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System Theory Tools for Optimization and Learning

LaSalle and Lyapunov Theory
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Distributed Algorithms for Optimization and Games

Network of N peer agents aim at solving optimization-based tasks without a central coordinator

Each agent i

• knows only part of the problem (local, private data)

• performs local computations

• communicates only with neighboring agents (digraph G)

Optimization

min
x

f(x)

subj.to x ∈ X

Different scenarios to model a large variety of tasks in both cooperative and competitive frameworks

min
x

N∑
i=1

fi(x)

min
x1,...,xN

N∑
i=1

fi(xi)

subj.to
N∑
i=1

gi(xi) ≤ 0

min
x1,...,xN

N∑
i=1

fi(xi, σ(x))

subj.to xi ∈ Xi ∀ i

σ(x) =
1

N

N∑
i=1

ϕi(xi)

Agent

Agent

Agent

Target

min
xi

Ji(xi, σ(x))

subj.to xi ∈ Xi ∀ i

σ(x) =
1

N

N∑
i=1

ϕi(xi)
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Distributed Consensus Optimization via Gradient Tracking

Consider the optimization problem

min
x∈Rd

N∑

i=1

fi(x)

N∑
i=1

fi(x), x ∈ R2

x⋆

xki

xkj

j

i

fj

fi

G. Notarstefano – System Theory Tools for Optimization in Learning and Control 5 |37



Distributed Consensus Optimization via Gradient Tracking

Consider the optimization problem

min
x∈Rd

N∑

i=1

fi(x)

Centralized “gradient” method

xk+1
i =

average (global)︷ ︸︸ ︷
1

N

N∑

j=1

xkj − γ

gradient (global)︷ ︸︸ ︷
N∑

j=1

∇fj(x
k
j )

N∑
i=1

fi(x), x ∈ R2

x⋆

xki

xkj

j

i

fj

fi
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Distributed Consensus Optimization via Gradient Tracking

Consider the optimization problem

min
x∈Rd

N∑
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fi(x)
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xk+1
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j∈Ni

aijx
k
j − γ

proxy for
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j=1 ∇fj(x
k
j )︷︸︸︷

ski

sk+1
i =

∑

j∈Ni

aijs
k
j +∇fi(x

k+1
i )−∇fi(x

k
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Convergence of Gradient Tracking - Nonconvex setting

Gradient Tracking

xk+1
i =

∑

j∈Ni

aijx
k
j − γzki − γ∇fi(x

k
i )

zk+1
i =

∑

j∈Ni

aij(z
k
j +∇fj(x

k
j ))−∇fi(x

k
i )

min
x

N∑
i=1

fi(x)

Intuition: Gradient Tracking is a Two-Time-Scale System

x̄k+1 = x̄k − γ

N
1⊤G(1x̄k +Rxk⊥)

[
xk+1
⊥

zk+1
⊥

]
=

[
R⊤AR −I

0 R⊤AR

] [
xk⊥
zk⊥

]
+ γ

[
−R⊤

R⊤(A− I)

]
G(1x̄k +Rxk⊥)

x̄kxk⊥

Slow system

Fast system

▶ x̄k := 1
N

∑N
i=1 x

k
i , x

k
⊥ := R⊤xk, zk⊥ := R⊤zk, with R⊤1 = 0 and R⊤R = I

▶ G stacking local gradients ∇fi, A := A⊗ Id with A consensus matrix
Carnevale, Notarstefano, “ Nonconvex Distributed Optimization via Lasalle and Singular Perturbations.” (L-CSS ’22)
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Convergence of Gradient Tracking - Nonconvex setting

Gradient Tracking

xk+1
i =

∑

j∈Ni

aijx
k
j − γzki − γ∇fi(x

k
i )

zk+1
i =

∑

j∈Ni

aij(z
k
j +∇fj(x

k
j ))−∇fi(x

k
i )

min
x

N∑
i=1

fi(x)

Theorem

Consider Gradient Tracking initialized so that
∑N

i=1 z
0
i = 0. Assume

• Graph G strongly connected and A doubly stochastic

• ∑N
i=1 fi radially unbounded and ∇f1, . . . ,∇fN Lipschitz continuous (possibly nonconvex)

Then, there exists γ̄ > 0 s.t. for any γ ∈ (0, γ̄), it holds

lim
k→∞

dist(xki ,X ⋆) = 0 ∀i ∈ {1, . . . , N}

with X ⋆ set of stationary points of the optimization problem.

