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Problem formulation
Consider nonlinear optimization problem:

min - f(x)
st.  F(x)=0,

> f:R" = Rand F(x) 2 (A(x), ..., fm(x))", with f : R” — R for all
i=1:m.

> . fie C! forall i =1: m and F is nonlinear.

> Vf(x) € R" denotes gradient; Jr(x) € R™*" denotes Jacobian.

Definition: x is an e-first-order solution if I\ € R” such that:

IVF(E) + Je(xX) AL < e and ||[F(x))| < e

Motivation:

Phase retrieval
Control
Training DNNs
Inverse problems

o s W

Nonlinear programming, etc
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Problem formulation: main assumptions
Consider nonlinear optimization problem:

min )
st.  F(x)=0,

Assumptions:
For any compact set S C R", there exist positive constants Ms, Mg, o, L¢, L
such that f and F satisfy the following conditions:

1IVFA(X)] < Mf, ||VF(x) = V(X)) < Leljx — X'|| for all x,x" € S.

2. [ e € MEe, omin(Jr(x)) > 0 >0 forall x € S.

3. I Je(x) = JE(X)|| < Le|lx = X|| forall x,x" € S

Remark:
Our assumptions allow general classes of problems.
> first conditions hold if e.g., f is differentiable and V£(-) is locally Lipschitz
continuous on a neighborhood of S.
» second conditions hold when e.g., F is differentiable on a neighborhood of
S and satisfies an LICQ condition over S (hence, m < n).
» third condition holds if e.g., Jr is locally Lipschitz continuous on S.

Obs.: Note that any twice continuously differentiable function is locally
Lipschitz and locally smooth on a compact set. 4/21



Notations
Consider nonlinear optimization problem:

min )
st.  F(x)=0,

v

Augmented Lagrangian function associated to our problem:
Lo(x,A) = F(x) + (A F(x)) + gIIF(X)II2
» We use the notations:
lr(x; %) == f(X) + (VF(X),x — %), Ir(x;X) = F(X)+ Jr(X)(x — X) ¥x,x

» Denote quadratic function derived from linearization of objective and
functional constraints in a Gauss-Newton fashion, at a given point x:

Lp(x, X %) = I(x; %) + (A, I (x; %)) + gl\/F(Xv?)H2

(in contrast to pure linearization of £,(-, A))!
» Introduce Lyapunov function:

P(x, A %,7) = Lo(x,X) + 2 Ix = %I
» Evaluation of Lyapunov function along iterates is denoted by:
Pe=P (s doman ) ko,

» We also denote: Axx = xx — xxk—1 and A ¢ = Xk — X1 Vk >0
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History

Consider nonlinear optimization problem:

min  (x)
st.  F(x)=0,

Literature on augmented Lagrangian methods is vast:
> Augmented Lagrangian methods (Rockafellar'76, Bertsekas'82,
Birgin&Martinez group ('08,...,'20), etc...):

AL alg.
Given xo, Ao, A = [Amin, Amax] and po > 0,7 > 1,7 > 0. For k > 0 do:
i. find approximate solution:  xy41 ~ argmin, Ly, (x, Ak)
ii. update
Akt1 € Pra(i+pokF(xi1)),  prrn = Yok if IR Ot lloo > TIIF () oo

> Proximal augmented Lagrangian methods (Rockafellar'76, Hajinezhad'19,
Sahin'19, Wright'20, etc...):

Proximal AL alg.

Given xp, Ao and p,8 > 0. For k > 0 do:
ii. find approximate solution:  xx41 & arg min, £,(x, A\¢) + ng — xk|]2
iii. update:  Agy1 < Ak + pF(xkt1)

» Why AL type alg's are attractive? shown that when subproblem is solved
to approximate global optimality, limit points are global solution of original
problem = (higly nonconvex) subproblem solved with Newton CG, etc...
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Our goal

Consider nonlinear optimization problem:

min ()
st.  F(x)=0,

> (Proximal) Augmented Lagrangian methods enjoy nice convergence
properties and have good practical behavior

» However they require solving highly nonconvex subproblems at each
iteration (of the form):

Xkt1 & argmin L,(x, Ax) + gHX — Xk||2
X

> one needs to call complicated subroutines (such as Newton CG, gradient)
to solve nonconvex subproblem

