

(q2 − 0.5q + 0.5)

The measurement noise variances are λ1 = 1 and λ2 = 1. The input is white Gaussian noise with unit
variance. The system is simulated for 500 data points and the indirect method is then applied, this is
repeated 100 times. The result of the Monte-Carlo simulation is shown for the second subsystem in
Fig. 3. The first subsystem is the same as for direct application of the standard subspace method.
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Figure 3: The mean and standard deviation of the Monte-Carlo simulation for the second subsystem.

From the figure it can be seen that the method performs well for this system. It seems that the mean
over the Monte-Carlo simulations tends to the true system. The prediction error (9) is comparable
with the direct subspace method applied to the SIMO system from u to y1 and y2.

2.10 Input Design for Cascade Systems

In Section 2.8, optimal experiment design is discussed for generic model structures. Here we again
restrict the model structure to a cascade form, and see what implications that have for an optimal
experiment.

In the identification of the double tank system in Section 2.9.5, the input was chosen as a Gaussian
white noise sequence. This it not generally the optimal input for the identification of a cascade system.
The problem is that the input to the second system can not be chosen directly. We consider the input
signal to the second subsystem

u2(t) = G1(q)u(t)
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which consequently is directly colored by the the first unknown subsystem. Hence, a good input for
identification of G1 may give a bad input to G2 and vice versa.

The recent framework [38] for experiment design, introduced by Hjalmarsson and co-workers could
be interesting to apply to cascade systems. The main idea of this framework is that the estimation
properties could be separated from the application specification.

To illustrate the framework an example is given for a simple cascade system. Consider the cascade
system with first order FIR subsystems, i.e. G1 (q) = 1 + b1q

−1 and G2 (q) = 1 + b2q
−1. The model

parameter vector is denoted θ =
[

b1 b2
]

and assume that the true system can be described by
θ0 =

[

b01 b02
]

.

Assume that we have some requirements on the parameter covariance, then the application specifi-
cation could be written as

Vapp (θ) =
[

b1 − b01 b2 − b02
]

Q

[

b1 − b01
b2 − b02

]

≤
1

γ

where Q is some weighting matrix and γ > 0 is some constant . This weighting matrix could for
example be chosen such that the parameter in the second subsystem is more important than the
parameter for the first subsystem or vice versa.

Now consider a typical system identification method that minimizes the mean square prediction error,
i.e.

θ̂N = argmin
θ

VID,N (θ)

VID,N (θ) =
1

N

N
∑

t=1

(

y1 (t)−
(

1 + b1q
−1

)

u (t)
)2

λ1
+

1

N

N
∑

t=1

(

y2 (t)−
(

1 + b1q
−1

) (

1 + b2q
−1

)

u (t)
)2

λ2

We will now try to find the optimal input for this problem. The input should be optimal in the sense
that it minimizes the input power such that the application specifications are fulfilled. This is known
as least costly identification [39]. Using the framework [38], asymptotically (N → ∞) it can be shown
that this optimization problem can be formulated as

min
u(t)

E
[

u (t)2
]

s.t γV ′′
app ≤ NV ′′

ID

where the constraint is a matrix inequality.

For the simple system presented above the optimization problem becomes

min
r0

r0

s.t N

[

ρ1 ρ2
ρ2 ρ3

]

≥ γQ

r0 ≥ r1

ρ1 = r0/λ1 + [(1 + b22)r0 + 2b2r1]/λ2

ρ2 = [(1 + b21)r0 + 2b1r1]/λ2

ρ3 = [(1 + b1b2)r0 + (b1 + b2)r1]/λ2
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where rτ = Ē [u (t) u (t− τ)]. The optimization problem is solved for r0 and r1 and a optimal input
with this covariance function could be generated.

Let us look at some special cases. First assume that λ2 ≫ λ1 and that the parameter b2 is unim-
portant. Then we get r1 = 0, i.e. the input should be chosen as white noise as expected, we know
that this is a optimal input for the MA(1) process. If we instead consider λ1 ≫ λ2 and that the first
parameter, b1 is unimportant, then we would want a white noise input to the second subsystem. If the
optimization problem above is solved the input becomes a white noise sequence filtered through the
inverse of the first subsystem, hence the input to the second becomes white noise.

In general the input becomes an optimal weighting between these two cases depending on the noise
levels and which parameter that is more important.

For more complex systems, the problem above cannot be solved for the covariance function rτ but
the optimization problem must be solved for a parametrization of the spectrum of u (t), see [38]. It
would be interesting to study the optimal input for more complex systems.