Carnevale, Notarstefano, “ Nonconvex Distributed Optimization via Lasalle and Singular Perturbations.” (L-CSS ’22)
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Optimization-oriented Centralized Algorithm
Optimization meta-algorithm:

χk+1
i = gi(χ

k
i ,

aggregate information︷ ︸︸ ︷
α(χk))

xki = ηi(χ
k
i )

i

χk
i

Aggregator

α(χk)

▶ Consensus optimization

α(χ) :=

[
1
N

∑N
i=1 xi

∑N
i=1 ∇fi(xi)

]

▶ Constraint-coupled optimization

α(χ) :=

[
1
N

∑N
i=1 λi

∑N
i=1 gi(xi)

]

▶ Aggregative optimization

α(χ) :=

[
1
N

∑N
i=1 ϕi(xi)

∑N
i=1 ∇2fi(xi, σ(x))

]

▶ Aggregative games

α(χ) :=
1

N

N∑

i=1

ϕi(xi)

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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i
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1

N

N∑
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N∑
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gi(χi, α(χ)) =

[
xi − γ∇xiL(xi,

∑N
j=1 gj(xj), λi)

1
N

∑N
j=1 λj + γ∇λi

L(xi,
∑N

j=1 gj(xj), λi)

]

▶ Aggregative optimization

gi(xi, α(x)) = xi − γ


∇

N∑

j=1

fj(xj , σ(x))



i

▶ Aggregative games

gi(xi, α(x)) = xi − γ [∇Ji(xi, σ(x))]i

▶ Consensus optimization

α(χ) :=

[
1
N

∑N
i=1 xi

∑N
i=1 ∇fi(xi)
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Systematic Transition to a Fully-distributed Algorithm

Idea: introduce variables zi reconstructing unavailable global data σ(χ) running consensus-based dynamics

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Systematic Transition to a Fully-distributed Algorithm

Idea: introduce variables zi reconstructing unavailable global data σ(χ) running consensus-based dynamics

Naive distributed version: double-scale algorithm only using neighbors’ variables (χk
Ni

, zkNi
)

χk+1
i = gi(χ

k
i ,

proxy for α(χk)︷ ︸︸ ︷
α̂i(χ

k
i , z

k,∞
i ))

Optimization

zk,τ+1
i = hi(χ

k
Ni

, zk,τNi
)

Consensus For τ = 0, 1, . . .

For k = 0, 1, . . .

i

Example: causal perturbed consensus dynamics for α(χk) = 1
N

∑N
i=1 φi(χ

k
i )

zk,τ+1
i =

∑

j∈Ni

aij(z
k,τ
j + φj(χ

k
j ))− φi(χ

k
i )

︸ ︷︷ ︸
hi(χ

k
Ni

,z
k,τ
Ni

)
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Systematic Transition to a Fully-distributed Algorithm

Idea: introduce variables zi reconstructing unavailable global data σ(χ) running consensus-based dynamics

Distributed single-scale algorithm: plain interconnection with no guarantees

χk+1
i = gi

(
χk
i , α̂i(χ

k
i , z

k
i )
)

(optimization)

zk+1
i = hi(χ

k
Ni

, zkNi
) (consensus)

i
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Systematic Transition to a Fully-distributed Algorithm

Idea: introduce variables zi reconstructing unavailable global data σ(χ) running consensus-based dynamics

Distributed single-scale algorithm: design two-time-scale system

χk+1
i = χk

i + δ
(
gi
(
χk
i , α̂i(χ

k
i , z

k
i )
)
− χk

i

)
(optimization)

zk+1
i = hi(χ

k
Ni

, zkNi
) (consensus)

i

with δ > 0 tuning parameter to “modulate” the speed of variation of χk
i

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Distributed Algorithm as a Two-Time-Scale System

Intuition: distributed algorithm is an interconnected Two-Time-Scale System

χk+1 = χk + δ
(
g(χk, α̂(χk, zk))− χk

)

zk+1 = h(χk, zk)

χk
zk

Optimization-oriented scheme - Slow system

Consensus-oriented scheme - Fast system

g, α̂, h, χk, zk, xk, η
stacking

gi, α̂i, hi, χk
i , z

k
i , x

k
i , ηi

χk :=



χk
1
...

χk
N


 , zk :=



zk1
...

zkN


 , . . .

