Learning Parametrized Convex Functions

Maximilian Schaller Alberto Bemporad Stephen Boyd

IMT Lucca, 5 June 2025

Parametrized convex functions

a parametrized convex function (PCF) has the form

f:R"x© = RY

» first argument x € R" is the variable
» second argument § € © C RP is the parameter
» fi(x,0) is convex in x foreach # € ©, i=1,...,d

» f is continuous in 6 for each x

Disciplined convex programming (DCP)
expression representing a PCF f is DCP if
> it is expressed as an expression tree using atomic functions
> leaves are variables or parameters

P convex composition rule holds at each node

example: f(x,0) = 0x?, © = R}

import cvxpy as cp

1

2

3 x = cp.Variable ()

4+ theta = cp.Parameter (nonneg=True)

5
6 f = theta * cp.square(x)
7 f.is_dcp ()

s # True

Neural PCF architecture

> represent f as neural network with weights V/, W', biases w', and activation ¢

! | } }
) {v2) Aree)
Doy oo~)5 o —o—v
[we 2(0) (0)
0—>‘ | B | (0

> weights and activation are such that y is DCP convex in x for every § € ©
») is a (sub-)network, with weights w € RY

Guaranteeing PCF is DCP

we require
> activations ¢ are nondecreasing and convex (e.g., ReLU, logistic)

> weights W' are nonnegative for all § (readily enforced in ¢ network)

guarantees y is DCP PCF

Fitting a DCP PCF to data

> we are given data
(xK.0YeR"x0©, ykeRY, k=1,... N

> we use loss function £ : RY x R” x © x R? — R and regularizer r : R? — R

» choose w to (approximately) minimize regularized average loss,

1N
ZE(W; XK 0%, yK) + Ar(w)
k=1

=

» X\ > 0is a hyper-parameter, chosen via out-of-sample or cross validation

The LPCF package

open-source Python package for fitting a PCF to given data
customizable neural network architecture

customizable loss, regularization, and learning algorithm

vvyyvyy

emits f as

— a JAX function for fast evaluation
— a CVXPY expression for use in optimization models

Using the LPCF

4

package

from lpcf.pcf import PCF

observed data

Y = ... # shape (N, d)
X = ... # shape (N, n)
Theta = # shape (N, p)

fit PCF to data
pcf = PCF(Q)
pcf.fit (Y, X, Theta)

export PCF to CVXPY

x = cp.Variable((n, 1))
theta = cp.Parameter ((p, 1))
pcf_cvxpy = pcf.tocvxpy(x=x,

theta=theta)

Extensions

» add (convex) quadratic term to the neural network

» require components of f to be monotone in x

> require h(6) € 9f(g(0),0) (i.e., that f(x,0) — h(0) T x is minimized at x = g(6))
» fit a parametrized convex set C(0) = {x | f(x,0) <0}

Example: Piecewise affine function on R

P> generate data from piecewise affine function
fie(x,0) = s, max{0,x — m} +s_max{0,m — x} +v

with x €R, § = (s;,5s_,m,v) € R*

» f'e is a PCF when s, > —s_ (but we also consider data with s; < —s_)

> fit f to 10° data points with x sampled from [—1,1] and 6 sampled from [—1,1]*

10

Some PCF fits

92
—0.6
—0.7
—0.8
—1.0 —0.5 0.0 .5 1.0
T

— e
—— flixmar

—0.5 0.0 0.5 1.0

11

Example: Battery aging

» generate data from a semi-physical model for battery aging rate

—Ea +77b/Q>

rue — z-1
fire(x, 0) = zA* 'b(aq/Q + B) exp (Rg(To+ T)

» variable is x = (g, b) € Ri, consisting of charge g and (absolute) charge rate b

» parameteris 0 = (A, Q, T) € Ri where A is accumulated charge throughput, Q is
battery capacity, and T is temperature

» other symbols are battery-specific or physical constants

> fit f to 10° data points: g € [0.2,0.8], b € [0,30], A € [0,50], @ =1, T € [10,50]

12

Some PCF fits

0 1
- f‘ true
-

0.00
30

92

13

Example: Input-affine control

» consider input-affine dynamical system
Zi41 = F(Zt,0)+ G(zt,e)ut, t':o,].7

with state z;, input vy, parameter 6

P given initial state zp, we seek inputs ug, U, . .. that minimize
o0
Hz0) =D H(ze,ur,0)
t=0

(can approximate infinite sum with a sum up to a large value t = T)

> we can approximately minimize J(zp) using a local method

14

Approximate dynamic programming (ADP)

» instead of directly minimizing J(zy), we use the ADP controller

up = argmin (H(zt, u,0) + V(F(z:,0) + G(z:,0)u, 0)) , t=0,1,...

where V is an approximate value function
with the true value function V(z,8) = infy, ... J(2) this is the optimal input
we will learn V as a PCF

this means evaluating ADP input u; is a convex optimization problem

vvyyypy

generate data using local method to approximately evaluate V/(z,0)

15

Numerical example

> inverted pendulum with angle and angular velocity as state z € R?, and parameter
mass § = m >0

> fit f =V to 1000 data points with z € [—7/6, 77/6] x [—1,1] and m € [0.5,2]

16

PCF fit and result

Convex ADP vs nonlinear optimal control
T >

-

1004~ ® training data
o test data

[
o

U (convex)

50 100

1 (nonlinear)

u [Nm]

Closed-loop control

f — ADP

nonlinear

2
0
0 1 2 3
|
\ nonlinear
50 \ —— ADP |
0
0 1 2 3
time [s]

Conclusions

» we show how to fit a PCF to data

» allows (parametrized) convex optimization to be (in part) ‘data driven’

P bridges a gap between learning from data and structured convex optimization
» https://github.com/cvxgrp/lpct

18

https://github.com/cvxgrp/lpcf

