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System Theory Tools for Optimization and Learning
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LaSalle and Lyapunov Theory Timescale Separation Averaging theory

Slow System —— Original System |[|z*||

--- Averaged System ||z£, |

T = ok 4 5 (2", 25

Fast System T

2L = g2k, k)

\ \ \

Distributed optimization algorithms Accelerated optimization algorithms Learning-driven Optimal Control
Optimization-oriented dynamics Gradient-like algorithm Learning Algorithm
Consensus-oriented dynamics Extra dynamics Physical Plant

G. Notarstefano — System Theory Tools for Optimization in Learning and Control 2 |37



System Theory Tools for Optimization and Learning

System Theory Tools

LaSalle and Lyapunov Theory Timescale Separation Averaging theory

Slow System —— Original System |[|z*||

--- Averaged System ||z£, |

T = ok 4 5 (2", 25

Fast System T

2L = g2k, k)

\ \ \

Distributed optimization algorithms Accelerated optimization algorithms Learning-driven Optimal Control
Optimization-oriented dynamics Gradient-like algorithm Learning Algorithm
Consensus-oriented dynamics Extra dynamics Physical Plant

G. Notarstefano — System Theory Tools for Optimization in Learning and Control 3 |37



Distributed Algorithms for Optimization and Games

Network of N peer agents aim at solving optimization-based tasks without a central coordinator

Each agent i Optimization
e knows only part of the problem (local, private data) E}C
| - o~ °
e performs local computations min f(z) \./.
e communicates only with neighboring agents (digraph G) gbito e X @ @3

G. Notarstefano — System Theory Tools for Optimization in Learning and Control 4 |37



Distributed Algorithms for Optimization and Games

Network of N peer agents aim at solving optimization-based tasks without a central coordinator

Each agent 4

e knows only part of the problem (local, private data)

e performs local computations

e communicates only with neighboring agents (digraph G)

Optimization

min f(z)

subj.to z € X

B

.\‘4;/0

£

Different scenarios to model a large variety of tasks in both cooperative and competitive frameworks

N
min_ > filx)

N
subj.to Y gi(xi) <0
i=1

Tl N

subj.to z; € X; Vi

o(z)

1N
N;OL(L)

M
o ol

arget

Agent .- 4\ e j
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subj.to z; € X; Vi
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Distributed Consensus Optimization via Gradient Tracking
N —
T fe) e R

Consider the optimization problem

e

G. Notarstefano — System Theory Tools for Optimization in Learning and Control 5 |37



Distributed Consensus Optimization via Gradient Tracking
N —
T fe) e R

Consider the optimization problem

Centralized "gradient” method

average (global) gradient (global)
/—’% /—’%

K = zx —VZVfg(X
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Distributed Consensus Optimization via Gradient Tracking
————— /

N
Consider the optimization problem > fi(z), z € RE—"
i=1
N
min i(x
zERE ; fi@)

Gradient Tracking algorithm

proxy for Zé‘\le ij (xj‘)
k+1 E : k k
Xi = ainj e SZ
JEN;

S;H—l = Z aijs? —+ Vfi(xf_‘—l) — Vfl(xf)
JEN;

i \O/ @
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Distributed Consensus Optimization via Gradient Tracking
————— /

N
Consider the optimization problem > fi(z), z € RE—"
i=1
N
min i(x
zERE ; fi@)

Gradient Tracking algorithm

proxy for Zszl Vfj (xj‘)

—N——
T = 3" aipt — (2 + V)

JEN;

k+1

Zi+ = Z CLl‘jZ?+ Z CLiijj(X?) 7Vfl(xf)
JEN; JEN;

i \O/ @
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Convergence of Gradient Tracking - Nonconvex setting

Gradient Tracking

it = 3" aixh — vzl — AV fi(xf)
JEN;
N
A= 3wl + V) - VAGD A
JEN;

Intuition: Gradient Tracking is a Two-Time-Scale System

k
X1

Slow system

ghHl — gk %NG(H(’c + Rx%)

—

k+1
X

lg'+1
Al

-

RTAR —I

0

RTAR] [}zﬂ v [R;(fT_ 1)] G(1=* + Rxk) ‘4_

Fast system

> Xk = %Zf\;l X,lf, x]i .= RTxk, z’j =RTzF, withRT1=0and RTR=1

» G stacking local gradients Vf;, A:= A® I with A consensus matrix

Carnevale, Notarstefano, “ Nonconvex Distributed Optimization via Lasalle and Singular Perturbations.” (L-CSS '22)

G. Notarstefano — System Theory Tools for Optimization in Learning and Control 6 |37



Convergence of Gradient Tracking - Nonconvex setting

Gradient Tracking

it = 3" aixh — vzl — AV fi(xf)
JEN;
N
A= 3wl + V) - VAGD A
JEN;

Theorem

Consider Gradient Tracking initialized so that va=1 Z? = 0. Assume

e Graph G strongly connected and A doubly stochastic
° Zi\le fi radially unbounded and V fi,...,Vfn Lipschitz continuous (possibly nonconvex)

Then, there exists ¥ > 0 s.t. for any v € (0,%), it holds

lim pisT(x¥, x*)=0  Vie{1,...,N}
k—oo

with X'* set of stationary points of the optimization problem.

