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Problem formulation
Consider nonlinear optimization problem:

min
x∈Rn

f (x)

s.t. F (x) = 0,

I f : Rn → R and F (x) , (f1(x), ..., fm(x))T , with fi : Rn → R for all
i = 1 : m.

I f , fi ∈ C1 for all i = 1 : m and F is nonlinear.

I ∇f (x) ∈ Rn denotes gradient; JF (x) ∈ Rm×n denotes Jacobian.

Definition: x∗ε is an ε-first-order solution if ∃λ∗ε ∈ Rm such that:

‖∇f (x∗ε ) + JF (x∗ε )Tλ∗ε‖ ≤ ε and ‖F (x∗ε )‖ ≤ ε.

Motivation:

1. Phase retrieval

2. Control

3. Training DNNs

4. Inverse problems

5. Nonlinear programming, etc
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Problem formulation: main assumptions
Consider nonlinear optimization problem:

min
x∈Rn

f (x)

s.t. F (x) = 0,

Assumptions:
For any compact set S ⊆ Rn, there exist positive constants Mf ,MF , σ, Lf , LF

such that f and F satisfy the following conditions:

1. ‖∇f (x)‖ ≤ Mf , ‖∇f (x)−∇f (x ′)‖ ≤ Lf ‖x − x ′‖ for all x , x ′ ∈ S.
2. ‖JF (x)‖ ≤ MF , σmin(JF (x)) ≥ σ > 0 for all x ∈ S.
3. ‖JF (x)− JF (x ′)‖ ≤ LF‖x − x ′‖ for all x , x ′ ∈ S

Remark:
Our assumptions allow general classes of problems.
I first conditions hold if e.g., f is differentiable and ∇f (·) is locally Lipschitz

continuous on a neighborhood of S.
I second conditions hold when e.g., F is differentiable on a neighborhood of
S and satisfies an LICQ condition over S (hence, m ≤ n).

I third condition holds if e.g., JF is locally Lipschitz continuous on S.

Obs.: Note that any twice continuously differentiable function is locally
Lipschitz and locally smooth on a compact set. 4 / 27



Notations
Consider nonlinear optimization problem:

min
x∈Rn

f (x)

s.t. F (x) = 0,
I Augmented Lagrangian function associated to our problem:

Lρ(x , λ) = f (x) + 〈λ,F (x)〉+
ρ

2
‖F (x)‖2

I We use the notations:

lf (x ; x̄) := f (x̄) + 〈∇f (x̄), x − x̄〉, lF (x ; x̄) := F (x̄) + JF (x̄)(x − x̄) ∀x , x̄
I Denote quadratic function derived from linearization of objective and

functional constraints in a Gauss-Newton fashion, at a given point x̄ :

L̄ρ(x , λ; x̄) = lf (x ; x̄) + 〈λ, lF (x ; x̄)〉+
ρ

2
‖lF (x ; x̄)‖2

(in contrast to pure linearization of Lρ(·, λ))!
I Introduce Lyapunov function:

P(x , λ, x̄ , γ) = Lρ(x , λ) +
γ

2
‖x − x̄‖2

I Evaluation of Lyapunov function along iterates is denoted by:

Pk = P

(
xk , λk , xk−1,

βk
2

)
∀k ≥ 0,

I We also denote: ∆xk = xk − xk−1 and ∆λk = λk − λk−1 ∀k ≥ 0
5 / 27



History
Consider nonlinear optimization problem:

min
x∈Rn

f (x)

s.t. F (x) = 0,

Literature on augmented Lagrangian methods is vast:
I Augmented Lagrangian methods (Rockafellar’76, Bertsekas’82,

Birgin&Martinez group (’08,...,’20), etc...):

AL alg.
Given x0, λ0,Λ = [Λmin,Λmax] and ρ0 > 0, γ > 1, τ > 0. For k ≥ 0 do:

i. find approximate solution: xk+1 ≈ arg minx Lρk (x , λk )
ii. update
λk+1 ← PrΛ(λk+ρkF (xk+1)), ρk+1 ← γρk if ‖F (xk+1)‖∞ > τ‖F (xk )‖∞