¢

Goal: derive (proximal) linearized AL methods (subproblem easy - e.g. convex )
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Linearized augmented Lagrangian algorithm (L-AL)
We consider the following algorithm:

Algorithm L-AL

Given x_1 = x0, Ao and p > 1, Bo > 3> 0.
For kK > 0 do:
find Bik1 > B such that the points:

Brr1
2

Akt 4= A+ p (F () + Jr (%) (X1 — X))

satisfy descent inequality

Xk+1 <— arg min Ep(x,)\k;xk)—k [Ix — x«
X

4

I”

3
Pern = Pe < o 18 = 22 A = B A P

Discussion:

» objective function in subproblem is unconstrained, quadratic and strongly
convex = finding a solution is equivalent to solving a linear system

» update of dual multipliers is different from literature, i.e., instead
A1 = Ak + pF(xk41), we evaluate the linearization of F at xk in the new
point xx41 and update A1 = A + p(F(xk) + Jr(xi) (X1 — Xk ))-

> Is algorithm well-posed (3Bk+1)?
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Convergence analysis

Lemma (Bound for ||AXk11]|)

Consider algorithm L-AL. Suppose that for a fixed k > 1 our assumption holds
for some set S and that xx_1,xx € S. Then,

18N P < c(Besn)l| Axen | + (Bl Axel?,

2012
where ¢(B) = 4(1+3”)2(Lfﬁ/’F+MfLF)Z + MH?:Z) ME(B — pLe)? and p > 1 (from the

o
line search procedure).

Lemma (Existence of 5x.1)

Consider algorithm L-AL. Suppose that for a fixed k > 0, our assumption holds
for some set S and that xi,xk+1 € S together with A\x € N\, where \ is a
compact set of R™. Aditionally assume f(x) > f for all x € R". If Bxy1 is
chosen to satisfy:

. 1
Br+1 = Le + Lry/ ZP\/Ep(Xh Ak) + 27)“)%”2 —f
then descent inequality holds, i.e., algorithm L-AL is well-posed.

Remark: Note that 8 depends on /p not on p (crucial in our analysis)!

Usually § is determined through a standard line search at each iteration k. o



Convergence analysis cont.

Lemma (Boundedness of primal-dual sequence)
Iff > f(x) > f forall x : |F(x)|| <1 (left) and respectively x € R" (right),
[|F(x0)|I> < min {17 %’} for some ¢y > 0 and our assumption hold on:

§={x: f()+ ZIFCIP < Py and P =+ co + 4 x]* + 2.
If p > expression(po, Mg, L, Mg, LF, o, IE’), then for k > 1 the following holds:
Bk < B, Pc<P,
X €8, |IMI* < 23(p — po),

ﬁk+1

Pii1— Pc < [ Axa || — *HAX I7.

Remark:

» main challenge when using (augmented) Lagrangian lies in simultaneously
ensuring feasibility and optimality = common approach assumes
boundedness of dual iterates and/or progressively increasing penalty
parameter p (Teboulle'22; Sahin'19; Birgin'20,...)

» boundedness assumption presents limitation, as it's imposed on algorithm's
sequence rather than being an inherent property of problem itself

» boundedness of multiplier sequence in nonconvex setting is a difficult
matter because coercivity arguments do not apply directly

» proper assumptions and analysis allow to bound xx and \x, while keeping

p constant (depending on problem’s data), e.g., no need p ~ el 10/27



Convergence analysis cont.

Theorem (Limit points are KKT points)

Under the assumptions of previous lemma, any limit point (x*, \*) of sequence
{(xx, Ak) }k>1 generated by algorithm L-AL is a KKT point of our problem, i.e.:

VF(x") + Jr(x*) A" =0, F(x*)=0.

If additionally Lyapunov function P(-) satisfies the KL property, then the whole
sequence {(xk, \k) }k>1 converges to a KKT point of our problem.