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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)
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χk
zk

Optimization-oriented scheme - Slow system

Consensus-oriented scheme - Fast system

χ⋆

χk

δ
(
g(χk, α̂(χk, zeq(χ

k)))− χk
)
≡ δ

(
g(χk,1α(χk))− χk

)

δ
(
g(χk, α̂(χk, zk))− χk

)

Centralized method recovered if zk = zeq(χ
k)

χ

z

zeq(χ)

Parametrized equilibrium zeq(χ)
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Convergence Results

Theorem
Let X ⋆ be the set of problem critic points (stationary points, Nash equilibria, etc...).
Assume Lipschitz continuity of g, h, α̂, and that

▶ Convergence of centralized optimization algorithm
there exists radially unbounded function W proving limk→∞ dist(xk,X ⋆) = 0 along the trajectories of

χk+1 = g(χk,1α(χk))

xkcntr = η(χk);

▶ Consensus exponential stability
there exists a Lipschitz continuous equilibrium function zeq such that

▶ α̂(χ, zeq(χ)) = 1α(χ) for all χ;
▶ zeq(χ) globally exponentially stable uniformly in χ for zk+1 = h(χ, zk).

Then, for small δ > 0, the trajectories of the distributed algorithm satisfy

lim
k→∞

dist(xk,X ⋆) = 0

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Convergence Results

Corollary
Let x⋆ = η(χ⋆) be the unique problem solution (e.g., strong convexity, strong monotonicity).
Assume Lipschitz continuity of g, h, α̂, and that

▶ Convergence of centralized optimization algorithm
there exists a Lyapunov function W proving global exponential stability of χ⋆ for

χk+1 = g(χk,1α(χk))

xkcntr = η(χk);

▶ Consensus exponential stability
there exists a Lipschitz continuous equilibrium function zeq such that

▶ α̂(χ, zeq(χ)) = 1α(χ) for all χ;
▶ zeq(χ) is globally exponentially stable uniformly in χ for zk+1 = h(χ, zk).

Then, for small δ > 0 and some c1, c2 > 0, the trajectories of the distributed algorithm satisfy

∥∥∥xk − x⋆
∥∥∥ ≤ c1

∥∥x0 − x⋆
∥∥ e−c2k

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)

G. Notarstefano – System Theory Tools for Optimization in Learning and Control 10 |37



Convergence Analysis based on Timescale Separation

Sketch of the proof

1. Build two auxiliary systems called boundary layer system and reduced system

2. Boundary layer system: z dynamics with arbitrarily fixed χ and z̃ := z− zeq(χ)

3. Reduced system: χ dynamics with zk = zeq(χk)

4. Prove convergence in a LaSalle sense of the interconnection using V (χ, z̃) = W (χ) + U(z̃).

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Sketch of the proof

1. Build two auxiliary systems called boundary layer system and reduced system

2. Boundary layer system: z dynamics with arbitrarily fixed χ and z̃ := z− zeq(χ)

3. Reduced system: χ dynamics with zk = zeq(χk)

4. Prove convergence in a LaSalle sense of the interconnection using V (χ, z̃) = W (χ) + U(z̃).

z̃k+1 = h(χ, z̃k + zeq(χ))− zeq(χ)

χk+1 = χk = χ

Boundary Layer System

χ

z̃k

zt1

zt 2

zeq(χ)

Lyapunov function U proving that the origin is globally exponentially stable (uniformly in χ)

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Convergence Analysis based on Timescale Separation

Sketch of the proof

1. Build two auxiliary systems called boundary layer system and reduced system

2. Boundary layer system: z dynamics with arbitrarily fixed χ and z̃ := z− zeq(χ)

3. Reduced system: χ dynamics with zk = zeq(χk)

4. Prove convergence in a LaSalle sense of the interconnection using V (χ, z̃) = W (χ) + U(z̃).

χk+1 = χk + δ
(
g(χk, α̂(χk, zk))− χk

)

zk = zeq(χ
k)

Reduced System

zt

χk

χ⋆

χk

δ
(
g(χk, α̂(χk, zeq(χ

k)))− χk
)
≡ δ

(
g(χk,1α(χk))− χk

)

δ
(
g(χk, α̂(χk, zk))− χk

)

Radially unbounded function W proving attractiveness of the set of solutions for small δ > 0

lim
k→∞

dist(xk,X ⋆) = 0

Carnevale, Mimmo, Notarstefano, “A Unifying System Theory Framework for Distributed Optimization and Games.” (TAC, 2025)
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Convergence Analysis based on Timescale Separation

Sketch of the proof

1. Build two auxiliary systems called boundary layer system and reduced system

2. Boundary layer system: z dynamics with arbitrarily fixed χ and z̃ := z− zeq(χ)

3. Reduced system: χ dynamics with zk = zeq(χk)

4. Prove convergence in a LaSalle sense of the interconnection using V (χ, z̃) = W (χ) + U(z̃).

χk+1 = χk + δ
(
g(χk, α̂(χk, zk))− χk

)

zk+1 = h(χk, zk)

χk
zk

Optimization-oriented scheme - Slow system

Consensus-oriented scheme - Fast system

Custom theorem!
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Distributed Feedback Optimization