I Proximal augmented Lagrangian methods (Rockafellar’76, Hajinezhad’19,
Sahin’19, Wright’20, etc...):

Proximal AL alg.
Given x0, λ0 and ρ, β > 0. For k ≥ 0 do:

ii. find approximate solution: xk+1 ≈ arg minx Lρ(x , λk ) + β
2
‖x − xk‖2

iii. update: λk+1 ← λk + ρF (xk+1)

I Why AL type alg’s are attractive? shown that when subproblem is solved
to approximate global optimality, limit points are global solution of original
problem ⇒ (higly nonconvex) subproblem solved with Newton CG, etc...
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Our goal

Consider nonlinear optimization problem:

min
x∈Rn

f (x)

s.t. F (x) = 0,

I (Proximal) Augmented Lagrangian methods enjoy nice convergence
properties and have good practical behavior

I However they require solving highly nonconvex subproblems at each
iteration (of the form):

xk+1 ≈ arg min
x
Lρ(x , λk) +

β

2
‖x − xk‖2

I one needs to call complicated subroutines (such as Newton CG, gradient)
to solve nonconvex subproblem

⇓

Goal: derive (proximal) linearized AL methods (subproblem easy - e.g. convex )
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Linearized augmented Lagrangian algorithm (L-AL)
We consider the following algorithm:

Algorithm L-AL
Given x−1 = x0, λ0 and ρ ≥ 1, β0 ≥

¯
β > 0.

For k ≥ 0 do:

find βk+1 ≥
¯
β such that the points:

xk+1 ← arg min
x
L̄ρ(x , λk ; xk) +

βk+1

2
‖x − xk‖2

λk+1 ← λk + ρ (F (xk) + JF (xk)(xk+1 − xk))

satisfy descent inequality

Pk+1 − Pk ≤
3

2ρ
‖∆λk+1‖2 − βk+1

4
‖∆xk+1‖2 − βk

4
‖∆xk‖2

Discussion:
I objective function in subproblem is unconstrained, quadratic and strongly

convex ⇒ finding a solution is equivalent to solving a linear system
I update of dual multipliers is different from literature, i.e., instead
λk+1 = λk + ρF (xk+1), we evaluate the linearization of F at xk in the new
point xk+1 and update λk+1 = λk + ρ(F (xk) + JF (xk)(xk+1 − xk)).

I Is algorithm well-posed (∃βk+1)?
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Convergence analysis

Lemma (Bound for ‖∆λk+1‖)

Consider algorithm L-AL. Suppose that for a fixed k ≥ 1 our assumption holds
for some set S and that xk−1, xk ∈ S. Then,

‖∆λk+1‖2 ≤ c(βk+1)‖∆xk+1‖2 + c(βk)‖∆xk‖2,

where c(β) = 4(1+3µ)2(Lf MF +Mf LF )2

σ4 +
4(1+3µ)2M2

F
σ4 (β − µLf )2 and µ > 1 (from the

line search procedure).

Lemma (Existence of βk+1)

Consider algorithm L-AL. Suppose that for a fixed k ≥ 0, our assumption holds
for some set S and that xk , xk+1 ∈ S together with λk ∈ Λ, where Λ is a
compact set of Rm. Aditionally assume f (x) ≥

¯
f for all x ∈ Rn. If βk+1 is

chosen to satisfy:

βk+1 ≥ Lf + LF

√
2ρ

√
Lρ(xk , λk) +

1

2ρ
‖λk‖2 −

¯
f

then descent inequality holds, i.e., algorithm L-AL is well-posed.

Remark: Note that β depends on
√
ρ not on ρ (crucial in our analysis)!

Usually β is determined through a standard line search at each iteration k.
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Convergence analysis cont.

Lemma (Boundedness of primal-dual sequence)

If f̄ ≥ f (x) ≥
¯
f for all x : ‖F (x)‖ ≤ 1 (left) and respectively x ∈ Rn (right),

‖F (x0)‖2 ≤ min
{

1, c0
ρ

}
for some c0 > 0 and our assumption hold on:

S = {x : f (x) +
ρ0

2
‖F (x)‖2 ≤ P̄} and P̄ = f̄ + c0 + 4‖λ0‖2 + 2.