Theorem (First-order complexity)

Under the assumptions of previous lemma and considering € > 0, sequence
{(xk, Ak) }k>1 generated by algorithm L-AL yields an e-first-order solution of
our problem after K = O(,/pe ?) Jacobian evaluations, i.e.:

IV f(xk) —|—JF(XK)T)\K|| <e and |F(xk)| <e.
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Convergence analysis for L-AL: takeaways

> obtained optimal complexity (?) - O(,/pe ?) - in the context of
augmented Lagrangian and penalty-based methods for smooth nonconvex
constrained optimization problems, as penalty parameter p enters under
square root and desired accuracy € enters quadratically in algorithm's
complexity

recall : 8 =0O(/p)!

» our convergence rate improves existing complexity results for augmented
Lagrangian (measured through Jacobian evaluations), on the same class of
problems: e.g., O(e7>®) in Xie&Wright'21; O(¢™*) in Sahin'19;...

» another key advantage lies in its avoidance of calling complicated
subroutines, as unconstrained subproblem in L-AL algorithm has a
quadratic strongly convex objective function, compared to Xie&Wright'21;
Sahin’19; Birgin'20; ... where subproblem is higly nonconvex
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New problem formulation: nonsmooth objective

In previous problem, objective function was smooth. Consider now a
nonsmooth separable nonlinear optimization problem:

min _ f(x) + g(x) + h(y) + 1y (y)

xERM yeRP
st F(x)+ Gy =0

»  easy subset of RP, e.g., admiting an easy projection

» matrix G € R™*? has full row rank

> functions f : R" - R,g:R" - R, h: R?P - R, and F £ (f, ..., )", with
fi : R" — R for all i € {1, ..., m}, are nonlinear functions

» assume f, h, f;, for all i =1, ..., m, are continuously differentiable
functions, f, h possibly nonconvex and g proper lower semi-continuous and
prox-bounded function relative to its domain domg

Remark (compared to previous model):
1. Objective function is separable, but nonsmooth
2. This model allows additional constraints on x and y via g(-) and 1y(-)

3. Nonlinear equality constraints have a particular structure (see also
Teboulle’22)

13/27



New problem formulation: nonsmooth objective

Consider nonsmooth separable nonlinear optimization problem:

min _ f(x) + g(x) + h(y) + 1y (y)

XERM,yERP
st F(x)+ Gy =0

Motivation:
For example, any constrained composite optimization problem frequently
appearing in nonlinear optimal control (Diehl'21):

rréi)r(l f(x) 4+ h(F(x)) st. F(x)e),
can be easily recast in the form of our optimization problem by defining

F(x) =y, then G = —I, and g the indicator function of the set X and thus
having constraints on both block variables.

In the context of optimal control, f, h are quadratic functions; F describes the
nonlinear dynamical system.
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New problem formulation: nonsmooth objective
Consider nonsmooth separable nonlinear optimization problem:

min F() + 800 + hY) + 1 ()

st F(x)+ Gy =0
Definition: (x7,y.) € dom g x Y is an e-first-order solution if I\} € R” s.t..

dist (—Vf(x:) - VF(x:)T,\:,ag(x:)) <e, dist (—Vh(y:) — G, Ny(y:)) <e
IF(x}) + Gyl|| < e.

Assumptions:

For any compact sets Sx C dom g and S, C ), there exist positive constants
o,Ls, Lp, LF such that f, h and F satisfy the following conditions for all

x,x' € 8¢ and for all y,y’ € S,

V() = VA < Lellx = £

- IVh(y) = Vh(y)II < Lully = ¥'|l

HE() = I ()2 < Lellx — X'

omin(G) >0 >0

A WN R

Remark: In previous model we assumed LICQ omin(Je(x)) > 0 for all x € S;
now we only require omin(G) > 0! Hence, a condition easier to check.

Other assumptions related to smoothness are similar to first part. 1520



Notations
Consider nonsmooth separable nonlinear optimization problem:

min _ f(x) + g(x) + h(y) + 1y (y)

XERM,yERP
st F(x)+ Gy =0

» Augmented Lagrangian function associated to our problem:
Lo(x,y,A) = f(x) + g(x) + h(y) + (A, F(x) + Gy) + gIIF(X) + 6y
= g(X) + h(y) + wP(X7y7 >\)7
» where smooth part w.r.t. x is denoted
Po(x, ¥, A) = F(x) + (A F(x) + Gy) + g\IF(X) + Gy|*.