Setup: N control systems communicating over a graph

ẋi = pi(xi, ui) ∀i ∈ {1, . . . , N}

Distributed feedback paradigm:
control law of system i depending on neighboring systems j ∈ Ni

i

ẋi = pi(xi, ui)

ξ̇i = gi(ξNi
, xNi

)

ui = ki(ξi)

xiui

Optimization goal: design u = (u1, . . . , uN ) such that x = (x1, . . . , xN ) → x⋆ optimal with respect to

min
x1,...,xN
u1,...,uN

N∑

i=1

fi(xi, σ(x)), with σ(x) =
1

N

N∑

i=1

ϕi(xi)

subj. to xi = hi(ui), ∀i

Carnevale, Mimmo, Notarstefano, “Nonconvex Distributed Feedback Optimization for Aggregative Cooperative Robotics.” (Automatica, ’24)
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Optimization goal: design u = (u1, . . . , uN ) such that x = (x1, . . . , xN ) → x⋆ optimal with respect to

min
x1,...,xN
u1,...,uN

N∑

i=1

fi(xi, σ(x)), with σ(x) =
1

N

N∑

i=1

ϕi(xi)

subj. to xi = hi(ui), ∀i
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ẋi = pi(xi, ui)

ξ̇i = gi(ξNi
, xNi

)

ui = ki(ξi)

xiui

Optimization goal: design u = (u1, . . . , uN ) such that x = (x1, . . . , xN ) → x⋆ optimal with respect to

min
x1,...,xN
u1,...,uN

N∑

i=1

fi(xi, σ(x)), with σ(x) =
1

N

N∑

i=1

ϕi(xi)

subj. to xi = hi(ui), ∀i

Carnevale, Mimmo, Notarstefano, “Nonconvex Distributed Feedback Optimization for Aggregative Cooperative Robotics.” (Automatica, ’24)

G. Notarstefano – System Theory Tools for Optimization in Learning and Control 12 |37



Aggregative Tracking Feedback

Reduced optimization problem

min
u1,...,uN

N∑

i=1

fi(hi(ui), σ(h(u)))

with pi(hi(ui), ui) = 0 and xi = hi(ui) globally exponentially stable.

u̇i = −δ1∇hi(ui)

(
∇1fi(xi, ϕi(xi) + wi︸ ︷︷ ︸

proxy for σ(x)

) +∇ϕi(xi)(∇2fi(xi, ϕi(xi) + wi) + zi︸ ︷︷ ︸
proxy for 1

N

∑N
j=1 ∇2fj(xj ,σ(x))

)

)

δ2ẇi = −
∑

j∈Ni

aij(wi − wj)−
∑

j∈Ni

aij(ϕi(xi)− ϕj(xj))

δ2żi = −
∑

j∈Ni

aij(zi − zj)−
∑

j∈Ni

aij(∇2fi(xi, wi + ϕi(xi))−∇2fj(xj , wj + ϕj(xj)))

Remark: δ1 > 0 slows down u̇i and δ2 > 0 speeds up ẇi and żi
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Overall Closed-loop System... Three Timescales

u̇ = −δ1∇h(u) (G1(x, ϕ(x) + w) +∇ϕ(x)(G2(x, ϕ(x) + w) + z))

ẋ = p(x, u)

δ2

[
ẇ
ż

]
= −

[
L 0
0 L

] [
w
z

]
−

[
L 0
0 L

] [
ϕ(x)

G2(x, ϕ(x) + w)

]

u

x
x

(w, z)

Optimization-oriented scheme - Slow system

Plant dynamics - Mid system

Consensus-oriented scheme - Fast system

• x, w, z, ϕ, G1, G2, p stacking local quantities xi, wi, zi, ϕi, ∇1fi, ∇2fi, and pi

• L := L ⊗ Id with L Laplacian matrix of the graph G

Carnevale, Mimmo, Notarstefano, “Nonconvex Distributed Feedback Optimization for Aggregative Cooperative Robotics.” (Automatica, 2024)
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Convergence Properties of Aggregative Tracking Feedback

Theorem
Consider Aggregative Tracking Feedback. If

▶ Graph G strongly connected and weight-balanced

▶ xi = hi(ui) globally exponentially stable uniformly in ui

▶
∑N

i=1 fi(·, σ(·)) radially unbounded, ∇1fi, ∇2fi, and ϕi Lipschitz continuous (possibly nonconvex)

▶ Initialization
∑N

i=1 wi(0) =
∑N

i=1 zi(0) = 0

Then, for small δ1 > 0 and δ2 > 0

lim
t→∞

dist

([
x(t)
u(t)

]
,X ⋆

)

with X ⋆ the set of stationary points of the aggregative optimization problem.