If ρ ≥ expression(ρ0,Mf , Lf ,MF , LF , σ, P̄), then for k ≥ 1 the following holds:

βk ≤ β̄, Pk ≤ P̄,

xk ∈ S, ‖λk‖2 ≤ 2γ̄(ρ− ρ0),

Pk+1 − Pk ≤ −
βk+1

8
‖∆xk+1‖2 − βk

8
‖∆xk‖2.

Remark:
I main challenge when using (augmented) Lagrangian lies in simultaneously

ensuring feasibility and optimality ⇒ common approach assumes
boundedness of dual iterates and/or progressively increasing penalty
parameter ρ (Teboulle’22; Sahin’19; Birgin’20,...)

I boundedness assumption presents limitation, as it’s imposed on algorithm’s
sequence rather than being an inherent property of problem itself

I boundedness of multiplier sequence in nonconvex setting is a difficult
matter because coercivity arguments do not apply directly

I proper assumptions and analysis allow to bound xk and λk , while keeping
ρ constant (depending on problem’s data), e.g., no need ρ ≈ ε−1! 10 / 27



Convergence analysis cont.

Theorem (Limit points are KKT points)

Under the assumptions of previous lemma, any limit point (x∗, λ∗) of sequence
{(xk , λk)}k≥1 generated by algorithm L-AL is a KKT point of our problem, i.e.:

∇f (x∗) + JF (x∗)
T
λ∗ = 0, F (x∗) = 0.

If additionally Lyapunov function P(·) satisfies the KL property, then the whole
sequence {(xk , λk)}k≥1 converges to a KKT point of our problem.

Theorem (First-order complexity)

Under the assumptions of previous lemma and considering ε > 0, sequence
{(xk , λk)}k≥1 generated by algorithm L-AL yields an ε-first-order solution of
our problem after K = O(

√
ρε−2) Jacobian evaluations, i.e.:

‖∇f (xK ) + JF (xK )TλK‖ ≤ ε and ‖F (xK )‖ ≤ ε.
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Convergence analysis for L-AL: takeaways

I obtained optimal complexity (?) - O(
√
ρε−2) - in the context of

augmented Lagrangian and penalty-based methods for smooth nonconvex
constrained optimization problems, as penalty parameter ρ enters under
square root and desired accuracy ε enters quadratically in algorithm’s
complexity

recall : β = O(
√
ρ)!

I our convergence rate improves existing complexity results for augmented
Lagrangian (measured through Jacobian evaluations), on the same class of
problems: e.g., O(ε−5.5) in Xie&Wright’21; O(ε−4) in Sahin’19;...

I another key advantage lies in its avoidance of calling complicated
subroutines, as unconstrained subproblem in L-AL algorithm has a
quadratic strongly convex objective function, compared to Xie&Wright’21;
Sahin’19; Birgin’20; ... where subproblem is higly nonconvex
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New problem formulation: nonsmooth objective
In previous problem, objective function was smooth. Consider now a
nonsmooth separable nonlinear optimization problem:

min
x∈Rn,y∈Rp

f (x) + g(x) + h(y) + 1Y(y)

s.t.: F (x) + Gy = 0

I Y easy subset of Rp, e.g., admiting an easy projection

I matrix G ∈ Rm×p has full row rank

I functions f : Rn → R, g : Rn → R̄, h : Rp → R, and F , (f1, ..., fm)T , with
fi : Rn → R for all i ∈ {1, ...,m}, are nonlinear functions

I assume f , h, fi , for all i = 1, ...,m, are continuously differentiable
functions, f , h possibly nonconvex and g proper lower semi-continuous and
prox-bounded function relative to its domain domg

Remark (compared to previous model):

1. Objective function is separable, but nonsmooth

2. This model allows additional constraints on x and y via g(·) and 1Y(·)
3. Nonlinear equality constraints have a particular structure (see also

Teboulle’22)
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New problem formulation: nonsmooth objective

Consider nonsmooth separable nonlinear optimization problem:

min
x∈Rn,y∈Rp

f (x) + g(x) + h(y) + 1Y(y)

s.t.: F (x) + Gy = 0

Motivation:
For example, any constrained composite optimization problem frequently
appearing in nonlinear optimal control (Diehl’21):

min
x∈X

f (x) + h(F (x)) s.t. F (x) ∈ Y,

can be easily recast in the form of our optimization problem by defining
F (x) = y , then G = −Im and g the indicator function of the set X and thus
having constraints on both block variables.