» Denote the function derived from linearization of objective and functional
constraints in a Gauss-Newton fashion, at a given point X:

[’P(Xv.y7 A; )?a.)_/)
= lr(x;X) + g(x) + Ih(y: 7) + (A Ir(x; X) + Gy) + §||lf(x; %) + Gy||?
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Inexact Linearized ADMM (iL-ADMM)

We consider the following algorithm:

Algorithm iL-ADMM
Given xo, y0, Ao and p, 3,6, > 0.

For k > 0 do:
1. find a proximal parameter Bx+1 > [3 such that
Br+1
2
satisfies an inexact stationary condition and a descent, i.e.:

Xk+1 A2 arg min L5 (%, Yk, Mi Xk, i) + llx — x®

o ([~ Br+1
Iskp1 € Ox (Cp(X7Yk, Ak X5 Vi) + 2+ lIx — xll®

X=Xkt1
such that
llseiall < erllxisr — xll

Brt1 2
[Ixk+1 — el

Yo (k15 Yies M) — Ty (k15 Vi, Aki i) <

2. find a proximal parameter 6.1 > 6 such that

Ok ly — yill?
2

Vi1 4 arg yngg} L (X1, ¥ Mii X 15 Vi) +
satisfies the following inequality:

Okt1 2

h(yi+1) = Ih(ve1i y) < THWH = il

3. Update

A1 = A+ p (F(xi1) + Gyis) -
Survey paper on ADMM: Boyd'11. 17 /27




Inexact

Linearized ADMM (iL-ADMM): discussion

Dominant steps in algorithm iL-ADMM are Step 1 and Step 2

Step 1 involves nonsmooth function g in addition to a quadratic term.
When g is convex or weakly convex, the objective function of the
subproblem in Step 1 is usually strongly convex

Moreover, subproblem in Step 1 is solved inexactly

In contrast, subproblem in Step 2 has always a strongly convex quadratic
function, even if h is nonconvex, and a feasible set )

Regularization (proximal) parameters Si11 and 041 are dynamically
chosen and are well defined since ¢, and h are smooth functions (to
determine them, one can use a standard line search procedure)

Dual variables are updated in Step 3 using the conventional update of dual
multipliers in traditional augmented Lagrangian methods

Additional Assumption:
(i) Sequence {(xk, ¥k, Ak) }x>0 generated by algorithm iL-ADMM is bounded.
(ii) Set Y admits a Lipschitz continuous normal cone mapping’.

Remark:
Previously we proved boundedness of primal-dual sequence generated by L-AL.
Now, when we have additional constraints, we assume their boundedness.

disty (Ny(v), Ny(v"))) < lly — 'l Vy,y' € Y, where e.g.; Ny (y)= Ny(y) N B,
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Convergence analysis
As for L-AL algorithm, we use a similar Lyapunov function:

P(y. M 7.7 = Lolxy M) + Sy = 7

and define

Pi = P(Xk, Yi Mk> Yk—1,0k/4)
Theorem (Limit points are KKT points)
(i) Let {zi := (X, Yk, Ak }xk>1 be generated by algorithm iL-ADMM. If
assumptions on smoothness and boundedness hold and
p > expression(d, Ly, o), then any limit point z* := (x*,y*,\*) of {zx}k>1 is a
KKT point of our problem.

(ii)  If additionally Lyapunov function P(-) satisfies KL property, then whole
sequence {zx := (Xk, Yk, Mk tk>1 converges to a KKT point of our problem.

Theorem (First-order complexity)

(i) Let {zk := (xk, Yk, Ak) }k>1 be generated by algorithm iL-ADMM. If
assumptions on smoothness and boundedness hold and

p > expression(8, Ly, o), then for any € > 0, algorithm iL-ADMM yields an
e-first-order solution after K = O(¢~?) Jacobian evaluations.

(i) If additionally f, g, h, F are semi-algebraic (<= P(-) semi-algebraic),

improved rates can be derived. 19/27



Convergence analysis for iL-ADMM: some conclusions

> obtained complexity - O(e™?) - best rate in the context of augmented
Lagrangian and penalty-based methods for nonconvex constrained
optimization problems.