2.11 MPC oriented system identification

Applications oriented system identification is a research topic that has attracted significant interest
since the birth of the field system identification in the mid 1960s. In particular there was a surge
of interest in conjunction with the developments in robust control between 1985-1995, giving rise to
the area “identification for control” [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. A key outcome of
this effort was the recognition of the importance of the experiment design1 and this lead to iterative
approaches trying to achieve experimental conditions such that the bias error was suitably distributed
over frequencies to suit control applications.

A consequence of these developments was that results on computational methods for optimal exper-
iment design were revisited and extended [15, 16, 17, 18, 19].

In [20] it is illustrated that optimal input design may result in significant savings in experimental efforts
in control applications. Through some simple examples, it was advocated in [21] that it is possible to
combat the curse of complexity, i.e. that the model uncertainty grows with the system complexity so
that for highly complex systems the model becomes virtually useless, by careful experiment design
and that this also allows simple models to be used (as long as only a limited amount of system
properties are to be extracted from the measurements). Following up on [21], the dual role of a
“good” input as 1) an enhancer of system properties of interest, and 2) as an attenuator of properties
of little or no interest was formalized in [22] and further developed in [23]. In particular it was shown
that, under certain conditions, an input that is designed to be optimal for a scalar cost function and
for a full order model, results in experimental data for which also reduced order models can be used
to consistently identify the property of interest.

In [KTH1, KTH3] it is argued that the main resource to cope with system complexity is the experiment
design and a a general framework for applications oriented experiment design is outlined.

In summary, applications oriented system identification has turned out to be a very complex issue
with many facets and there is to date no entirely satifying general methodology even though many of
the important characteristics of the problem are well recognized. Due to the recognition of the pro-
found importance of experiment design, the WIDE research group at KTH has pursued this research
direction. The limitations in resources for Task 3.1 has imposed limitations on what the Lab has been
able to achieve. The focus has been to develop a framework for experiment design for (distributed)
MPC and to test the principles. When assessing the contributions, the large efforts that has been
spent on applications system identification by the research community should be considered. Over-

1This, of course, was well known earlier on also but during this time its importance became very palpable.
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all, we believe that the results are very promising, but that some further developments are needed in
order to be practically useful.

2.11.1 Basic ideas

The quality of a model will directly influence the performance of an application where the model
is being used. We assume that if an exact mathematical model of the true system was available
for the design of the application, the desired performance would be obtained. However, when the
used model does not correspond to the true system, the performance of the application will degrade.
We measure this in terms of a performance degradation “cost” Vapp(M) which has global minimum
Vapp(M) = 0 at M = So, c.f. [24, 25]. For example, in MPC the performance degradation can be
measured by

Vapp(M) :=
N
∑

t=1

‖yideal(t)− yM (t)‖2 (10)

where yideal is the output response when the true system model is used in the MPC and where yM is
the response when model M is used instead.

A model is then deemed to be acceptable if its performance degradation is sufficiently small. This
leads to a set of acceptable models

Eapp :=

{

M : Vapp(M) ≤
1

γ

}

(11)

Here γ is a user specified constant that determines the required accuracy. We will call this constant,
the desired accuracy since increasing γ leads to tighter specifications (and hence a smaller set Eapp.

This leads to the simple idea that the objective of applications oriented system identification is to
produce a model which belongs to Eapp.

In WIDE a stochastic framework is adopted in that disturbances are assumed to be random variables.
Resulting parameter estimates (which corresponds to models) will then also be random variables, typ-
ically with unbounded support, and as a consequence it is not possible to to provide 100% guarantee
that the resulting model belongs to Eapp. Instead, this has to be relaxed to a certain level of probability,
e.g. 99%.

For parameter identification, the model parameters, say θ, correspond to the models M(θ) and the
objective is then that the parameter estimate, θ̂ say, belongs to the set of model parameters that
corresponds to Eapp with a certain (high) level of probability p, i.e.

Probability
({

θ̂ : M(θ̂) ∈ Eapp

})

≥ p (12)

2.11.2 Applications oriented experiment design

One thus has to ensure that the experiment design is such that (12) holds. A natural objective is
to try to minimize the experimental resources required to ensure this. Resources could, e.g., mean
experimental time or used energy. Thus the experiment design problem in applications oriented
parameteric system identification can be formulated as follows

minExperimental Resources

s.t. Probability
({

θ̂ : M(θ̂) ∈ Eapp

})

≥ p
(13)

There two several key issues associated with solving this problem in practice:

36



i) The set of acceptable models Eapp has to be determined

ii) It must be, at least, numerically possible to solve the problem (13)

2.11.3 MPC oriented experiment design

In regards to the issues in the preceeding section, two methods to compute Eapp for MPC are detailed
in [KTH8, KTH5]. In the next section we describe the scenario approach employed in [KTH8]. A
hampering factor is that the system parameters need to be known. An adaptive method to cope with
this is presented in [KTH2] for ARX systems but this method still has to be adapted to MPC. For ii)
in Section 2.11.2, we are relying on results in [19] where it is shown that optimal experiment design
problems can be solved by convex optimization when the system is linear and time-invariant if the
input spectrum is linearly parameterized.

