
Numerical Optimal Control for
Nonsmooth Dynamic Systems

Moritz Diehl1

joint work with Armin Nurkanovic1, Anton Pozharskiy1,
Christian Dietz1,2, Sebastian Albrecht2

1 Department of Microsystems Engineering and
Department of Mathematics, University of Freiburg,
Germany

2 Siemens Foundational Technology, Munich, Germany

Workshop on Optimization for Learning and Control,
IMT School for Advanced Studies Lucca, June 4-6 2025

Continuous-Time Optimal Control Problems (OCP)

Continuous-Time OCP with Ordinary Di↵erential Equation (ODE) Constraints

min
x(·),u(·)

R T
0 Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 � h(x(t), u(t)), t 2 [0, T]

0 � r(x(T))

Can in most applications assume convexity of all ”outer” problem functions: Lc, E, h, r.

Continuous-Time Optimal Control Problems (OCP)

Continuous-Time OCP with Ordinary Di↵erential Equation (ODE) Constraints

min
x(·),u(·)

R T
0 Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 � h(x(t), u(t)), t 2 [0, T]

0 � r(x(T))

Can in most applications assume convexity of all ”outer” problem functions: Lc, E, h, r.

Three Levels of Di�culty in Continuous-Time OCP

Continuous-Time OCP

min
x(·),u(·)

R T
0 Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 � h(x(t), u(t)), t 2 [0, T]

0 � r(x(T))

Three levels of di�culty:

(a) Linear ODE: f(x, u) = Ax+Bu

(b) Nonlinear smooth ODE: f 2 C1

(c) Nonsmooth Dynamics (NSD):
I f not di↵erentiable (NSD1),
I f not continuous (NSD2), or even
I f not finite valued, discontinuous state

x(t) (NSD3)

First focus on smooth cases (a) and (b).

Three Levels of Di�culty in Continuous-Time OCP

Continuous-Time OCP

min
x(·),u(·)

R T
0 Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 � h(x(t), u(t)), t 2 [0, T]

0 � r(x(T))

Three levels of di�culty:

(a) Linear ODE: f(x, u) = Ax+Bu

(b) Nonlinear smooth ODE: f 2 C1

(c) Nonsmooth Dynamics (NSD):
I f not di↵erentiable (NSD1),
I f not continuous (NSD2), or even
I f not finite valued, discontinuous state

x(t) (NSD3)

First focus on smooth cases (a) and (b).

Three Levels of Di�culty in Continuous-Time OCP

Continuous-Time OCP

min
x(·),u(·)

R T
0 Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 � h(x(t), u(t)), t 2 [0, T]

0 � r(x(T))

Three levels of di�culty:

(a) Linear ODE: f(x, u) = Ax+Bu

(b) Nonlinear smooth ODE: f 2 C1

(c) Nonsmooth Dynamics (NSD):
I f not di↵erentiable (NSD1),
I f not continuous (NSD2), or even
I f not finite valued, discontinuous state

x(t) (NSD3)

First focus on smooth cases (a) and (b).

Three Levels of Di�culty in Continuous-Time OCP

Continuous-Time OCP

min
x(·),u(·)

R T
0 Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 � h(x(t), u(t)), t 2 [0, T]

0 � r(x(T))

Three levels of di�culty:

(a) Linear ODE: f(x, u) = Ax+Bu

(b) Nonlinear smooth ODE: f 2 C1

(c) Nonsmooth Dynamics (NSD):
I f not di↵erentiable (NSD1),
I f not continuous (NSD2), or even
I f not finite valued, discontinuous state

x(t) (NSD3)

First focus on smooth cases (a) and (b).

Three Levels of Di�culty in Continuous-Time OCP

Continuous-Time OCP

min
x(·),u(·)

R T
0 Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 � h(x(t), u(t)), t 2 [0, T]

0 � r(x(T))

Three levels of di�culty:

(a) Linear ODE: f(x, u) = Ax+Bu

(b) Nonlinear smooth ODE: f 2 C1

(c) Nonsmooth Dynamics (NSD):
I f not di↵erentiable (NSD1),
I f not continuous (NSD2), or even
I f not finite valued, discontinuous state

x(t) (NSD3)

First focus on smooth cases (a) and (b).

