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Modern Optimization Challenges

Problems: Machine Learning, Data Mining, Artificial Intelligence.

New situation: Availability of big data arrays.

Consequences: Large-scale problems, treated by the

First-Order Methods

NB:

▶ In Machine Learning, we need to classify different data patterns.

▶ For that, we need to measure distances between the patterns.

▶ For that, we need to compute an appropriate metric.

▶ This can be done only by Semidefinite Programming (LMI)

However: No activity observed in this direction up to now.

Reason: LMI have a reputation of difficult problems.

Our goal: reduce complexity of LMI up to that of Linear Programming.
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Primal-dual pair of conic problems

Let K ⊂ E be a pointed closed convex cone, intK ̸= ∅ (≡ proper).
Then K∗ = {s ∈ E∗ : ⟨s, x⟩ ≥ 0, x ∈ K} is the dual cone (proper too).

f ∗ = min

Fp=

 x ∈ K
Ax = b

⟨c , x⟩ = max

Fd=

 y ∈ Rm, s ∈ K∗

s + A∗y = c

⟨b, y⟩,

Denote F = Fp ×Fd . Assumption: ∃(x̃ , ỹ , s̃) ∈ rintF

Example 1: Let f ∗ = min
X∈Sn+

{
⟨C ,X ⟩ : ⟨Ai ,X ⟩ = b(i), i = 1, . . . ,m

}
.

Then f ∗ = max
y∈Rm

{
⟨b, y⟩ : C ⪰ A∗(y) =

m∑
i=1

y (i)Ai

}
.

Log.-homogeneous SCB: F (τx) ≡ F (x)− ν ln τ x ∈ intK , τ > 0.

Dual SCB: F∗(s) = max
x∈intK

{
− ⟨s, x⟩ − F (x)

}
. (Regular Barriers)

Primal-dual central path: denote F0 = rintF , and

zt = (xt , yt , st) = arg min
z∈F0

{
t[⟨c , x⟩ − ⟨b, y⟩] + F (x) + F∗(s)

}
.
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Primal-Dual Functional Proximity Measure

Define Ω(z) = F (x) + F∗(s) + ν ln ⟨s,x⟩
ν + ν

Theorem: for z ∈ F , Ω(z) = 0 iff z = zt and t = ν
⟨s,x⟩ .

Predictor-corrector schemes

1. Corrector Stage.

We fix t > 0 and try to find a point z ≈ z(t) by minimizing Ω(z)

with ⟨s, x⟩ = ⟨c −A∗y , x⟩ = ⟨c , x⟩− ⟨b, y⟩ = ν
t . This problem is convex.

2. Predictor Stage (general).

If z ≈ z(t), we compute d ≈ z ′(t) and move keeping

z + αd ≈ z(t + α), α > 0,

by checking Ω(z + αd). Computation of Ω(z) is easy.

NB: For fast increase of t > 0, we need big α . By theory, we can take

t+ =
(
1 + O(1)

λΦ(z(t))

)
t, with λΦ(z) = ⟨∇Φ(z), [∇2Φ(z)]−1∇Φ(z)⟩1/2.

For Φ = F + F∗, we have λΦ(z(t)) ≡ ν1/2
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Symmetric Cones ≡ Self-Scaled Barriers

Definition: F∗(∇2F (w)u) = F (x)− 2F (w)− ν

(Covers LP, SDP, QP, see N.& Todd [97,98])

a). Find z = (x , y , s) ≈ z(t) and compute the scaling point w ∈ intK :

s = ∇2F (w)x

b). Compute Affine-Scaling Direction d = (∆x ,∆y ,∆s) by the system

∆s +∇2F (w)∆x = −s, A∆x = 0, ∆s + A∗∆y = 0.

Main advantage: Symmetry and convenient expression for Ω(z + αd).

Example 2: Complexity of a).

Let K = Sn+. Then F (X ) = − ln detX with ν = n and

∇F (X ) = −X−1, ∇2F (X )H = X−1HX−1,

and S = W−1XW−1. Thus, W−1 = X−1/2[X 1/2SX 1/2]1/2X−1/2.

Too difficult for normal engineers?
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Primal and Dual Central Paths

Denote g(x) = F (x), x ∈ rintFp, the restriction of F (·) onto Fp.