» our optimization problem allows additional (inequality) constraints on both
block variables x and y compared to e.g., Teboulle’22 which has only
constraints on x

P another key advantage lies in its avoidance of calling complicated
subroutines, as subproblems in iL-ADMM algorithm usually have quadratic
strongly convex objective function and simple constraints (inexact
solutions of subproblems are also possible in our framework)

20/27



Comparisson L-AL and iL-ADMM

Algorithms L-AL and iL-ADMM have common & different features
L-AL <— "Let us go together”
iL-ADMM <+— "Let us go to get her”

» We considered general nonconvex problems: nonconvex - nonsmooth
objective and nonlinear equality constraints

» However, in first part everything was smooth; second part allowed
nonmooth terms in objective function (but some separability and special
nonlinear equality constraints)

» Proposed augmented Lagrangian-based algorithms using linearization of
(smooth part of) objective and of functional constraints in a
Gauss-Newton fashion: L-AL and iL-ADMM

» lterates in L-AL and iL-ADMM are simple to compute: convex
subproblems that are easy to solve (even inexact)

» Penalty parameter p in L-AL and iL-ADMM depends on parameters of
problem’s functions, no need to depend on €

» Derived (optimal) global convergence rates for L-AL and iL-ADMM: both
alg’s enjoy O(e™2) Jacobian evaluations to get an e-first-order solution
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Extensions and future work

» Extension of L-AL algorithm to nonsmooth problems:
minf(x) st. F(x)=0 = minf(x)+ g(x) st. F(x)=0,

where g is nonsmooth?.

» before we used LICQ), for this new problem we need to define a proper
constraint qualification condition (see [BNPT]), i.e.:

omin(JF(x)) >0 >0 forall xe S

Versus
ol F(x)|| < dist (7JF(X)TF(X), a°°g(x)) forallx € S

> consider also " linearized” penalty methods®

2[BNPT]: L. El Bourkhissi, I. Necoara, P. Patrinos, Q. Tran-Dinh, Complexity of linearized
perturbed augmented Lagrangian methods for nonsmooth nonconvex optimization with nonlinear
equality constraints, arxiv, 2025.
3[BN]: L. El Bourkhissi, |. Necoara, Convergence analysis of linearized £ penalty methods for
nonconvex optimization with nonlinear equality constraints, UPB Scientific Bulletin, 2025:
22/27



Numerical simulations: L-AL
> we numerically compare algorithms L-AL, SCP (Diehl'21), IPOPT and
Algencan (Birgin'20) - which is also an augmented Lagrangian method.

» we stop algorithms when difference between two consecutive values of
objective is less than 107 & norm of constraints is less than 107>

> large-scale real-world problems with nonlinear equality constraints selected
from CUTEst collection

» performance profile for computation time and number of iterations: L-AL
is the fastest, but needs many (simple) iterations!

0.9 1

2 4 6 8 10 12 . 2 3 4 5
7: computation time k: iterations number
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Numerical simulations: results for L-AL