Three Levels of Di�culty in Continuous-Time OCP

Continuous-Time OCP

min
x(·),u(·)

R T
0 Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 � h(x(t), u(t)), t 2 [0, T]

0 � r(x(T))

Three levels of di�culty:

(a) Linear ODE: f(x, u) = Ax+Bu

(b) Nonlinear smooth ODE: f 2 C1

(c) Nonsmooth Dynamics (NSD):
I f not di↵erentiable (NSD1),
I f not continuous (NSD2), or even
I f not finite valued, discontinuous state

x(t) (NSD3)

First focus on smooth cases (a) and (b).

Recall: Runge-Kutta Discretization for Smooth Systems

Ordinary Di↵erential Equation (ODE)

ẋ(t) = f(x(t), u(t))| {z }
=:v(t)

Initial Value Problem (IVP)

x(0) = x̄0

v(t) = f(x(t), u(t))

ẋ(t) = v(t)

t 2 [0, T]

Discretization: N Runge-Kutta steps of each ns stages

x0,0 = x̄0, �t = T
N

vk,j = f(xk,j , uk)

xk,j = xk,0 +�t
Pns

n=1 ajnvk,n

xk+1,0 = xk,0 +�t
Pns

n=1 bnvk,n

j = 1, . . . , ns, k = 0, . . . , N � 1

For fixed controls and initial value: square system with
nx +N(2ns + 1)nx unknowns, implicitly defined via
nx +N(2ns + 1)nx equations.
(trivial eliminations in case of explicit RK methods)

t

t0

x0

t1

x1

t2

x2

t3

x3

t0,1 t0,2 . . . t0,ns

v1,1 v1,2 . . . v1,ns

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

min
x(·),u(·)

R T
0 Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 � h(x(t), u(t)), t 2 [0, T]

0 � r(x(T))

I Direct methods ”first discretize,
then optimize”

1. Parameterize controls, e.g.
u(t) = un, t 2 [tn, tn+1].

2. Discretize cost and dynamics

Ld(xn, zk, un) ⇡
Z tn+1

tn

Lc(x(t), u(t)) dt

Replace ẋ = f(x, u) by

xn+1 = �f (xn, zn, un)

0 = �int(xn, zn, un)
3. Also discretize path constraints

0 � �h(xn, zn, un), n = 0, . . . N � 1.

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

min
x(·),u(·)

R T
0 Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 � h(x(t), u(t)), t 2 [0, T]

0 � r(x(T))

I Direct methods ”first discretize,
then optimize”

1. Parameterize controls, e.g.
u(t) = un, t 2 [tn, tn+1].

2. Discretize cost and dynamics

Ld(xn, zk, un) ⇡
Z tn+1

tn

Lc(x(t), u(t)) dt

Replace ẋ = f(x, u) by

xn+1 = �f (xn, zn, un)

0 = �int(xn, zn, un)
3. Also discretize path constraints

0 � �h(xn, zn, un), n = 0, . . . N � 1.

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

min
x(·),u(·)

R T
0 Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 � h(x(t), u(t)), t 2 [0, T]

0 � r(x(T))

I Direct methods ”first discretize,
then optimize”

1. Parameterize controls, e.g.
u(t) = un, t 2 [tn, tn+1].

2. Discretize cost and dynamics

Ld(xn, zk, un) ⇡
Z tn+1

tn

Lc(x(t), u(t)) dt

Replace ẋ = f(x, u) by

xn+1 = �f (xn, zn, un)

0 = �int(xn, zn, un)
3. Also discretize path constraints

0 � �h(xn, zn, un), n = 0, . . . N � 1.

