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Parametrized convex functions

a parametrized convex function (PCF) has the form

f : Rn ×Θ → Rd

▶ first argument x ∈ Rn is the variable

▶ second argument θ ∈ Θ ⊆ Rp is the parameter

▶ fi (x , θ) is convex in x for each θ ∈ Θ, i = 1, . . . , d

▶ f is continuous in θ for each x
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Disciplined convex programming (DCP)
expression representing a PCF f is DCP if

▶ it is expressed as an expression tree using atomic functions

▶ leaves are variables or parameters

▶ convex composition rule holds at each node

example: f (x , θ) = θx2, Θ = R+

1 import cvxpy as cp

2

3 x = cp.Variable ()

4 theta = cp.Parameter(nonneg=True)

5

6 f = theta * cp.square(x)

7 f.is_dcp ()

8 # True
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Neural PCF architecture

▶ represent f as neural network with weights V i , W i , biases ωi , and activation ϕ

▶ weights and activation are such that y is DCP convex in x for every θ ∈ Θ

▶ ψ is a (sub-)network, with weights w ∈ Rq
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Guaranteeing PCF is DCP

we require

▶ activations ϕ are nondecreasing and convex (e.g., ReLU, logistic)

▶ weights W i are nonnegative for all θ (readily enforced in ψ network)

guarantees y is DCP PCF
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Fitting a DCP PCF to data

▶ we are given data

(xk , θk) ∈ Rn ×Θ, yk ∈ Rd , k = 1, . . . ,N

▶ we use loss function ℓ : Rq × Rn ×Θ× Rd → R and regularizer r : Rq → R

▶ choose w to (approximately) minimize regularized average loss,

1

N

N∑
k=1

ℓ(w ; xk , θk , yk) + λr(w)

▶ λ ≥ 0 is a hyper-parameter, chosen via out-of-sample or cross validation
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The LPCF package

▶ open-source Python package for fitting a PCF to given data

▶ customizable neural network architecture

▶ customizable loss, regularization, and learning algorithm
▶ emits f as

– a JAX function for fast evaluation
– a CVXPY expression for use in optimization models
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Using the LPCF package

1 from lpcf.pcf import PCF

2

3 # observed data

4 Y = ... # shape (N, d)

5 X = ... # shape (N, n)

6 Theta = ... # shape (N, p)

7

8 # fit PCF to data

9 pcf = PCF()

10 pcf.fit(Y, X, Theta)

11

12 # export PCF to CVXPY

13 x = cp.Variable ((n, 1))

14 theta = cp.Parameter ((p, 1))

15 pcf_cvxpy = pcf.tocvxpy(x=x, theta=theta)
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Extensions

▶ add (convex) quadratic term to the neural network

▶ require components of f to be monotone in x

▶ require h(θ) ∈ ∂f (g(θ), θ) (i.e., that f (x , θ)− h(θ)T x is minimized at x = g(θ))

▶ fit a parametrized convex set C (θ) = {x | f (x , θ) ≤ 0}
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Example: Piecewise affine function on R

▶ generate data from piecewise affine function

f true(x , θ) = s+max{0, x −m}+ s−max{0,m − x}+ v

with x ∈ R, θ = (s+, s−,m, v) ∈ R4

▶ f true is a PCF when s+ ≥ −s− (but we also consider data with s+ < −s−)

▶ fit f to 105 data points with x sampled from [−1, 1] and θ sampled from [−1, 1]4
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Some PCF fits
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Example: Battery aging

▶ generate data from a semi-physical model for battery aging rate

f true(x , θ) = zAz−1b(αq/Q + β) exp

(−Ea + ηb/Q

Rg (T0 + T )

)
▶ variable is x = (q, b) ∈ R2

+, consisting of charge q and (absolute) charge rate b

▶ parameter is θ = (A,Q,T ) ∈ R3
+ where A is accumulated charge throughput, Q is

battery capacity, and T is temperature

▶ other symbols are battery-specific or physical constants

▶ fit f to 105 data points: q ∈ [0.2, 0.8], b ∈ [0, 30], A ∈ [0, 50], Q = 1, T ∈ [10, 50]
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Some PCF fits
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Example: Input-affine control

▶ consider input-affine dynamical system

zt+1 = F (zt , θ) + G (zt , θ)ut , t = 0, 1, . . .

with state zt , input ut , parameter θ

▶ given initial state z0, we seek inputs u0, u1, . . . that minimize

J(z0) =
∞∑
t=0

H(zt , ut , θ)

(can approximate infinite sum with a sum up to a large value t = T )

▶ we can approximately minimize J(z0) using a local method
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Approximate dynamic programming (ADP)

▶ instead of directly minimizing J(z0), we use the ADP controller

ut = argmin
u

(
H(zt , u, θ) + V̂ (F (zt , θ) + G (zt , θ)u, θ)

)
, t = 0, 1, . . .

where V̂ is an approximate value function

▶ with the true value function V (z , θ) = infu0,u1,... J(z) this is the optimal input

▶ we will learn V̂ as a PCF

▶ this means evaluating ADP input ut is a convex optimization problem

▶ generate data using local method to approximately evaluate V (z , θ)
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Numerical example

▶ inverted pendulum with angle and angular velocity as state z ∈ R2, and parameter
mass θ = m > 0

▶ fit f = V̂ to 1000 data points with z ∈ [−π/6, 7π/6]× [−1, 1] and m ∈ [0.5, 2]
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PCF fit and result
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Conclusions

▶ we show how to fit a PCF to data

▶ allows (parametrized) convex optimization to be (in part) ‘data driven’

▶ bridges a gap between learning from data and structured convex optimization

▶ https://github.com/cvxgrp/lpcf
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