In the context of optimal control, f , h are quadratic functions; F describes the
nonlinear dynamical system.
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New problem formulation: nonsmooth objective
Consider nonsmooth separable nonlinear optimization problem:

min
x∈Rn,y∈Rp

f (x) + g(x) + h(y) + 1Y(y)

s.t.: F (x) + Gy = 0

Definition: (x∗ε , y
∗
ε ) ∈ dom g × Y is an ε-first-order solution if ∃λ∗ε ∈ Rm s.t.:

dist
(
−∇f (x∗ε )−∇F (x∗ε )

T
λ∗ε , ∂g(x∗ε )

)
≤ ε, dist

(
−∇h(y∗ε )− GTλ∗ε ,NY(y∗ε )

)
≤ ε,

‖F (x∗ε ) + Gy∗ε ‖ ≤ ε.

Assumptions:
For any compact sets Sx ⊆ dom g and Sy ⊆ Y, there exist positive constants
σ, Lf , Lh, LF such that f , h and F satisfy the following conditions for all
x , x ′ ∈ Sx and for all y , y ′ ∈ Sy :

1. ‖∇f (x)−∇f (x ′)‖ ≤ Lf ‖x − x ′‖
2. ‖∇h(y)−∇h(y ′)‖ ≤ Lh‖y − y ′‖
3. ‖JF (x)− JF (x ′)‖2 ≤ LF‖x − x ′‖
4. σmin(G) ≥ σ > 0

Remark: In previous model we assumed LICQ σmin(JF (x)) > 0 for all x ∈ S;
now we only require σmin(G) > 0! Hence, a condition easier to check.

Other assumptions related to smoothness are similar to first part.
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Notations
Consider nonsmooth separable nonlinear optimization problem:

min
x∈Rn,y∈Rp

f (x) + g(x) + h(y) + 1Y(y)

s.t.: F (x) + Gy = 0

I Augmented Lagrangian function associated to our problem:

Lρ(x , y , λ) = f (x) + g(x) + h(y) + 〈λ,F (x) + Gy〉+
ρ

2
‖F (x) + Gy‖2

= g(x) + h(y) + ψρ(x , y , λ),

I where smooth part w.r.t. x is denoted

ψρ(x , y , λ) = f (x) + 〈λ,F (x) + Gy〉+
ρ

2
‖F (x) + Gy‖2.

I Denote the function derived from linearization of objective and functional
constraints in a Gauss-Newton fashion, at a given point x̄ :

L̄ρ(x , y , λ; x̄ , ȳ)

= lf (x ; x̄) + g(x) + lh(y ; ȳ) + 〈λ, lF (x ; x̄) + Gy〉+
ρ

2
‖lF (x ; x̄) + Gy‖2
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Inexact Linearized ADMM (iL-ADMM)
We consider the following algorithm:

Algorithm iL-ADMM
Given x0, y0, λ0 and ρ,

¯
β,

¯
θ, α > 0.

For k ≥ 0 do:

1. find a proximal parameter βk+1 ≥
¯
β such that

xk+1 ≈ arg min
x
L̄ρ(x, yk , λk ; xk , yk ) +

βk+1

2
‖x − xk‖2

satisfies an inexact stationary condition and a descent, i.e.:

∃sk+1 ∈ ∂x
(
L̄ρ(x, yk , λk ; xk , yk ) +

βk+1

2
‖x − xk‖2

) ∣∣∣∣
x=xk+1

such that
‖sk+1‖ ≤ α‖xk+1 − xk‖

ψρ(xk+1, yk , λk )− lψρ (xk+1, yk , λk ; xk ) ≤
βk+1

4
‖xk+1 − xk‖2

2. find a proximal parameter θk+1 ≥
¯
θ such that

yk+1 ← arg min
y∈Y
L̄ρ(xk+1, y , λk ; xk+1, yk ) +

θk+1

2
‖y − yk‖2

satisfies the following inequality:

h(yk+1)− lh(yk+1; yk ) ≤
θk+1

4
‖yk+1 − yk‖2

.