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

min
x(·),u(·)

R T
0 Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 � h(x(t), u(t)), t 2 [0, T]

0 � r(x(T))

I Direct methods ”first discretize,
then optimize”

1. Parameterize controls, e.g.
u(t) = un, t 2 [tn, tn+1].

2. Discretize cost and dynamics

Ld(xn, zk, un) ⇡
Z tn+1

tn

Lc(x(t), u(t)) dt

Replace ẋ = f(x, u) by

xn+1 = �f (xn, zn, un)

0 = �int(xn, zn, un)
3. Also discretize path constraints

0 � �h(xn, zn, un), n = 0, . . . N � 1.

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

min
x(·),u(·)

R T
0 Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 � h(x(t), u(t)), t 2 [0, T]

0 � r(x(T))

I Direct methods ”first discretize,
then optimize”

1. Parameterize controls, e.g.
u(t) = un, t 2 [tn, tn+1].

2. Discretize cost and dynamics

Ld(xn, zk, un) ⇡
Z tn+1

tn

Lc(x(t), u(t)) dt

Replace ẋ = f(x, u) by

xn+1 = �f (xn, zn, un)

0 = �int(xn, zn, un)
3. Also discretize path constraints

0 � �h(xn, zn, un), n = 0, . . . N � 1.

Discrete time OCP (an NLP)

min
x,z,u

PN�1
k=0 Ld(xk, zk, uk) + E(xN)

s.t. x0 = x̄0

xn+1 = �f (xn, zn, un)

0 = �int(xn, zn, un)

0 � �h(xn, zn, un), n = 0, . . . , N�1

0 � r(xN)

Variables x = (x0, . . . , xN), z = (z0, . . . , zN)
and u = (u0, . . . , uN�1).
Here, z are the intermediate variables of the
integrator (e.g. Runge-Kutta)

Simplest Direct Transcription: Single Step Explicit Euler
(not recommended in practice, other Runge-Kutta methods are much more e�cient)

Continuous time OCP

min
x(·),u(·)

R T
0 Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 � h(x(t), u(t)), t 2 [0, T]

0 � r(x(T))

I Direct methods: first discretize,
then optimize

Single Step Explicit Euler NLP, with �t = T
N

min
x,u

PN�1
k=0 Lc(xk, uk)�t+ E(xN)

s.t. x0 = x̄0

xn+1 = xn + f(xn, un)�t

0 � h(xn, un), n = 0, . . . , N�1

0 � r(xN)

Variables x = (x0, . . . , xN) and
u = (u0, . . . , uN�1).
(single step explicit Euler has no internal
integrator variables z)

Sparse NLP resulting from direct transcription

Discrete time OCP (an NLP)

min
x,z,u

PN�1
k=0 Ld(xk, zn, uk) + E(xN)

s.t. x0 = x̄0

xn+1 = �f (xn, zn, un)

0 = �int(xn, zn, un)

0 � �h(xn, zn, un), n = 0, . . . , N�1

0 � r(xN)

Variables w = (x, z,u)

Nonlinear Program (NLP)

min
w2Rnx

F (w)

s.t. G(w) = 0

H(w) � 0

Large and sparse NLP

Sparse NLP resulting from direct transcription

0 50 100

nz = 611

0

20

40

60

80

100

120

r2
wwL(w;6;7)

0 50 100

nz = 196

0

50

rwG(w)

Variables w = (x, z,u)

Nonlinear Program (NLP)

min
w2Rnx

F (w)

s.t. G(w) = 0

H(w) � 0

Large and sparse NLP

Illustrative example of direct collocation with Newton-type optimization

Illustrative nonlinear optimal control problem (with one state and one control)

minimize
x(·),u(·)

Z 3

0
x(t)2 + u(t)2 dt

subject to
x(0) = x̄0 (initial value, x̄0 = 0.6)

ẋ =(1 + x)x+ u, (ODE model)

�1  u(t)  1, t 2 [0, 3] (bounds)

x(3) = 0 (terminal constraint)