It is a SCB for Fp with νg ≤ ν. Denote

xt = arg min
Ax=b

[ ft(x)
def
= t⟨c , x⟩+ F (x) ].

For the dual problem, define

(yt , st) = arg max
s+A∗y=c

[ φt(y , s)
def
= t⟨b, y⟩ − F∗(s) ].

We can eliminate s and define the dual barrier function

ζ(y)
def
= F∗(c − A∗y), y ∈ Fy

def
= {y ∈ Rm : c − A∗y ∈ K∗}

ψt(y)
def
= ζ(y)− t⟨b, y⟩, t > 0.

NB: ζ(·) is an SCB for Fy with parameter νζ ≤ ν.

Main Lemma 1. For any t > 0, we have

λ2g (xt) + λ2ζ(yt) = ν
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Consequences
1. Primal and dual trajectories have complementary complexities.

2. No hope for a simultaneous big primal-dual step.

3. We get ν ≤ νg + νζ If νζ is small, then νg is big.

Lemma 2. Let set Fy be bounded. Then νg = ν ≥ νζ

Proof. There exists the analytic center y∗
ζ with ∇ζ(y∗

ζ ) = 0. Hence

ν ≥ νg ≥ lim
t→0

λ2g (xt) = lim
t→0

[ν − λ2ζ(yt)] = ν. □

Example 3. Consider f ∗ = min
X⪰0

{
⟨In,X ⟩ : Xa = b

}
with ⟨a, b⟩ > 0.

It has n(n+1)
2 variables and n linear equality constraints.

Denote Ai =
1
2 (ae

T
i + eia

T ). Then ⟨Ai ,X ⟩ = b(i), 1 ≤ i ≤ n.

The dual problem is max
y∈Rn

{
⟨b, y⟩ : In ⪰ 1

2 (ya
T + ayT )

}
ζ(y) = − ln det

(
In − 1

2 (ya
T + ayT )

)
. WLOG a = αe1 with α = ∥a∥.

det S(y) =
(
1− 1

2αy
(1)

)2

− 1
4α

2∥y∥2 = 1− αy (1) − 1
4α

2
n∑

i=2

(y (i))2.

Hence, νζ = 1 and νg ≥ n − 1.
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Dual Centering

Consider a dual centering process for min
y∈Fy

{
ψt(y) = ζ(y)− t⟨b, y⟩

}
Newton Method: compute λk = ⟨∇ψt(yk), [∇2ζ(yk)]

−1∇ψt(yk)⟩1/2,

and update yk+1 = yk − 1
1+λk

[∇2ζd(yk)]
−1∇ψt(yk), k ≥ 0

We get a point ȳ with λ̄
def
= ⟨∇ψt(ȳ), [∇2ζ(ȳ)]−1∇ψt(ȳ)⟩1/2 ≤ β < 1.

For d̄
def
= [∇2ζ(ȳ)]−1∇ψt(ȳ) we have ∥d̄∥ȳ = ⟨∇2ζ(ȳ)d̄ , d̄⟩1/2 = λ̄.

Dual Gambit Rule Denote s̄ = c − A∗ȳ ∈ intK∗.

ŷ = ȳ + d̄ , ŝ = c − A∗ŷ ≡ s̄ − A∗d̄
w̄∗ =

√
t s̄, x̂ = ∇2F∗(w̄∗)ŝ.

Example 4. For dual SDO-problem, ζ(y) = − ln det

(
C −

m∑
i=1

y (i)Ai

)
.

Form ŷ = ȳ + d̄ and Ŝ = C −
m∑
i=1

ŷ (i)Ai . Then X̂ = 1
t S̄

−1Ŝ S̄−1.
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Geometric interpretation
Denote x̄ = − 1

t∇F∗(s̄) ∈ intK . Then s̄ = − 1
t∇F (x̄).

Theorem 1. We have Ax̂ = b and ∥x̂ − x̄∥x̄ = ∥ŝ − s̄∥s̄ = λ̄ ≤ β < 1.

Hence, x̂ ∈ intK , ŝ ∈ intK∗, and ẑ = (x̂ , ŷ , ŝ) ∈ F0.

Lemma 3. We have tc +∇F (x̄) +∇2F (x̄)(x̂ − x̄) = tA∗(ȳ − d).