3. Update
λk+1 ← λk + ρ (F (xk+1) + Gyk+1) .

Survey paper on ADMM: Boyd’11. 17 / 27



Inexact Linearized ADMM (iL-ADMM): discussion

I Dominant steps in algorithm iL-ADMM are Step 1 and Step 2

I Step 1 involves nonsmooth function g in addition to a quadratic term.
When g is convex or weakly convex, the objective function of the
subproblem in Step 1 is usually strongly convex

I Moreover, subproblem in Step 1 is solved inexactly

I In contrast, subproblem in Step 2 has always a strongly convex quadratic
function, even if h is nonconvex, and a feasible set Y

I Regularization (proximal) parameters βk+1 and θk+1 are dynamically
chosen and are well defined since ψρ and h are smooth functions (to
determine them, one can use a standard line search procedure)

I Dual variables are updated in Step 3 using the conventional update of dual
multipliers in traditional augmented Lagrangian methods

Additional Assumption:
(i) Sequence {(xk , yk , λk)}k≥0 generated by algorithm iL-ADMM is bounded.
(ii) Set Y admits a Lipschitz continuous normal cone mapping1.

Remark:
Previously we proved boundedness of primal-dual sequence generated by L-AL.
Now, when we have additional constraints, we assume their boundedness.

1distH
(
N̄Y (y), N̄Y (y ′)

)
) ≤ κ‖y − y ′‖ ∀y , y ′ ∈ Y, where e.g., N̄Y (y) = NY (y) ∩ Br
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Convergence analysis
As for L-AL algorithm, we use a similar Lyapunov function:

P(x , y , λ, ȳ , γ) = Lρ(x , y , λ) +
γ

2
‖y − ȳ‖2

and define
Pk = P(xk , yk , λk , yk−1, θk/4)

Theorem (Limit points are KKT points)

(i) Let {zk := (xk , yk , λk}k≥1 be generated by algorithm iL-ADMM. If
assumptions on smoothness and boundedness hold and
ρ ≥ expression(

¯
θ, Lh, σ), then any limit point z∗ := (x∗, y∗, λ∗) of {zk}k≥1 is a

KKT point of our problem.

(ii) If additionally Lyapunov function P(·) satisfies KL property, then whole
sequence {zk := (xk , yk , λk}k≥1 converges to a KKT point of our problem.

Theorem (First-order complexity)

(i) Let {zk := (xk , yk , λk)}k≥1 be generated by algorithm iL-ADMM. If
assumptions on smoothness and boundedness hold and
ρ ≥ expression(

¯
θ, Lh, σ), then for any ε > 0, algorithm iL-ADMM yields an

ε-first-order solution after K = O(ε−2) Jacobian evaluations.

(ii) If additionally f , g , h,F are semi-algebraic (⇐⇒ P(·) semi-algebraic),
improved rates can be derived. 19 / 27



Convergence analysis for iL-ADMM: some conclusions

I obtained complexity - O(ε−2) - best rate in the context of augmented
Lagrangian and penalty-based methods for nonconvex constrained
optimization problems.