Carnevale, Mimmo, Notarstefano, “Nonconvex Distributed Feedback Optimization for Aggregative Cooperative Robotics.” (Automatica, ’24)
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Multi-robot Monitoring via Distributed Feedback Optimization

Distributed Optimization Setup

• Network of N robots monitoring an area

• Target to cordone

• Set of M points of interest to monitor

• Monitoring and Cordoning strategy modelled by

Aggregative Feedback optimization setup

min
x,u

N∑

i=1

fk
i (xi, σ(x)

subj.to xi = hi(ui), ∀i ∈ {1, . . . , N}

Pichierri, Carnevale, Sforni, Notarstefano “Multi-Robot Target Monitoring and Encirclement via Triggered Distributed Feedback Optimization.” (submitted to journal, https://arxiv.org/pdf/2409.20399)
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Numerical Experiments in ROS 2 Simulator

Realistic simulation of multi-robot monitoring and cordoning experimenta:

• ROS 2 implementation with ChoiRbot

• Ground team: N = 10 Turtlebot 3 Burger

• A fixed target to cordone

• M = 5 points of interest to monitor
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ahttps://www.youtube.com/watch?v=iIUChcNUdr4
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System Theory Tools for Optimization and Learning

LaSalle and Lyapunov Theory

x⋆

Timescale Separation

zk+1 = g(zk, xk)

Fast System

xk+1 = xk + δf(xk, zk)

Slow System

xkzk

Averaging theory

k

∥x
k
∥,

∥x
k a
v
∥

Original System ∥xk∥
Averaged System ∥xk

av∥

System Theory Tools

Distributed optimization algorithms

Consensus-oriented dynamics

Optimization-oriented dynamics

Accelerated optimization algorithms

Extra dynamics

Gradient-like algorithm

Learning-driven Optimal Control

Physical Plant

Learning Algorithm

G. Notarstefano – System Theory Tools for Optimization in Learning and Control 18 |37



Accelerated Gradient Schemes
Consider the unconstrained program

min
x∈Rn

f(x)

Acclerated gradient schemes typically enjoy this second-order form

xk+1 = xk − γ∇f
(
xk + β1(x

k − xk−1)
)
+ β2(x

k − xk−1)

Method β1 β2

Gradient Descent 0 0
Heavy-Ball 0 β
Nesterov β β
Triple Momentum β1 β2

In state-space form

xk+1 = xk − γ∇f
(
xk + β1(x

k − zk)
)
+ β2(x

k − zk)

zk+1 = xk

Idea: frame accelerated gradient schemes as two-time-scale systems

Carnevale, Notarnicola, Notarstefano, “Timescale Separation for Nonconvex Accelerated Optimization.” (arXiv soon)
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Accelerated Gradient Schemes: System Theory Perspective

Gradient method: static feedback

xk+1 = xk − γzk

zk = −∇f(xk)

Accelerated methods: dynamic feedback

xk+1 = xk + δsγ(x
k, zk)

zk+1 = g(xk, zk)

xk+1 = xk + γzk

zk = −∇f(xk)

xkzk

xk+1 = xk + δsγ(x
k, zk)

zk+1 = g(zk, xk)

xkzk

Carnevale, Notarnicola, Notarstefano, “Timescale Separation for Nonconvex Accelerated Optimization.” (arXiv soon)
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Accelerated Gradient Schemes: Meta-Algorithm Requirements

Meta algorithm for accelerated gradient scheme as the interconnected system

xk+1 = xk + δsγ(x
k, zk)

zk+1 = g(xk, zk)

Requirements:

• g admits equilibria parametrized in x via zeq(x), namely for all x ∈ Rn

zeq(x) = g(x, zeq(x))

• sγ recovers gradient descent for z = zeq(x), namely

sγ(x, zeq(x)) = −γ∇f(x)

Carnevale, Notarnicola, Notarstefano, “Timescale Separation for Nonconvex Accelerated Optimization.” (arXiv soon)
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Accelerated Gradient Schemes: Convergence Properties

Theorem

Consider the meta accelerated gradient scheme. Assume

• f radially unbounded (possibly nonconvex) with L-Lipschitz continuous gradient

• sγ , g, zeq Lipschitz continuous

• zeq(x) exponentially stable equilibrium for extra-dynamics zk+1 = g(x, zk) uniformly in x

• sγ recovers gradient descent for z = zeq(x), i.e., sγ(x, zeq(x)) = −γ∇f(x)

Then, for any given γ ∈ (0, 2/L) and a sufficiently small δ > 0, it holds

lim
k→∞

dist(xk,X ⋆) = 0

with X ⋆ set of stationary points of the optimization problem.