Carnevale, Notarstefano, “ Nonconvex Distributed Optimization via Lasalle and Singular Perturbations.” (L-CSS '22)
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Optimization-oriented Centralized Algorithm

Optimization meta-algorithm:

aggregate information

X = g o))
X =mi(x}) Aggregato.r

X5 a(xb)

~©

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Optimization-oriented Centralized Algorithm

Optimization meta-algorithm:

aggregate information

Xt =g ad)
Xt a(x")
» Consensus optimization » Aggregative optimization
1 Y N N
giwi, al@)) = 7 3w =7 Vi) gi(zi,a(@) =z —v |V fi(z;,0(2))

j=1 j=1 j=1 i

» Constraint-coupled optimization > Aggregative games
N
@ — YV, L(ws, 2251 95(%5), Ai) gi(zs, () = z; — v [VJi(2i, 0(2))];

9i (xi, (x)) =
% Z;\]zl )‘] + ’YV)\iL(ﬁ?i, Z;‘vzl gj (xj)9 )\Z)

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Optimization-oriented Centralized Algorithm

Optimization meta-algorithm:

aggregate information

Xt =g ad)
= mi(d) o Aggreg:tgr
Xi a(x")
» Consensus optimization » Aggregative optimization
NI @ ¥ 2 bilwi)
alx) = | _y alx) = _y
i=1 Vfi(zs) >ic1 Vafi(wi,o(x))
» Constraint-coupled optimization » Aggregative games
1 N N
1 ! M
N Zz:l g 1
w0 | ] 000 = £ 3 outan
Zz]'\]:l 9i(zi) N =

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Systematic Transition to a Fully-distributed Algorithm

Idea: introduce variables z; reconstructing unavailable global data o(x) running consensus-based dynamics

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Systematic Transition to a Fully-distributed Algorithm

Idea: introduce variables z; reconstructing unavailable global data o(x) running consensus-based dynamics

Naive distributed version: double-scale algorithm only using neighbors’ variables (Xj’i/_,z"f\ﬁ)

Optimization For k=0,1,... .\.
proxy for a(xk) / \
—_——~
XEFY = gi (L a0, 2 )) @)
e @}
Consensus For 7 =0,1,... 0\
(@}

k,7+1 k k,
77" =hi(XNiazN:)

Example: causal perturbed consensus dynamics for a(x*) = % Zfil %(X?)
k,7+1 k,
2T = 3" a5 T + 0, () — ei(xh)

JEN;

k k,T
h (X“V'zi 7ZA/’[,’ )
Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Systematic Transition to a Fully-distributed Algorithm

Idea: introduce variables z; reconstructing unavailable global data o(x) running consensus-based dynamics

Distributed single-scale algorithm: plain interconnection with no guarantees

o—_
k ~ .. .
X; +1_ gi (Xf,ai(xf,zf)) (optimization) /
Z§+1 = hi(Xﬁ[i’zﬁfi) (consensus) /.

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Systematic Transition to a Fully-distributed Algorithm

Idea: introduce variables z; reconstructing unavailable global data o(x) running consensus-based dynamics

Distributed single-scale algorithm: design two-time-scale system

. o o
X§+1 =xF49 (gi (Xf,ai(xf,zf)) — Xf) (optimization) / \
@)

At

= h,-(xﬁfi , Z}C\fl) (consensus) P \ 1)
(O]

with § > 0 tuning parameter to “modulate” the speed of variation of Xf

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Distributed Algorithm as a Two-Time-Scale System

Intuition: distributed algorithm is an interconnected Two-Time-Scale System

Optimization-oriented scheme - Slow system g, &, h, ka Zk, Xk

7k
——>|

k .
N (g(Xk’d(Xkyzk)) _ Xk) X stacking

' M

giv G5, hi, XF, 28 xE,

k k
X1 21

4{ = B, 2 — yF = R - ,
Consensus-oriented scheme - Fast system X?\, Z?\,

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Distributed Algorithm as a Two-Time-Scale System

Intuition: distributed algorithm is an interconnected Two-Time-Scale System

Optimization-oriented scheme - Slow system

k R xF
——— =R+ (g(x’“,a(x’“,zk)) - x’“)

AL = Bk, 2)

Consensus-oriented scheme - Fast system : ]

Parametrized equilibrium zeq (X )

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Distributed Algorithm as a Two-Time-Scale System

Intuition: distributed algorithm is an interconnected Two-Time-Scale System

Optimization-oriented scheme - Slow system

k)

ik
Z a
— M = x4 8 (90 G0, ) - XF) R

Centralized method recovered if z" = Zeq(X

2 = h(xk, 2%)

.. .Consensus-oriented scheme - Fast system :

Parametrized equilibrium zeq (X )

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)

G. Notarstefano — System Theory Tools for Optimization in Learning and Control 9 |37



Convergence Results

Theorem
Let X* be the set of problem critic points (stationary points, Nash equilibria, etc...).
Assume Lipschitz continuity of g, h, &, and that

» Convergence of centralized optimization algorithm
there exists radially unbounded function W proving limy_, o, DIST(x*, X*) = 0 along the trajectories of

X = g(x", 1a(xh))
chcntr = W(Xk)§

» Consensus exponential stability
there exists a Lipschitz continuous equilibrium function zeq such that

> (X, Zeq(X)) = Lau(x) for all x;
> Zeq(X) globally exponentially stable uniformly in x for z*+1 = h(x,z").