I choose N = 9 equal intervals and Radau-IIA collocation with ns = 2 stages

I obtain nonlinear program with nx + (2ns + 1)Nnx +Nnu variables

I initialize with zeros everywhere, solve with CasADi and Ipopt (interior point)

Illustrative example: Initialization

0 1 2 3

t

0

0.2

0.4

0.6
x
(t

)

0 1 2 3

t

-1

0

1

u
(t

)

Illustrative example: First Iterate

0 1 2 3

t

0

0.2

0.4

0.6
x
(t

)

0 1 2 3

t

-1

0

1

u
(t

)

Illustrative example: Second Iterate

0 1 2 3

t

0

0.2

0.4

0.6
x
(t

)

0 1 2 3

t

-1

0

1

u
(t

)

Illustrative example: Third Iterate

0 1 2 3

t

0

0.2

0.4

0.6
x
(t

)

0 1 2 3

t

-1

0

1

u
(t

)

Illustrative example: Fourth Iterate

0 1 2 3

t

0

0.2

0.4

0.6
x
(t

)

0 1 2 3

t

-1

0

1

u
(t

)

Illustrative example: Fifth Iterate

0 1 2 3

t

0

0.2

0.4

0.6
x
(t

)

0 1 2 3

t

-1

0

1

u
(t

)

Illustrative example: Sixth Iterate

0 1 2 3

t

0

0.2

0.4

0.6
x
(t

)

0 1 2 3

t

-1

0

1

u
(t

)

Illustrative example: Seventh Iterate

0 1 2 3

t

0

0.2

0.4

0.6
x
(t

)

0 1 2 3

t

-1

0

1

u
(t

)

Illustrative example: Eighth Iterate

0 1 2 3

t

0

0.2

0.4

0.6
x
(t

)

0 1 2 3

t

-1

0

1

u
(t

)

Illustrative example: Solution after Nine Newton-type Iterations

0 1 2 3

t

0

0.2

0.4

0.6
x
(t

)

0 1 2 3

t

-1

0

1

u
(t

)

For simple plane attached to a tether:
• 20 differential states (3+3 trans, 9+3 rotation, 1+1 tether)
• 1 algebraic state (tether force)
• 8 invariants (6 rotation, 2 due to tether constraint)
• 3 control inputs (aileron, elevator, tether length)

Translational:

2

664

m 0 0 x
0 m 0 y
0 0 m z
x y z 0

3

775

2

664

ẍ
ÿ
z̈
�

3

775 =

2

66664

Fx +m
⇣
�̇2rA + �̇2x+ 2�̇ẏ + �̈y

⌘

Fy +m
⇣
y�̇2 � 2ẋ�̇ � �̈(rA+ x)

⌘

Fz � gm
�ẋ2 � ẏ2 � ż2

3

77775

Rotational: Ṙ = R!⇥ �RT

2

4
0
0
�̇

3

5 , J !̇ = T � ! ⇥ J!, R =
⇥

~Ex
~Ey

~Ez

⇤

Aero. coe�cients: ~v =

2

4
ẋ� �̇y

ẏ + �̇(rA + x)
ż

3

5� ~w(x, y, z, �, t), ↵ = �
~ET
z ~v

~ET
x ~v

, � =
~ET
y ~v

~ET
x ~v

Aero. forces/torques: ~FA =
1

2
⇢Ak~vk(CL~v ⇥ ~Ey � CD~v), ~TA =

1

2
⇢Ak~vk2

2

4
CR

CP

CY

3

5

More Complex Example: Power Optimal Trajectories in Airborne Wind Energy (AWE)
formulated and solved daily by practitioners using open-source python package “AWEBox” [De Schutter et al. 2023]

Newton-Type Optimization Iterations for Power Optimal Flight
(video by Greg Horn, using CasADi and Ipopt as optimization engine)

Nonlinear Optimal Control often used for Model Predictive Control (MPC)
One widely used nonlinear MPC package is acados [Verscheuren et al. 2021]