Moreover, if f is strongly convex, then the convergence is linear.

Carnevale, Notarnicola, Notarstefano, “Timescale Separation for Nonconvex Accelerated Optimization.” (arXiv soon)
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Accelerated Gradient Schemes: Examples

xk+1 = xk + δsγ(x
k, zk)

zk+1 = xk

• Heavy ball: sγ(xk, zk) = −γ∇f(xk) + (xk − zk)

• Nesterov: sγ(xk, zk) = −γ∇f
(
xk + δ(xk − zk)

)
+ (xk − zk)

• Triple momentum: sγ(xk, zk) = −γ∇f
(
xk + β1(xk − zk)

)
+ (xk − zk)

xk+1 = xk + δsγ(x
k, zk)

zk+1 = g(zk, xk)

xkzk

Nonconvex logistic regression
γ largest for GD, δ = 1
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γ largest for GD, δ = .5
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Carnevale, Notarnicola, Notarstefano, “Timescale Separation for Nonconvex Accelerated Optimization.” (arXiv soon)
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Model-free Optimization

Consider an unconstrained program where f is unknown but we can query an oracle providing cost evaluations

min
x∈Rn

f(x)

Existing approaches rely on estimating the gradient of f via finite differences

f(x)
f(x+ ϵe1)

f(x− ϵe1)

f(x+ ϵe2)

f(x− ϵe2)

x x+ ϵe1

x− ϵe1
x+ ϵe2

x− ϵe2

Carnevale, Notarstefano, “Accelerating Model-Free Optimization via Averaging of Cost Samples.” (submitted)

G. Notarstefano – System Theory Tools for Optimization in Learning and Control 24 |37



Model-free Optimization

Consider an unconstrained program where f is unknown but we can query an oracle providing cost evaluations

min
x∈Rn

f(x)

Existing approaches rely on estimating the gradient of f via finite differences

f(x)
f(x+ ϵe1)

f(x− ϵe1)

f(x+ ϵe2)

f(x− ϵe2)

x x+ ϵe1

x− ϵe1
x+ ϵe2

x− ϵe2

Carnevale, Notarstefano, “Accelerating Model-Free Optimization via Averaging of Cost Samples.” (submitted)

G. Notarstefano – System Theory Tools for Optimization in Learning and Control 24 |37



Model-free Optimization

Suppose to have a generic gradient estimation technique relying on a finite set of perturbing directions {dj}Dj=1

D∑

j=1

gϵ(f(x+ ϵdj), dj) = ∇f(x) + eϵ(x)

where eϵ(x) is an error term tunable via ϵ > 0, namely for any compact S ⊂ Rn, there exists L > 0 such that

∥eϵ(x)∥ ≤ ϵL

for all x ∈ S.

Example: finite differences using the canonical basis {ej ,−ej}nj=1 as perturbing directions, namely

gϵ(f(x+ ϵej), ej) =
f(x+ ϵej)

2ϵ
ej =⇒

D∑

j=1

gϵ(f(x+ ϵdj), dj) =
n∑

j=1

f(x+ ϵej)− f(x− ϵej)

2ϵ
ej

Multiple cost evaluations per iteration unwanted or not possible

Carnevale, Notarstefano, “Accelerating Model-Free Optimization via Averaging of Cost Samples.” (submitted)
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∥eϵ(x)∥ ≤ ϵL

for all x ∈ S.

Example: finite differences using the canonical basis {ej ,−ej}nj=1 as perturbing directions, namely

gϵ(f(x+ ϵej), ej) =
f(x+ ϵej)

2ϵ
ej =⇒

D∑

j=1

gϵ(f(x+ ϵdj), dj) =
n∑

j=1

f(x+ ϵej)− f(x− ϵej)

2ϵ
ej

Multiple cost evaluations per iteration unwanted or not possible

Carnevale, Notarstefano, “Accelerating Model-Free Optimization via Averaging of Cost Samples.” (submitted)
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Model-free Meta-Algorithm Design

Algorithm with multiple cost evaluations per iteration

xk+1 = xk − γ
D∑

j=1

gϵ(f(x
k + ϵdj), dj)

︸ ︷︷ ︸
≈∇f(xk)
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Model-free Meta-Algorithm Design

Algorithm with multiple cost evaluations per iteration

xk+1 = xk − γ
D∑

j=1

gϵ(f(x
k + ϵdj),dj)