Then, for small 6 > 0, the trajectories of the distributed algorithm satisfy

lim p1sT(x®, &*) =0
k—oco

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Convergence Results

Corollary

Let 2* = n(x*) be the unique problem solution (e.g., strong convexity, strong monotonicity).
Assume Lipschitz continuity of g, h, &, and that

» Convergence of centralized optimization algorithm

there exists a Lyapunov function W proving global exponential stability of x* for
X = g(x", 1a(x"))
chcntr = W(Xk)§
» Consensus exponential stability

there exists a Lipschitz continuous equilibrium function zeq such that

> A(X; Zeq(X)) = Lau(x) for all x;
> Zeq(X) is globally exponentially stable uniformly in x for z°t1 = h(x, z*)

Then, for small 6 > 0 and some ¢, c2 > 0, the trajectories of the distributed algorithm satisfy

ka o I*H <a HXO - 1:*” e—c2k

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)

G. Notarstefano — System Theory Tools for Optimization in Learning and Control 10 |37



Convergence Analysis based on Timescale Separation

Sketch of the proof

1. Build two auxiliary systems called boundary layer system and reduced system

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Convergence Analysis based on Timescale Separation

Sketch of the proof

1. Build two auxiliary systems called boundary layer system and reduced system

2. Boundary layer system: z dynamics with arbitrarily fixed x and z := z — zeq ()

Boundary Layer System

‘ k+1 k ‘

sk
‘ 2" = h(x, 7" + Zeq (X)) — Zeq(X) }7*Z

Lyapunov function U proving that the origin is globally exponentially stable (uniformly in x)

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games." (TAC, 2025)
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Convergence Analysis based on Timescale Separation

Sketch of the proof

1. Build two auxiliary systems called boundary layer system and reduced system
2. Boundary layer system: z dynamics with arbitrarily fixed x and z := z — zeq ()

3. Reduced system: x dynamics with z* = zeq(x*)
Reduced System

‘ Xkt :xk+5(g(xkv5<(Xk«Zk))_Xk) }745"
i

‘ 2* = zeq(x¥) ‘

4§ (/](\'*.m X, Zeg (XF))) — \") =4 (]][:\’A. 1a(x")) — ,\")

Radially unbounded function W proving attractiveness of the set of solutions for small § > 0

lim pisT(x®, &%) =0
k— o0

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games." (TAC, 2025)
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Convergence Analysis based on Timescale Separation

Sketch of the proof
1. Build two auxiliary systems called boundary layer system and reduced system
2. Boundary layer system: z dynamics with arbitrarily fixed x and z := z — zeq ()
3. Reduced system: x dynamics with z* = zeq(x*)
4. Prove convergence in a LaSalle sense of the interconnection using V(x,z) = W(x) + U(Z).
Optimization-oriented scheme - Slow system

k ) . ) Xk
X =xF+0 (g(xk, a(x*,2*)) — x")

Z
2 = h(xk, 2%)

EE—
Consensus-oriented scheme - Fast system

Custom theorem!

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Distributed Feedback Optimization

Setup: N control systems communicating over a graph

T; :pi(xi,ui) Vi € {1,...,N}

Carnevale, Mimmo, Notarstefano, “Nonconvex Distributed Feedback Optimization for Aggregative Cooperative Robotics.” (Automatica, '24)
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Distributed Feedback Optimization

Setup: N control systems communicating over a graph

T; :pi(a:i,u,-) Vi € {1,...,N}

Distributed feedback paradigm: Ui ) T
control law of system i depending on neighboring systems j € N;

& = gi(Enir oN,)
u; = ki (&)

Carnevale, Mimmo, Notarstefano, “Nonconvex Distributed Feedback Optimization for Aggregative Cooperative Robotics.” (Automatica, '24)
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Distributed Feedback Optimization

Setup: N control systems communicating over a graph

T; :pi(a:i,u,-) Vi € {1,...,N}

Distributed feedback paradigm: Ui ) T
control law of system i depending on neighboring systems j € N;

& = gi(Enir oN,)
u; = ki (&)

Optimization goal: design u = (u1,...,un) such that z = (x1,...,zN) — a* optimal with respect to

. 1 &
w1 E N Zfz x5, 0(x)), with o(z) = N;qﬁi(mi)

Up,.nuN =1

subj. to z; = hi(u;), Vi

Carnevale, Mimmo, Notarstefano, “Nonconvex Distributed Feedback Optimization for Aggregative Cooperative Robotics.” (Automatica, '24)
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Aggregative Tracking Feedback

Reduced optimization problem

ULsee s UN

N
min Zfz(hl(ul)vg(h(u)))
i=1

with p;(h;(u;),u;) =0 and x; = h;(u;) globally exponentially stable.

Carnevale, Mimmo, Notarstefano, “Nonconvex Distributed Feedback Optimization for Aggregative Cooperative Robotics.” (Automatica, '24)
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Aggregative Tracking Feedback

Reduced optimization problem

ULsee s UN

N
min Zfz(hl(ul)7o.(h(u)))
i=1

with p;(h;(u;),u;) =0 and x; = h;(u;) globally exponentially stable.

i = =61 Vhi(ws) | V1filhiCu, o)) + LD S7 0o 01y ), o)
j=1

Carnevale, Mimmo, Notarstefano, “Nonconvex Distributed Feedback Optimization for Aggregative Cooperative Robotics.” (Automatica, '24)
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Aggregative Tracking Feedback

Reduced optimization problem

ULsee s UN

N
min Zfz(hl(ul)vo'(h(u)))
i=1

with p;(h;(u;),u;) =0 and x; = h;(u;) globally exponentially stable.