I our optimization problem allows additional (inequality) constraints on both
block variables x and y compared to e.g., Teboulle’22 which has only
constraints on x

I another key advantage lies in its avoidance of calling complicated
subroutines, as subproblems in iL-ADMM algorithm usually have quadratic
strongly convex objective function and simple constraints (inexact
solutions of subproblems are also possible in our framework)
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Comparisson L-AL and iL-ADMM

Algorithms L-AL and iL-ADMM have common & different features

L-AL ←→ ”Let us go together”

iL-ADMM ←→ ”Let us go to get her”

I We considered general nonconvex problems: nonconvex - nonsmooth
objective and nonlinear equality constraints

I However, in first part everything was smooth; second part allowed
nonmooth terms in objective function (but some separability and special
nonlinear equality constraints)

I Proposed augmented Lagrangian-based algorithms using linearization of
(smooth part of) objective and of functional constraints in a
Gauss-Newton fashion: L-AL and iL-ADMM

I Iterates in L-AL and iL-ADMM are simple to compute: convex
subproblems that are easy to solve (even inexact)

I Penalty parameter ρ in L-AL and iL-ADMM depends on parameters of
problem’s functions, no need to depend on ε

I Derived (optimal) global convergence rates for L-AL and iL-ADMM: both
alg’s enjoy O(ε−2) Jacobian evaluations to get an ε-first-order solution
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Extensions and future work

I Extension of L-AL algorithm to nonsmooth problems:

min
x

f (x) s.t. F (x) = 0 ⇒ min
x

f (x) + g(x) s.t. F (x) = 0,

where g is nonsmooth2.

I before we used LICQ, for this new problem we need to define a proper
constraint qualification condition (see [BNPT]), i.e.:

σmin(JF (x)) ≥ σ > 0 for all x ∈ S

versus

σ‖F (x)‖ ≤ dist
(
−JF (x)TF (x), ∂∞g(x)

)
for all x ∈ S

I consider also ”linearized” penalty methods3

2[BNPT]: L. El Bourkhissi, I. Necoara, P. Patrinos, Q. Tran-Dinh, Complexity of linearized
perturbed augmented Lagrangian methods for nonsmooth nonconvex optimization with nonlinear
equality constraints, arxiv, 2025.

3[BN]: L. El Bourkhissi, I. Necoara, Convergence analysis of linearized `q penalty methods for
nonconvex optimization with nonlinear equality constraints, UPB Scientific Bulletin, 2025.
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Numerical simulations: L-AL
I we numerically compare algorithms L-AL, SCP (Diehl’21), IPOPT and

Algencan (Birgin’20) - which is also an augmented Lagrangian method.

I we stop algorithms when difference between two consecutive values of
objective is less than 10−3 & norm of constraints is less than 10−5

I large-scale real-world problems with nonlinear equality constraints selected
from CUTEst collection

I performance profile for computation time and number of iterations: L-AL
is the fastest, but needs many (simple) iterations!
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Numerical simulations: results for L-AL
XXXXXXXX(n,m)

Alg
L-AL SCP IPOPT Algencan

# iter cpu # iter cpu # iter cpu # iter cpu
f ∗ ‖F‖ f ∗ ‖F‖ f ∗ ‖F‖ f ∗ ‖F‖

OPTCTRL3 56 19.57 24 105.08 11 26.95 11 102.68
(4499,3000) 74465.03 1.76e-08 74465.03 6.87e-09 74465.03 1.09e-08 74470 8.66 e-09

DTOC4 4 46.91 4 566.80 3 146.73 18 149.66
(14997,9998) 2.87 3.40e-07 2.87 1.05e-07 2.86 4.49e-09 2.86 7.27e-09

DTOC5 23 42.40 24 799.07 3 75.25 18 48.27
(9998,4999) 1.54 2.19e-07 1.54 1.96e-07 1.53 2.49e-07 1.53 3.31 e-07
ORTHREGA 58 65.72 - - 20 71.78 40 68.61
(8197,4096) 22647.84 1.83e-07 - - 22674.84 1.86e-09 22674.84 6.32e-08

MSS1 70 1.23 12 0.15 53 13.52 15 0.53
(90, 73) -15.99 8.11e-06 -8.71e-08 1.76e-06 -16.00 4.17e-08 -15.00 3.29 e-08
MSS2 58 21.99 21 8.05 7 14.65 - -

(756, 703) -123.99 3.11e-06 -2.53e-10 6.12e-06 -26.97 5.96e-08 - -
MSS3 58 106.79 22 135.15 - - - -