︸ ︷︷ ︸
not simultaneously available

Design based on timescale separation
Introduce memory mechanism based on auxiliary variables {zj}Dj=1 storing cost evaluations when available

xk+1 = xk − γ
D∑

j=1

gϵ(z
k
j , dj) slow dynamics

zk+1
j =

{
f(xk + ϵdj) if direction dj is selected

zkj otherwise
fast dynamics

Note: cost evaluations per iteration do not increase with respect to a naive zeroth-order method
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Model-Free Meta-Algorithm: Convergence Properties

Theorem

Consider our Model-Free Meta-Algorithm. Assume

▶ f strongly convex with Lipschitz continuous gradient

▶ generic gradient estimation technique gϵ available

▶ perturbing directions {dj}Dj=1 selected via essentially cyclic rule

Then, for all ρ > 0 and (x0, z0) ∈ Rn × RD, for small γ > 0 and ϵ > 0, there exists a ∈ (0, 1) such that
∥∥∥xk − x⋆

∥∥∥ ≤ (1− γa)ka0 + ρ

for all k ∈ N, where x⋆ is the optimal solution.

Proof idea: combine timescale separation with practical stability analysis tools

Carnevale, Notarstefano, “Accelerating Model-Free Optimization via Averaging of Cost Samples.” (submitted)
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Model-Free Meta-Algorithm: Numerical Simulations

Logistic regression problem

min
x∈Rn

1

m

m∑

h=1

log
(
1 + e−lh(x⊤ph)

)
+

C

2
∥x∥2 ,

Single-point methods
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·105
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Iteration k

∥x
k
−

x
⋆
∥

Our algorithm with 1 sample per k

Single-point method

Two-point methods
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x
⋆
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Our algorithm with 2 samples per k

2-point method
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System Theory Tools for Optimization and Learning

LaSalle and Lyapunov Theory

x⋆

Timescale Separation

zk+1 = g(zk, xk)

Fast System

xk+1 = xk + δf(xk, zk)

Slow System

xkzk

Averaging theory

k

∥x
k
∥,

∥x
k a
v
∥

Original System ∥xk∥
Averaged System ∥xk

av∥

System Theory Tools

Distributed optimization algorithms

Consensus-oriented dynamics

Optimization-oriented dynamics

Accelerated optimization algorithms

Extra dynamics

Gradient-like algorithm

Learning-driven Optimal Control

Physical Plant

Learning Algorithm
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Data-driven Linear Quadratic Regulator: from Off-policy to On-policy

Off policy

data-driven LQR

Data collection

{xt}[0,T ]

xt+1 = Axt + But

open-loop

model based feedback

Learning

min
∑∞

τ=0|xτ |2Q+|uτ |2R

s.t. xt+1 = Axt + But

find data-driven K⋆

System Actuation

ut = K⋆xt

xt+1 = Axt + But

optimal actuation

t

On policy

data-driven LQR

collect xt

learning K⋆

system actuation
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Stability-Certified On Policy Data-driven LQR

LQR problem For a linear system with unknown A and B, solve

min
x1,x2,...

u0,u1,...

1
2

∞∑

τ=0

(
(xτ )⊤Qxτ + (uτ )⊤Ruτ

)

subj.to xt+1 = Axt +But

x0 ∼ X 0

with xk ∈ Rn, uk ∈ Rm, X 0 known, Q = Q⊤ > 0, R = R⊤ > 0.

On-policy framework

Learning: sample data from real system

Optimization: iteratively refine feedback gain policy

Control: actuate real system with tentative (non-optimal) policy

Stability certificate guarantee whole closed-loop learning-optimization-control system asymptotically stable
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relearn lqr: On Policy Strategy

Learning

– Recursive Least Square with θk = [Ak Bk]⊤

Sk+1 = λSk +

[
xk

uk

] [
xk

uk

]⊤

Hk+1 = λHk +

[
xk

uk

]
yk

θk+1 = θk − γ (Hk)†(Hkθk − Sk )

Optimization

– Policy Gradient

Kk+1 = Kk − γ G(Kk, θk)︸ ︷︷ ︸
data-driven gradient

Control

– Dynamics + Exogenous System (Persist. Excit.)

wk+1 = Fwk

uk = Kkxk + Ewk

xk+1 = Axk +Buk

yk = (xk+1)⊤

Sforni, Carnevale, Notarnicola, Notarstefano, “Stability-Certified On-Policy Data-Driven LQR via Recursive Learning and Policy Gradient.” (submitted to Automatica)
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Closed-loop System: Convergence Properties

Theorem

Let (A⋆, B⋆) (unknown matrices) controllable and exosystem satisfy proper persistency of excitation conditions.