VOO 5™ o s ), o 1))

Jj=1

U; = —51Vh7;(ui) vlfz(hz(uv)’o'(h(u))) +

Issue 1: generates a flow of equilibria (dynamics is ignored)

Carnevale, Mimmo, Notarstefano, “Nonconvex Distributed Feedback Optimization for Aggregative Cooperative Robotics.” (Automatica, '24)
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Aggregative Tracking Feedback

Reduced optimization problem

ULsee s UN

N
min Zfz(hl(ul)7o.(h(u)))
i=1

with p;(h;(u;),u;) =0 and x; = h;(u;) globally exponentially stable.

N N
iy = =019 (V1 i 0(@) + T Y Vo (o,0(0) )
j=1

Carnevale, Mimmo, Notarstefano, “Nonconvex Distributed Feedback Optimization for Aggregative Cooperative Robotics.” (Automatica, '24)
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Aggregative Tracking Feedback

Reduced optimization problem

ULsee s UN

N

min > fi(hi(wi), o(h(w)))
i=1

with p;(h;(u;),u;) =0 and x; = h;(u;) globally exponentially stable.

. N
is = =61V (V1 fiaino(2)) + TN STy (0y,0(a))

Jj=1

Issue 2: this law uses unavailable global information

Carnevale, Mimmo, Notarstefano, “Nonconvex Distributed Feedback Optimization for Aggregative Cooperative Robotics.” (Automatica, '24)
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Aggregative Tracking Feedback

Reduced optimization problem

ULsee s UN

N
min Zfz(hl(ul)vo'(h(u)))
i—1

with p;(h;(u;),u;) =0 and x; = h;(u;) globally exponentially stable.

U = —01Vh;(u;) (Vlfi (w3, Gi () +wi) + Vi (xi) (Vo fi(wi, di(wi) +wi) + th))
———

proxy for o (z) proxy for % E;V:I Vafj(zj,0(x))
oty = — Y aij(wi —wy) — > ai(i(@i) — b5(x5))
JEN; JEN;
Gozi =— D aij(zi—z) = Y ai(Vafi(wi,wi + ¢i(2:)) — Vafi(zj,ws + b5(x;)))
JEN; JEN;

Remark: &1 > 0 slows down %; and d2 > 0 speeds up w; and 2;
Carnevale, Mimmo, Notarstefano, “Nonconvex Distributed Feedback Optimization for Aggregative Cooperative Robotics.” (Automatica, '24)
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Overall Closed-loop System... Three Timescales

Optimization-oriented scheme - Slow system

@ = =61 Vh(u) (Gi(z, p(z) + w) + V(z)(Ga(z, $(x) + w) + 2))

u

Plant dynamics - Mid system

& = p(z,u) =

Consensus-oriented scheme - Fast system
(w, 2) 5 [@] - _[E 0] [w L 0 &(z)
21:] =7 o L] |z] "o L] |Gaz éx)+w)][*

e x, w, 7, ¢ Gi, G2, p stacking local quantities x;, w;, z;, ¢;, V1fi, Vaf;, and p;

e L:=L®I; with £ Laplacian matrix of the graph G

Carnevale, Mimmo, Notarstefano, “Nonconvex Distributed Feedback Optimization for Aggregative Cooperative Robotics.” (Automatica, 2024)
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Convergence Properties of Aggregative Tracking Feedback

Theorem
Consider Aggregative Tracking Feedback. If

» Graph G strongly connected and weight-balanced

» z; = h;(u;) globally exponentially stable uniformly in u;

> Zf\le fi(-,o(+)) radially unbounded, V1 f;, Vaf;, and ¢; Lipschitz continuous (possibly nonconvex)
» Initialization 3" | w;(0) = N | 2,(0) =0

Then, for small ; > 0 and d2 > 0

S

with X'* the set of stationary points of the aggregative optimization problem.

Carnevale, Mimmo, Notarstefano, “Nonconvex Distributed Feedback Optimization for Aggregative Cooperative Robotics.” (Automatica, '24)
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Multi-robot Monitoring via Distributed Feedback Optimization

Distributed Optimization Setup
e Network of N robots monitoring an area
e Target to cordone
e Set of M points of interest to monitor
e Monitoring and Cordoning strategy modelled by
Aggregative Feedback optimization setup

N
: k
min X;f (zi,0(2)
P

subj.to z; = hi(u;), Vie{l,...,N}

Pichierri, Carnevale, Sforni, Notarstefano “Multi-Robot Target Monitoring and Encirclement via Triggered Distributed Feedback Optimization.” (submitted to journal, https://arxiv.org/pdf/2409.20399)
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Numerical Experiments in ROS 2 Simulator

Realistic simulation of multi-robot monitoring and cordoning experiment?:
e ROS 2 implementation with CHOIRBOT
e Ground team: N = 10 Turtlebot 3 Burger
e A fixed target to cordone

e M =5 points of interest to monitor

N e -]

Agents

?https://www.youtube.com/watch?v=iIUChcNUdr4

G. Notarstefano — System Theory Tools for Optimization in Learning and Control 17 |37


https://www.youtube.com/watch?v=iIUChcNUdr4

System Theory Tools for Optimization and Learning

System Theory Tools

LaSalle and Lyapunov Theory Timescale Separation Averaging theory

Slow System —— Original System |[|z*||

--- Averaged System ||z£, |

T = ok 4 5 (2", 25

Fast System T

2L = g2k, k)