Hence, x̂ = arg min
Ax=b

{
⟨∇ft(x̄), x − x̄⟩+ 1

2∥x − x̄∥2x̄
}

NB: point ẑ is close to the primal-dual CP: Ω(ẑ) ≤ ω∗

(
2β

(1−β)2

)
where ω∗(τ) = −τ − ln(1− τ).

Affine-Scaling Direction

Define primal scaling point: w̄
def
=

√
tx̄ ∈ intK . Then ŝ = ∇2F (w̄)x̂

Define ∆s +∇2F (w̄)∆x = −ŝ, A∆x = 0, ∆s + A∗∆y = 0

where x̄ , s̄, and ŝ are defined by the Dual Gambit rule.

We use it for Predictor Step.
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Functional Proximity Measure for SSB
Lemma 4. Let K be symmetric and for points x ,w ∈ intK , s ∈ intK∗,

we have s = ∇2F (w)x Define ∆z = (∆x ,∆y ,∆s) by equations

∆s +∇2F (w)∆x = −s, A∆x = 0, ∆s + A∗∆y = 0.

Then ξz(α)
def
= Ω(z + α∆z)− Ω(z)

= F∗(s + α∆s) + F∗

(
s − α

1−α∆s
)
− 2F∗(s)

Corollary 1: ξẑ(α) = ζ(ŷ + α∆y) + ζ
(
ŷ − α

1−α∆y
)
− 2ζ(ŷ)

Lemma 5. The norm of ASD is bounded as follows:

∥∆y∥ŷ ≤ β+λζ(y)
1−β ≤ ĉβ

def
=

β+
√
νζ

1−β .

Thus, for symmetric cones, we get α− 2√
ν
β ≥ 1

2ĉβ+1

(
δ

1+δ − 2β(3+β)
1−β

)
.

This leads to O
(√
νζ ln

1
ϵ

)
worst-case complexity bound for our

Long-Step Primal-Dual Method

NB: This is the first time we get something better than O
(√
ν ln 1

ϵ

)
.
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Predictor-Corrector & Dual Gambit Rule (PCDG)
We associate both centering and predicting strategies with dual problem.

Initialization. Choose β ∈ (0, 14 ] and A = δ + ω∗

(
2β

(1−β)2

)
with δ > 0.

Compute y0 ∈ Fy with ∥∇ζ(y0)∥y0 ≤ 1
2β and set t0 =

β
2∥b∥y0

.

kth iteration (k ≥ 0)

a) For yk ∈ intFy and tk > 0, form Bk = [∇2ζ(yk)]
−1 , gk = ∇ψtk (yk),

dk = Bkgk , and λk = ⟨gk , dk⟩1/2. Define sk = c − A∗yk ∈ intK∗.

b) If λk > β, Then yk+1 = yk − dk
1+λk

, tk+1 = tk . (Newton Step)

c) Else (Predictor Step)

1. Set w∗
k = t

1/2
k sk , ŷk = yk + dk , ŝ

k = c − A∗ŷk , x̂k = ∇2F∗(w
∗
k )ŝk

2. Find Affine-Scaling Direction ∆zk = (∆xk ,∆yk ,∆sk) by

∆xk +∇2F∗(w
∗
k )∆sk = −x̂k , A∆xk = 0, ∆sk + A∗∆yk = 0

3. Compute the step αk > 0 from equation Ω(ẑk + αk∆zk) = A

4. Define zk+1 = ẑk + αk∆zk and tk+1 = t(zk+1) =
ν

(1−αk )⟨ŝk ,x̂k⟩ .
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Easy Linear Matrix Inequalities

Lemma 6. Let matrix C ∈ Rn×n, C ≻ 0, and A ∈ Rm×n, m < n, has

full row rank. Then SCB ζ(y)
def
= − ln det(C − ATD(y)A) with

D(y) = Diag(y), has the following short representation

ζ(y) = − ln det(G−1 − D(y))− ln(σγ)

where G = AC−1AT , σ = detC , and γ = detG . For its domain

dom ζ(y) = {y ∈ Rm : D(y) ≺ G−1},
we get the best possible value νζ = m NB: Interesting case n → ∞

Corollary 2. Let C ∈ Rn×n, C ≻ 0, and Ai = AT
i ∈ Rn×n, i = 1, . . . ,m.