(2070, 1981) -338.91 9.42e-07 -5.29e-09 7.76e-06 - - - -
OPTCTRL6 56 19.03 24 13.46 13 27.42 11 101.34
(4499, 3000) 74465.03 1.85e-08 74465.03 3.27e-09 74465.03 2.32e-09 74470 8.47 e-09
OPTCDEG3 9 9.01 43 22.64 11 21.33 25 84.92
(4499, 3000) 12.13 8.28e-06 12.13 6.12e-06 12.13 4.61e-07 12.13 7.04e-07
ORTHREGC 28 20.09 29 20.93 16 31.14 26 17.82
(5005, 2500) 94.81 9.92e-06 94.81 8.42e-06 94.81 7.52e-07 94.81 3.07e-07

EIGENC2 6 1.95 6 4.68 13 24.93 6 32.02
(2652, 1326) 0.01 5.98e-06 11162.75 4.64e-16 0.00 8.43e-10 0.00 3.51e-10
EIGENACO 5 2.43 8 1.75 - - 2 1.87

(2550, 1275) 0.01 4.22e-06 22425.04 2.37e-18 - - 0.00 3.21e-09
EIGENBCO 7 3.37 5 1.23 9 19.58 - -

(2550, 1275) 0.01 1.45e-06 49.50 5.79e-16 0.00 3.18e-17 - -
DTOC1NA 29 54.24 4 3.86 5 12.08 5 0.23

(5994, 3996) 4.14 3.09e-06 47.66 5.03e-13 4.15 7.44e-11 4.14 8.03e-10
SPINOP 101 76.31 - - - - - -

(1327, 1325) 150.50 9.34e-06 - - - - - -
ROBOTARM 131 106.41 - - 7 109.20 23 377.26
(4400, 3202) 7.84 9.62e-06 - - 9.14 2.05e-08 9.14 1.20e-08
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Numerical simulations: iL-ADMM
I we numerically compare alg. iL-ADMM, dynamic linearized alternating

direction method of multipliers (DAM) (Teboulle’22) and IPOPT
I we stop algorithms when approximate KKT conditions are less than 10−3

I nonlinear model predictive control problems for several nonlinear systems:
inverted pendulum (IP), single machine infinite bus (SMIB), lane tracking
(LT), four tanks (4T) and free-flying robot (FFR)

I numerical results for iL-ADMM, DAM and IPOPT on solving Nsim = 50
nonlinear MPC problems for 5 dynamical systems of different dimensions
(average and standard deviation results for #iter and cpu).

hhhhhhhhhhhSystem (id , sd )
Algorithm

iL-ADMM DAM IPOPT

E(# iter) E(cpu) f ∗ E(# iter) E(cpu) f ∗ E(# iter) E(cpu) f ∗

σ(# iter) σ(cpu) ‖F‖ σ(# iter) σ(cpu) ‖F‖ σ(# iter) σ(cpu) ‖F‖

SMIB 495.36 0.90 0.3088 3621.65 9.42 0.3089 87.28 1.12 0.3087

(2,4) 0.06 3.44e-4 9.95e-7 0.19 0.01 9.97e-7 6e-2 1e-3 2.87e-8

IPOC 135.12 0.31 166.60 497.76 16.23 166.60 28.7 0.57 166.60

(1,4) 0.02 1.08e-4 8.74e-7 0.08 4.12e-3 9.39e-7 2.3e-2 1.04e-3 3.69e-8

4T 658.31 1.93 87.95 2846.79 7.50 87.94 187.64 2.79 87.94

(2,6) 0.04 5.04e-4 9.32e-7 0.17 0.03 9.94e-7 2.66e-3 4.36e-2 3.68e-8

LT 102.07 0.53 6.99 675.63 7.10 7.00 32.94 1.03 6.98

(2,7) 0.02 2.29e-4 8.98e-7 0.15 0.01 9.65e-7 0.005 1.24e-4 4.93e-8

FFR 121.24 1.57 1066.27 1734.66 11.94 1066.32 23.94 2.88 1065.87

(2,6) 0.01 1.37e-4 9.90e-7 0.21 0.009 9.96e-7 0.02 1.69e-4 1.87e-7
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