\ \ \

Distributed optimization algorithms Accelerated optimization algorithms Learning-driven Optimal Control
Optimization-oriented dynamics Gradient-like algorithm Learning Algorithm
Consensus-oriented dynamics Extra dynamics Physical Plant
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Accelerated Gradient Schemes

Consider the unconstrained program

min f(z)

x€R™

Acclerated gradient schemes typically enjoy this second-order form

Xk+1 — Xk _ ’YVf(Xk +61(Xk _ Xk:—l)) _,'_/672()(1@ _Xk—l)

Method B1 B2
Gradient Descent 0 0
Heavy-Ball 0 B
Nesterov B B
Triple Momentum 31 [2

Carnevale, Notarnicola, Notarstefano, “Timescale Separation for Nonconvex Accelerated Optimization.” (arXiv soon)

G. Notarstefano — System Theory Tools for Optimization in Learning and Control
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Accelerated Gradient Schemes

Consider the unconstrained program

min f(z)

x€R™

Acclerated gradient schemes typically enjoy this second-order form

Xk+1 — Xk _ ’YVf(Xk +61(Xk _ Xk:—l)) _,'_/672()(1@ _Xk—l)

In state-space form

Method B1 B2
Gradient Descent 0 0
Heavy-Ball 0 B
Nesterov B B
Triple Momentum 31 [2

KA =k V(R 4 B — 28)) + Ba(xt —2F)

Ll

X

k

Carnevale, Notarnicola, Notarstefano, “Timescale Separation for Nonconvex Accelerated Optimization.” (arXiv soon)
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Accelerated Gradient Schemes

Consider the unconstrained program

min f(z)

x€R™

Acclerated gradient schemes typically enjoy this second-order form

Method B1 B2

Gradient Descent 0 0

K = — ’VVf(Xk + B — Xk_l)) + B2 (xF =) Heavy-Ball 0 B
Nesterov B B

Triple Momentum 31 [2

In state-space form

KL =P V(8 4 Bi(xF = 28)) + Ba(xh — 2F)
R

Idea: frame accelerated gradient schemes as two-time-scale systems

Carnevale, Notarnicola, Notarstefano, “Timescale Separation for Nonconvex Accelerated Optimization.” (arXiv soon)
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Accelerated Gradient Schemes: System Theory Perspective

zF k
Gradient method: static feedback xFHL = xF 4 gk X
XEHL — gk ok
2P =~V f(x")
2F = -V (")

Carnevale, Notarnicola, Notarstefano, “Timescale Separation for Nonconvex Accelerated Optimization.” (arXiv soon)
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Accelerated Gradient Schemes: System Theory Perspective

z* k
Gradient method: static feedback xF+l = xF 4 gk X
R
2P =~V f(x")
2F = -V ()
Accelerated methods: dynamic feedback 2k «F

x*H = x* 4 §s, (%", 2%)
Xk+1 — Xk +687(Xk7zk)

A= gk, o)

Carnevale, Notarnicola, Notarstefano, “Timescale Separation for Nonconvex Accelerated Optimization.” (arXiv soon)
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Accelerated Gradient Schemes: Meta-Algorithm Requirements

Meta algorithm for accelerated gradient scheme as the interconnected system
xktl — kb 4 (Ss.y(xk7 Zk)
2F 1 = g(xF, 2F)

Requirements:

e g admits equilibria parametrized in x via zeq(x), namely for all z € R™
zeq(z) = 9(@, 2eq())
e s, recovers gradient descent for z = zeq(x), namely

5y (%, 2eq(7)) = =YV f(2)

Carnevale, Notarnicola, Notarstefano, “Timescale Separation for Nonconvex Accelerated Optimization.” (arXiv soon)
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Accelerated Gradient Schemes: Convergence Properties

Theorem
Consider the meta accelerated gradient scheme. Assume
e f radially unbounded (possibly nonconvex) with L-Lipschitz continuous gradient
® 5,0, zeq Lipschitz continuous
o Zeq(x) exponentially stable equilibrium for extra-dynamics z**+1 = g(x,2z*) uniformly in =
e s, recovers gradient descent for z = zeq(z), i.€., sy (2, zeq(x)) = =7V f()
Then, for any given v € (0,2/L) and a sufficiently small 6 > 0, it holds
k1i>rrolo pIST(x®, X*) = 0
with X'* set of stationary points of the optimization problem.

Moreover, if f is strongly convex, then the convergence is linear.

Carnevale, Notarnicola, Notarstefano, “Timescale Separation for Nonconvex Accelerated Optimization.” (arXiv soon)
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Accelerated Gradient Schemes: Examples

k+1 _ Lk k _k
X =x" 4+ s, (x",27) & | . «k
X = xF 4 §s. (xF, 2F)

R v
o Heavy ball: sy(x*,2") = —yV f(x*) + (x* — 2F)
o Nesterov: sy (x*,2%) = —yV f(x* + 5(x* — z*)) + (xF — 2¥)

2P = g(2F, %)

o Triple momentum: s, (x*,2z*) = —'ny(xk + B (xF — zk)) + (xF —2F)

Nonconvex logistic regression

~ largest for GD, § = .5
T T T T

v largest for GD, § =1
T T T

T
100 - o 10°
\ CICEE [ e ir- Rabd il 1L g
= =
L e Ol
s |[—op 5
= — HB = 10-12
104
10—18 | | Il |
0 200 400 600 800 1,000

| | |
0 200 400 600 800 1,000

Iteration k Iteration k

Carnevale, Notarnicola, Notarstefano, “Timescale Separation for Nonconvex Accelerated Optimization.” (arXiv soon)
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Model-free Optimization