2.11.4 The Scenario Approach

Consider the following general Robust Convex Program:

RCP :
min
γ∈Rd

cT γ

s.t. fδ(γ) ≤ 0, δ ∈ ∆.
(14)

where fδ : R
d → R is convex for every δ ∈ ∆.

The description of RCP involves the satisfaction of an infinite number of constraints, i.e., one per
each value of δ ∈ ∆. This corresponds to a convex optimization problem which, except for some
particular cases, is in general computationally intractable.

The scenario approach, see [40], provides a tractable relaxation of RCP , which consists in selecting
a small number of these constraints to include in the optimization problem. To do this, the scenario
approach presumes a probabilistic description of the uncertainty, in other words, a probability distri-
bution Pr over ∆. The method then extracts, at random, N instances or ‘scenarios’ of the uncertainty
parameter δ according to the probability Pr, and it considers only the corresponding constraints in the
scenario optimization problem.

The resulting program, SCPN , is a standard finite dimensional convex optimization problem with a
finite number of constraints. The computational cost of SCPN can be quite reasonable, provided N
is not large.

2.11.5 Optimal input design for MPC

Consider prediction error identification of models of the type

x(t+ 1) = A(θ)x(t) +Bu(t) (15)

y(t) = x(t) + e(t), (16)

where the state transition matrix is parameterized by θ. The resulting parameter estimates are asymp-
totically Gaussian with covariance matrix P . The inverse P−1 is a linear function of the input spectral
density and a linearly parameterized spectrum gives a convex optimization problem.
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Figure 4: Layout of the railcar as presented in [44]

We study the input design problem

min
Φu(ω)

tr

∫ π

−π

Φu(ω) (17)

s.t. (θ0 − θ)T
N

κ
P−1(θ0 − θ) ≥ γVapp(θ) (18)

Φu ≥ 0, ∀ω. (19)

In the inequality (18) the left side corresponds to a confidence ellipsoid of the parameter estimates
while the right side corresponds to the estimates falling in the set Eapp. This implies that we guarantee
that the estimates with a certain probability will give an acceptable degradation (10) of the MPC
performance. No analytic description of Vapp is used, instead the ideas from the scenario approach
are used to satisfy the constraints.

One advantage of MPC is the ability to easily handle constrained input and output signals in the
controller. A short-coming of the current method is that hard constraints are not taken into account in
the input design.

2.11.6 The railcar example

We will consider identifying a model of a railcar that is to be used for temperature control by MPC
found in [44]. The layout of the railcar is presented in Figure 4. We model the interactions in the
railcar using the heat conduction equation and the model of the railcar is

T (t+ 1) = A(θ)T (t) +Bu(t) (20)

y(t) = T (t) + e(t) (21)

where T is the temperatures in the compartments and A is parameterized by θ. The model has in
total 18 states, 8 inputs and 18 outputs. More details of the model and the MPC problem can be
found in [44] while the input design problem considered is described in detail in [KTH8].

Optimal inputs spectral densities for minimizing the total input energy while maintaining an acceptable
application degradation are found for different types of spectrum. We see that allowing spatial and
temporal coloring reduces the amount of input energy needed. Figure 5 shows three FIR-type optimal
spectral densities, only the upper left 4 × 4 block in shown since the symmetry of the railcar gives
identical blocks in the spectrum. The total input energy for the different design is presented in Table 1.
We also note that the input energy in the corner compartments in all designs is the highest, this is
reasonable since there is no actuation in the ante chambers.

2.11.7 Summary

In summary, one part of the WIDE approach to MPC oriented system identification is to focus on
the experiment design. The objective is to minimize use of experimental resources, while ensur-
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Table 1: The total input power required to achieve the identification goal for four different types of input
spectra. For the FIR spectra, M denotes the maximum time delay in the filter. All other parameters
of the optimization are kept the same in all four experiments.

Spectrum type
White FIR, M = 0 FIR, M = 1 FIR, M = 2

Input Power 225 150 114 102
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Figure 5: The upper left 4 × 4 block of the optimal input spectrum for identification of the railcar
model parameters with different spectrum parameterization, M = 0 (solid), M = 1 (dashed), M = 2
(dotted).
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ing that the requirements of the MPC application are satisfied. The solution is obtained by convex
optimization. For further details we refer to [KTH8, KTH5, KTH1, KTH3].
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