If ζ(y) = − ln det
(
C −

m∑
i=1

y (i)Ai

)
, then νζ ≤ min

{
n,

m∑
i=1

rank(Ai )
}
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Numerical Experiments
Nonsmooth Optimization Problem (Low-Rank Quadratic Interpolation):

min
X=XT∈Rn×n

{ n∑
i=1

|λi (X )| : ⟨Xai , ai ⟩ = bi , i = 1, . . . ,m
}
,

where b ∈ Rm and AT def
= (a1, . . . , am) has full rank (G

def
= AAT ≻ 0).

SDO-formulation:

min
X1,X2⪰0

{
⟨In,X1 + X2⟩ : ⟨(X1 − X2)ai , ai ⟩ = bi , i = 1, . . . ,m

}
.

The dual problem is as follows:

f∗ = max
y∈Rm

{
⟨b, y⟩ : −In ⪯ ATD(y)A ⪯ In

}
Thus, we have to choose the following dual barrier function

ζ(y) = − ln det(In − ATD(y)A)− ln det(In + ATD(y)A)

= − ln det(G−1 − D(y))− ln det(G−1 + D(y))− 2 lnσ

where σ = detG . Since Fy is bounded, we have ∇2ζ(y) ≻ 0.

For Method PCDG, choose y0 = 0. Then νg = 2n and νζ = m
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Results for Random Problems

Parameters: β = 0.2, A = 2, ϵ = 10−8, and y0 = 0 ∈ Rm.

Average number of Predictor Steps (100 problems)
m \ n 64 128 256 512 1024
32 9.0± 9.6% 8.2± 9.3% 7.1± 4.2 6.9± 3.5% 6.6± 7.4%
64 9.9± 7.8% 7.8± 5.5% 7.1± 3.4% 6.9± 3.9%
128 9.9± 6.2% 7.9± 4.3% 7.0± 2.0%
256 9.5± 5.7% 7.9± 3.7%
512 9.5± 5.3%

Average number of Corrector Steps (100 problems)
m \ n 64 128 256 512 1024
32 31.9± 13.6% 29.0± 13.9% 24.7± 7.3 26.1± 6.0% 24.9± 7.4%
64 37.3± 10.3% 27.2± 5.9% 25.4± 4.8% 26.0± 4.7%
128 38.4± 8.8% 27.6± 5.4% 26.0± 3.5%
256 36.8± 7.1% 28.3± 5.0%
512 36.5± 6.2%
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Typical dynamics (m = 256, n = 1024)
Npred/Ncorr ⟨ŝk , x̂k⟩ tk Bisections

0/0 31.25
1/1 9.7 · 101 2.4 · 102 9
2/4 8.6 · 100 7.1 · 102 7
3/6 2.9 · 100 2.5 · 103 8
4/10 8.4 · 10−1 1.3 · 104 8
5/16 1.5 · 10−1 2.6 · 105 10
6/21 7.9 · 10−3 6.8 · 107 13
7/26 3.0 · 10−5 8.9 · 1010 15
8/30 6.8 · 10−9 3.2 · 1011

1. Our SDO-problems can be solved in the time comparable with the
time required by Linear Optimization.

2. For implementation of PCDG-method, only the standard Cholesky
factorization is needed.

3. Complexity of iteration in the Line Search (by bisections) is O(m).

For competitors: f −1
∗ = min

y∈Rm

{
σmax

(
m∑
i=1

y (i)aia
T
i

)
: ⟨b, y⟩ = 1

}
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Conclusion
1. We presented a new methodology for solving primal-dual problems of
Conic Optimization by predictor-corrector schemes.
▶ We run the corrector process only in the dual space.
▶ Approximation of the dual path is used as a scaling point for a

new feasible primal-dual pair generated by the Dual Gambit Rule.
▶ Size of predictor step is defined by Functional Proximity Measure.
▶ The computational complexity is very reasonable even for

SDO-problems. We need only the standard Cholesky factorization.

2. The main motivation is that in many problems the complexity of
primal and dual problems are different.

3. We prove that the standard assumption on boundedness of the dual
feasible set leads to νg = ν ≥ νζ .

4. An automatic switching to the best value of the barrier parameter is
ensured by the Functional Proximity Measure.

5. Complexity of some SDO-problems is similar to Linear Optimization.

6. Numerical results are very promising (local superlinear convergence).

7. It is interesting to check performance of other methods on our test set.
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