Consider an unconstrained program where f is unknown but we can query an oracle providing cost evaluations

min f(z)

TER™

Carnevale, Notarstefano, “Accelerating Model-Free Optimization via Averaging of Cost Samples.” (submitted)
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Model-free Optimization

Consider an unconstrained program where f is unknown but we can query an oracle providing cost evaluations

min f(z)

TER™

Existing approaches rely on estimating the gradient of f via finite differences

Carnevale, Notarstefano, “Accelerating Model-Free Optimization via Averaging of Cost Samples.” (submitted)
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Model-free Optimization

Suppose to have a generic gradient estimation technique relying on a finite set of perturbing directions {dj};.:):1
D
D ge(f(@+edj), dj) = V() + ec(x)
j=1

where ec(x) is an error term tunable via ¢ > 0, namely for any compact & C R", there exists L > 0 such that

llec(@)]| < eL

forall x € S.

Carnevale, Notarstefano, “Accelerating Model-Free Optimization via Averaging of Cost Samples.” (submitted)
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Model-free Optimization

Suppose to have a generic gradient estimation technique relying on a finite set of perturbing directions {dj};‘j:1

D
D ge(f(x+ edj), dy) = V(@) + ee(2)
j=1
where ec(x) is an error term tunable via ¢ > 0, namely for any compact & C R", there exists L > 0 such that
llee(@)|l < eL

forall x € S.

Example: finite differences using the canonical basis {e;, —e; };.l:l as perturbing directions, namely

9e(f(z +eej), e;) = f(%:e])ej = D> _ge(fla+edy),dj) = fet ej)%f(z ej)ej
=1 j=1

Carnevale, Notarstefano, “Accelerating Model-Free Optimization via Averaging of Cost Samples.” (submitted)
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Model-free Optimization

Suppose to have a generic gradient estimation technique relying on a finite set of perturbing directions {dj};.:):1

D
D ge(f(x+ edj), dy) = V(@) + ee(2)
j=1
where ec(x) is an error term tunable via ¢ > 0, namely for any compact & C R", there exists L > 0 such that
llee(@)|l < eL

forall x € S.

Example: finite differences using the canonical basis {e;, —e; };.l:l as perturbing directions, namely

9e(f(z +eej), e;) = f(%:e])ej = D> _ge(fla+edy),dj) = fet ej)%f(x ej)ej
=1 j=1

Multiple cost evaluations per iteration unwanted or not possible

Carnevale, Notarstefano, “Accelerating Model-Free Optimization via Averaging of Cost Samples.” (submitted)
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Model-free Meta-Algorithm Design

Algorithm with multiple cost evaluations per iteration

D
K =P~y Y " ge(fF + edj), dy)
=1

~V f(xF)

Carnevale, Notarstefano, “Accelerating Model-Free Optimization via Averaging of Cost Samples.” (submitted)
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Model-free Meta-Algorithm Design

Algorithm with multiple cost evaluations per iteration

D
K =xF — > " g (F(xF + edy), d;)
=1

not simultaneously available

Carnevale, Notarstefano, “Accelerating Model-Free Optimization via Averaging of Cost Samples.” (submitted)
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Model-free Meta-Algorithm Design

Algorithm with multiple cost evaluations per iteration

D
K= xF =Y 7 ge(F(xF + edj), dy)
=1

not simultaneously available

Design based on timescale separation
Introduce memory mechanism based on auxiliary variables {z]-}jD:1 storing cost evaluations when available

D
Xkl = xk Z gE(Z?,dj) slow dynamics
=1
x" 4+ ed;) if direction d; is selected .
el flg 5) ) J fast dynamics
J z; otherwise

Note: cost evaluations per iteration do not increase with respect to a naive zeroth-order method

Carnevale, Notarstefano, “Accelerating Model-Free Optimization via Averaging of Cost Samples.” (submitted)
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Model-Free Meta-Algorithm: Convergence Properties

Theorem
Consider our Model-Free Meta-Algorithm. Assume
» f strongly convex with Lipschitz continuous gradient

» generic gradient estimation technique ge available

» perturbing directions {dj}f ; selected via essentially cyclic rule

Then, for all p > 0 and (2°,2°) € R"* x RP, for small 4 > 0 and € > 0, there exists a € (0, 1) such that

k

—az*|| < (1 —~a)*ao +p

o

for all k € N, where x* is the optimal solution.

Proof idea: combine timescale separation with practical stability analysis tools

Carnevale, Notarstefano, “Accelerating Model-Free Optimization via Averaging of Cost Samples.” (submitted)
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Model-Free Meta-Algorithm: Numerical Simulations

Logistic regression problem

min 1 i log (1 + eflh(szm) + @ Il
z€R™ m 2 ’

h=1
Single-point methods Two-point methods
102 10% ¢
\ - - = Our algorithm with 1 sample per k N Our algorithm with 2 samples per k
1 . |- - - Single-point method | "y~ -~ 2-point method
10 N\ | N
*: \ . *: 100 - \\\ ~
& \ & \ i
| 10° \ | \ N
2 \ 3 \ N
\ . ] \ S
s \ = 1072
107! |
10-2 | S—p——— i e ! 10-4 i — e e 3
0 0.5 1 1.5 2 2.5 0 500 1,000 1,500 2,000
Iteration & 10° Iteration %