Alg L-AL SCP IPOPT Algencan
(nvm) # iter cpu # iter cpu # iter cpu 7 iter cpu
' f* ¥l L IFIl f [IFll f [l FIl
OPTCTRL3 56 19.57 24 105.08 11 26.95 11 102.68
(4499,3000) 74465.03  1.76e-08 | 74465.03  6.87e-09 | 74465.03  1.09e-08 74470 8.66 e-09
DTOC4 4 46.91 4 566.80 3 146.73 18 149.66
(14997,9998) 2.87 3.40e-07 2.87 1.05e-07 2.86 4.49e-09 2.86 7.27e-09
DTOC5 23 42.40 24 799.07 3 75.25 18 48.27
(9998,4999) 1.54 2.19e-07 1.54 1.96e-07 1.53 2.49e-07 1.53 3.31 e-07
ORTHREGA 58 65.72 - - 20 71.78 40 68.61
(8197,4096) 22647.84  1.83e-07 - - 22674.84 1.86e-09 | 22674.84  6.32e-08
MSS1 70 1.23 12 0.15 53 13.52 15 0.53
(90, 73) -15.99 8.11e-06 | -8.71e-08  1.76e-06 -16.00 4.17e-08 -15.00 3.29 e-08
MSS2 58 21.99 21 8.05 7 14.65 - -
(756, 703) -123.99  3.11e-06 | -2.53e-10  6.12e-06 -26.97 5.96e-08 - -
MSS3 58 106.79 22 135.15 - - - -
(2070, 1981) -338.91 9.42e-07 | -5.29e-09  7.76e-06 - - - -
OPTCTRL6 56 19.03 24 13.46 13 27.42 11 101.34
(4499, 3000) 74465.03  1.85e-08 | 74465.03 3.27e-09 | 74465.03 2.32e-09 74470 8.47 e-09
OPTCDEG3 9 9.01 43 22.64 11 21.33 25 84.92
(4499, 3000) 12.13 8.28e-06 12.13 6.12e-06 12.13 4.61e-07 12.13 7.04e-07
ORTHREGC 28 20.09 29 20.93 16 31.14 26 17.82
(5005, 2500) 94.81 9.92e-06 94.81 8.42e-06 94.81 7.52e-07 94.81 3.07e-07
EIGENC2 6 1.95 6 4.68 13 24.93 6 32.02
(2652, 1326) 0.01 5.98e-06 | 11162.75 4.64e-16 0.00 8.43e-10 0.00 3.51e-10
EIGENACO 5 2.43 8 1.75 - - 2 1.87
(2550, 1275) 0.01 4.22e-06 | 22425.04 2.37e-18 - - 0.00 3.21e-09
EIGENBCO 7 3.37 5 1.23 9 19.58 - -
(2550, 1275) 0.01 1.45e-06 49.50 5.79%-16 0.00 3.18e-17 - -
DTOCINA 29 54.24 4 3.86 5 12.08 5 0.23
(5994, 3996) 4.14 3.09e-06 47.66 5.03e-13 4.15 7.44e-11 4.14 8.03e-10
SPINOP 101 76.31 - - - - - -
(1327, 1325) 150.50 9.34e-06 - - - - - -
ROBOTARM 131 106.41 - - 7 109.20 23 377.26
(4400, 3202) 7.84 9.62e-06 - - 9.14 2.05e-08 9.14 1.20e-08
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Numerical simulations: iL-ADMM
» we numerically compare alg. iL-ADMM, dynamic linearized alternating
direction method of multipliers (DAM) (Teboulle'22) and IPOPT

> we stop algorithms when approximate KKT conditions are less than 103

» nonlinear model predictive control problems for several nonlinear systems:
inverted pendulum (IP), single machine infinite bus (SMIB), lane tracking

(LT), four tanks (4T) and free-flying robot (FFR)

» numerical results for iL-ADMM, DAM and IPOPT on solving Nsim = 50
nonlinear MPC problems for 5 dynamical systems of different dimensions

(average and standard deviation results for #iter and cpu).

iL-ADMM DAM IPOPT

Systom (0Bt | B iter)  E(cpu)  F | E(#Ren) E(pu)  F | EGtite)  Ecpu) £
o ite)  alepn)  IFI | o(#iter) olcpu)  IFI | o(#iten)  alcpn) |F]

SMIB 495.36 0.90 0.3088 3621.65 9.42 0.3089 87.28 1.12 0.3087
(2,4) 0.06 3.44e-4 9.95e-7 0.19 0.01 9.97e-7 6e-2 le-3 2.87e-8
IPOC 135.12 0.31 166.60 497.76 16.23 166.60 28.7 0.57 166.60
(1,4) 0.02 1.08e-4 8.74e-7 0.08 4.12e-3 9.39%e-7 2.3e-2 1.04e-3 3.69e-8
4T 658.31 1.93 87.95 2846.79 7.50 87.94 187.64 2.79 87.94
(2,6) 0.04 5.04e-4 9.32e-7 0.17 0.03 9.94e-7 2.66e-3 4.36e-2 3.68e-8
LT 102.07 0.53 6.99 675.63 7.10 7.00 32.94 1.03 6.98
(2,7) 0.02 2.29e-4 8.98e-7 0.15 0.01 9.65e-7 0.005 1.24e-4 4.93e-8
FFR 121.24 1.57 1066.27 1734.66 11.94 1066.32 23.94 2.88 1065.87
(2,6) 0.01 1.37e-4 9.90e-7 0.21 0.009 9.96e-7 0.02 1.69e-4 1.87e-7
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