For any K0 s.t. A0 +B0K0, there exist (Πx,ΠH ,ΠS) and γ̄ > 0 such that, for all γ ∈ (0, γ̄), it holds

xk
k → ∞−−−−−−→ Πxw

k

[
Hk

Sk

]
k → ∞−−−−−−→

[
vec−1(ΠHWk)
vec−1(ΠSW

k)

]

[
θk

Kk

]
k → ∞−−−−−−→

[
θ⋆

K⋆

]

with geometric rate, where Wk := vec
{
wk(wk)⊤

}

Sforni, Carnevale, Notarnicola, Notarstefano, “Stability-Certified On-Policy Data-Driven LQR via Recursive Learning and Policy Gradient.” (submitted to Automatica)
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Sketch of the Proof (I)

Analyze overall (learning-optimization-control) closed-loop system

wk+1 = Fwk

xk+1 = Axk +BKkxk +BEwk

Sk+1 = λSk +

[
xk

Kkxk + Ewk

] [
xk

Kkxk + Ewk

]⊤

Hk+1 = λHk +

[
xk

Kkxk + Ewk

]
x⊤
t+1

θk+1 = θk − γ(Hk)†(Hkθk − Sk)

Kk+1 = Kk − γ G(Kk, θk)

Highlight a two-time-scale interconnected system

Exploit averaging theory to analyze the asymptotic stability properties

Sforni, Carnevale, Notarnicola, Notarstefano, “Stability-Certified On-Policy Data-Driven LQR via Recursive Learning and Policy Gradient.” (submitted to Automatica)
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Sketch of the Proof (II)

In error coordinates, the overall closed-loop system can be seen as two feedback interconnected subsystems

ξk+1 = A(χk)ξk + h(χk, k) + γg(ξk, χk, k)

fast system

χk+1 = χk + γf(ξk, χk, k)

slow system

χkξk

Sforni, Carnevale, Notarnicola, Notarstefano, “Stability-Certified On-Policy Data-Driven LQR via Recursive Learning and Policy Gradient.” (submitted to Automatica)
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Sketch of the Proof (II)

In error coordinates, the overall closed-loop system can be seen as two feedback interconnected subsystems

ξk+1 = A(χk)ξk + h(χk, k) + γg(ξk, χk, k)

fast system

χk+1 = χk + γf(ξk, χk, k)

slow system

χkξk

with

χ :=

[
θ̃

K̃

]
:=

[
θ − θ⋆

K −K⋆

]
, ξ :=




x−Πwk

γ
(
H − vec−1(ΠHWk)

)

γ
(
S − vec−1(ΠSW

k)
)


 , A(χk) :=



A+B(K̃ +K⋆) 0 0

0 λI 0
0 0 λI




while f , h, and g properly contain the terms describing the overall dynamics in the new coordinates
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Sketch of the Proof (II)

In error coordinates, the overall closed-loop system can be seen as two feedback interconnected subsystems

ξk+1 = A(χk)ξk + h(χk, k) + γg(ξk, χk, k)

fast system

χk+1 = χk + γf(ξk, χk, k)

slow system

χkξk

Exploit averaging theory by studying the averaged system

K̃k+1
av = K̃k

av − γĜ(K̃k
av +K⋆, θ̃kav + θ⋆)

θ̃k+1
av = (1− γ)θ̃kav

averaged system

θ̃kav
K̃k

av

Sforni, Carnevale, Notarnicola, Notarstefano, “Stability-Certified On-Policy Data-Driven LQR via Recursive Learning and Policy Gradient.” (submitted to Automatica)
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Simulations on a Linearized Aircraft Model

Linearized aircraft model

Slowly varying matrices A⋆ and B⋆

Apply relearn lqr strategy

No re-initialization required
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Conclusions

Summary

• System theory tools for algorithms’ design and analysis
(algorithms as dynamical systems)

• Systematic design of distributed optimization algorithms

• Accelerated optimization as feedback interconnection

• Data-Driven LQR: online on-policy certified stability

LaSalle and Lyapunov Theory

x⋆

Timescale Separation

zk+1 = g(zk, xk)

Fast System

xk+1 = xk + δf(xk, zk)

Slow System

xkzk

Averaging theory

k

∥x
k
∥,

∥x
k a
v
∥

Original System ∥xk∥
Averaged System ∥xk

av∥

System Theory Tools

Distributed optimization algorithms

Consensus-oriented dynamics

Optimization-oriented dynamics

Accelerated optimization algorithms

Extra dynamics

Gradient-like algorithm

Learning-driven Optimal Control

Physical Plant

Learning Algorithm

Some references

• A Unifying System Theory Framework for Distributed Optimization and Games
https://ieeexplore.ieee.org/document/11015566

• Stability-Certified On-Policy Data-Driven LQR via Recursive Learning and Policy Gradient
https://arxiv.org/pdf/2403.05367
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