Carnevale, Notarstefano, “Accelerating Model-Free Optimization via Averaging of Cost Samples.” (submitted)
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System Theory Tools for Optimization and Learning

System Theory Tools

LaSalle and Lyapunov Theory Timescale Separation Averaging theory

Slow System —— Original System |[|z*||

--- Averaged System ||z£, |

L = gk 4 5f(ak, 2F)

Fast System T

L = (s, k)

\ \ \

Distributed optimization algorithms Accelerated optimization algorithms Learning-driven Optimal Control
Optimization-oriented dynamics Gradient-like algorithm Learning Algorithm
Consensus-oriented dynamics Extra dynamics Physical Plant

G. Notarstefano — System Theory Tools for Optimization in Learning and Control 29 |37



Data-driven Linear Quadratic Regulator: from Off-policy to On-policy

Data collection Learning System Actuation

t4+1 t t .
K= Axt + Bu min T2 o 1x7 B +uT %
{Xt}[O,T] st. xtT1 = Axt + But
open-loop

" . *
model based feedback find data-driven K

Off policy
data-driven LQR
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Data-driven Linear Quadratic Regulator: from Off-policy to On-policy

Data collection Learning

System Actuation

t+1 _ t t .
x T = Ax! + Bu min T2 01x7 |3 +1uT 1%

{Xt}[O,T] st. xtT1 = Axt + But
open-loop

" . *
model based feedback find data-driven K

Off policy

collect x*

system actuation
|
I

data-driven LQR

On policy

t

data-driven LQR

G. Notarstefano — System Theory Tools for Optimization in Learning and Control
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Stability-Certified On Policy Data-driven LQR

LQR problem For a linear system with unknown A and B, solve

oo
: 1 T T T T
xlrr;gn 5 Z <(ac ) Qz" + (u") Ru )
a2 T
U U ..
subj.to #tt! = Azt + Bu?
20 ~ A0

with zF € R?, uk € R™, X0 known, Q = QT >0, R=R" > 0.

G. Notarstefano — System Theory Tools for Optimization in Learning and Control
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Stability-Certified On Policy Data-driven LQR

LQR problem For a linear system with unknown A and B, solve

oo

: 1 T\ T T T\ T T

xlrr;gn 5 E <(ac) Qz" + (u”) Ru)
a2 =

u U ...

subj.to #tt! = Azt + Bu?
20 ~ A0

with zF € R?, uk € R™, X0 known, Q = QT >0, R=R" > 0.

On-policy framework
Learning: sample data from real system
Optimization: iteratively refine feedback gain policy

Control: actuate real system with tentative (non-optimal) policy

G. Notarstefano — System Theory Tools for Optimization in Learning and Control
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Stability-Certified On Policy Data-driven LQR

LQR problem For a linear system with unknown A and B, solve

oo

: 1 T\ T T T\ T T

xlrr;gn 5 E <(ac) Qz" + (u”) Ru)
a2 =

u U ...

subj.to #tt! = Azt + Bu?
20 ~ A0

with zF € R?, uk € R™, X0 known, Q = QT >0, R=R" > 0.

On-policy framework
Learning: sample data from real system
Optimization: iteratively refine feedback gain policy

Control: actuate real system with tentative (non-optimal) policy

Control

Optimization

Plant

Learning

Stability certificate guarantee whole closed-loop learning-optimization-control system asymptotically stable
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RELEARN LQR: On Policy Strategy

Learning
k k1T
k41 k X X
Skt =8 + [uk:| |:uk] |Exosystem|
k
X Ew,
HRL — AHF 4 Lk} vk ;
4 Xp Upy Yt
ot =gk — 5 (Hk)T(HkOk — gk ) Optimization ¢ Plant >
Xt
Optimization 1
K1 = K* — 5 G(K*,0%)
data-driven gradient
Control Learning |«
whtl = pwk

u* = K*x* + EwF
xFtl = Axk + Bu*
yk — (Xk+1)T

Sforni, Carnevale, Notarnicola, Notarstefano, “Stability-Certified On-Policy Data-Driven LQR via Recursive Learning and Policy Gradient.” (submitted to Automatica)
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RELEARN LQR: On Policy Strategy

Learning — Recursive Least Square with 6% = [A* B*]T

k+1 k xF] [xF i | I
S =AS" + uk | luk Exosystem
k
HEFL — AFF 4 Ek} vk Ew,
v X U Yy
oFtl =gk — 5 (Hk)T(HkOk — gk ) Optimization &'E)"' Plant I >
Xt
Optimization 1
K1 = K* — 5 G(K*,0%)
data-driven gradient
Control Learning |«
Wkl =k E—

u* = K*x* + EwF
xFtl — Axk + Bu*
yk — (Xk+1)T

Sforni, Carnevale, Notarnicola, Notarstefano, “Stability-Certified On-Policy Data-Driven LQR via Recursive Learning and Policy Gradient.” (submitted to Automatica)
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RELEARN LQR: On Policy Strategy

Learning — Recursive Least Square with 6% = [A* B*]T
K

xk [x T
SFFL = \sk + [uk:| |:uk] | Exosystem |

k
HEFL — AFF 4 Bk} vk

k1 k kNt prk gk K T ot Vi
0 =60 —~(H")T(H"6% — S%) Optimization 4 Plant >
Xt

Optimization — Policy Gradient
K1 = K* — 5 G(K*,0%)

data-driven gradient

A

Control Learning

whtl = pwk

u* = K*x* + EwF
xFtl — Axk + Bu*
yk — (Xk+1)T

Sforni, Carnevale, Notarnicola, Notarstefano, “Stability-Certified On-Policy Data-Driven LQR via Recursive Learning and Policy Gradient.” (submitted to Automatica)
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RELEARN LQR: On Policy Strategy

Learning — Recursive Least Square with 6% = [A* B*]T

Xk k17T
st st 5] [5]

u

~
| Exosystem |

Ew,

k
HEFL — AFF 4 Bk} vk

k1 k kNt prk gk K 24 ot Vi
0 =60 —~(H")T(H"6% — S%) Optimization ¢ Plant >
Xt

Optimization — Policy Gradient 1 L )
KR — kF oy G(KF,6%)
data-driven gradient
Control — Dynamics + Exogenous System (Persist. Excit.) Leammg |\
whtl = pwk

u* = K*x* + EwF
xFtl — Axk + Bu*
yk — (Xk+1)T

Sforni, Carnevale, Notarnicola, Notarstefano, “Stability-Certified On-Policy Data-Driven LQR via Recursive Learning and Policy Gradient.” (submitted to Automatica)
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Closed-loop System: Convergence Properties

Theorem
Let (A*, B*) (unknown matrices) controllable and exosystem satisfy proper persistency of excitation conditions.

For any K° s.t. A + BOK?O, there exist (IIx, Iz, g) and 7 > 0 such that, for all v € (0,7), it holds

k — oo
<k 2T Twk

HF k— oo vec LTIz Wk)
Sk vec™ 1 (TIgWF)

0% k — oo 0*
Kk } K*

with geometric rate, where W* := vic {wk(w")T}

Sforni, Carnevale, Notarnicola, Notarstefano, “Stability-Certified On-Policy Data-Driven LQR via Recursive Learning and Policy Gradient.” (submitted to Automatica)
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Sketch of the Proof (I)

Analyze overall (learning-optimization-control) closed-loop system

Wk+1 — ka
xkt1 — Axk + BK*xF + BEwk
k k T
k+1 _ ok X x
S =AST+ {K’“xk + Ewk} [kak + Ewk}
kE+1 _ k X T
HM = 2HF + |:ka/¥€ +Ewk:| Tyy1
KFE = KF —y G(K*,0%)

Highlight a two-time-scale interconnected system

Exploit averaging theory to analyze the asymptotic stability properties

Sforni, Carnevale, Notarnicola, Notarstefano, “Stability-Certified On-Policy Data-Driven LQR via Recursive Learning and Policy Gradient.” (submitted to Automatica)

G. Notarstefano — System Theory Tools for Optimization in Learning and Control 34 |37



Sketch of the Proof (Il)

In error coordinates, the overall closed-loop system can be seen as two feedback interconnected subsystems

slow system

AP S (PN )

k k
13 fast system X

€1 = A(XM)ER + h(xF, k) +va(€F, XF, k)

Sforni, Carnevale, Notarnicola, Notarstefano, “Stability-Certified On-Policy Data-Driven LQR via Recursive Learning and Policy Gradient.” (submitted to Automatica)
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Sketch of the Proof (Il)

In error coordinates, the overall closed-loop system can be seen as two feedback interconnected subsystems

slow system

AP S (PN )

k k
13 fast system X

F 1 = A(K)ER + h(xXF, k) + v9(¢F, x*, k)

with
i o o* x — Iw* X A+B(E+K*) 0 0
e {K} - [K_K*], gi= |y (H—vec LIy Wh)) |, AGH) = 0 A0
v (S — vec LTI W*)) 0 0 A

while f, h, and g properly contain the terms describing the overall dynamics in the new coordinates

Sforni, Carnevale, Notarnicola, Notarstefano, “Stability-Certified On-Policy Data-Driven LQR via Recursive Learning and Policy Gradient.” (submitted to Automatica)
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Sketch of the Proof (Il)

In error coordinates, the overall closed-loop system can be seen as two feedback interconnected subsystems

slow system

AP S (PN )

k k
13 fast system X

F 1 = A(K)ER + h(xXF, k) + v9(¢F, x*, k)

Exploit averaging theory by studying the averaged system

averaged system

] P = (1 )k, \
, |

] REH = R, —yQ(RE, + K*, 05, +0%) H» :

Sforni, Carnevale, Notarnicola, Notarstefano, “Stability-Certified On-Policy Data-Driven LQR via Recursive Learning and Policy Gradient.” (submitted to Automatica)

G. Notarstefano — System Theory Tools for Optimization in Learning and Control 35 |37



Simulations on a Linearized Aircraft Model

800 — J(Kt,0:) H
—J;

Linearized aircraft model

Slowly varying matrices A* and B*

-10°
t
Apply RELEARN LQR strategy
k=  — — — —
g ow o= 100 s
No re-initialization required I =
o 1078 | BRI o
< I
< s
> —16 B -
¢ 10° . 10°
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Conclusions

Summary

e System theory tools for algorithms’ design and analysis T vy
(algorithms as dynamical systems)

e Systematic design of distributed optimization algorithms

e Accelerated optimization as feedback interconnection

e Data-Driven LQR: online on-policy certified stability

Optimal Control

4

Some references

e A Unifying System Theory Framework for Distributed Optimization and Games
https://ieeexplore.ieee.org/document/11015566

e Stability-Certified On-Policy Data-Driven LQR via Recursive Learning and Policy Gradient
https://arxiv.org/pdf/2403.05367
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