Paper: https://ieeexplore.ieee.org/abstract/document/9805699

Video: https://www.youtube.com/watch?v=zBVpx3bgI6E

7730 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

Time-Optimal Online Replanning for Agile
Quadrotor Flight

Angel Romero , Robert Penicka , and Davide Scaramuzza

Abstract—In this letter, we tackle the problem of flying a quadro-
tor using time-optimal control policies that can be replanned online
when the environment changes or when encountering unknown dis-
turbances. This problem is challenging as the time-optimal trajec-
tories that consider the full quadrotor dynamics are computation-
ally expensive to generate, on the order of minutes or even hours.
We introduce a sampling-based method for efficient generation of
time-optimal paths of a point-mass model. These paths are then
tracked using a Model Predictive Contouring Control approach
that considers the full quadrotor dynamics and the single rotor
thrust limits. Our combined approach is able to run in real-time,
being the first time-optimal method that is able to adapt to changes
on-the-fly. We showcase our approach’s adaption capabilities by
flying a quadrotor at more than 60 km/h in a racing track where
gates are moving. Additionally, we show that our online replanning
approach can cope with strong disturbances caused by winds of up
to 68 km/h.

Index Terms—Aerial systems: Applications, integrated planning
and control, motion and path planning.

SUPPLEMENTARY MATERIAL

Video of the experiments: https://youtu.be/zBVpx3bgI6E

I. INTRODUCTION

QUADROTORS are one of the most versatile flying robots.
Depending on the task at hand, their design can vary from
very robust to extremely fast and powerful agile machines.

When it comes to speed, racing quadrotors are among the fastest
and most agile flying devices ever built [1]. Winning a drone race
requires a set of visual, coordination and motor skills that are
only achieved by the most dexterous and experienced human
pilots [2]. For this reason, finding algorithms that conquer the
sport of drone racing would represent a giant step forward for
the entire robotics community. Thus, drone racing research has
not only been feeding from the latest advances in perception,

Manuscript received 24 February 2022; accepted 7 June 2022. Date of
publication 23 June 2022; date of current version 1 July 2022. This letter was
recommended for publication by Associate Editor S. Sakaino and Editor T.
Ogata upon evaluation of the reviewers’ comments. This work was supported
in part by the National Centre of Competence in Research (NCCR) Robotics
through the Swiss National Science Foundation (SNSF), in part by the European
Union’s Horizon 2020 Research and Innovation Programme under Grant 871479
(AERIAL-CORE), and in part by the European Research Council (ERC) under
Grant 864042 (AGILEFLIGHT). (Corresponding author: Angel Romero.)

The authors are with the Robotics and Perception Group, University of Zurich,
8006 Zürich, Switzerland (e-mail: roagui@ifi.uzh.ch; penicrob@fel.cvut.cz;
davide.scaramuzza@ieee.org).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2022.3185772, provided by the authors.

Digital Object Identifier 10.1109/LRA.2022.3185772

Fig. 1. The proposed algorithm is able to adapt on-the-fly when encountering
unknown disturbances. In the figure we show a quadrotor platform flying at
speeds of more than 60 km/h. Thanks to our online replanning method, the
drone can adapt to wind disturbances of up to 68 km/h while flying as fast as
possible.

learning, planning, and control, but it has also been a strong
contributor to these fields [3]–[10]. A backbone piece in the
drone racing is time-optimal (i.e., minimum-time) quadrotor
flight through a series of waypoints (i.e., gates). An extremely
challenging and currently missing piece of the puzzle is solving
this problem on-the-fly.

Planning a minimum-time trajectory is a complex problem.
Algorithms need to both come up with the exact sequence of
positions, velocities, orientations, inputs, etc. of the platform at
every potential situation, and their allocation in time. Addition-
ally, for this sequence to be tracked by classical control methods,
it needs to be dynamically feasible, i.e., it needs to fulfill the
complex non-linear dynamics of the quadrotor platform, and its
actuator constraints.

Different approaches have attempted to tackle this problem.
In [5], the authors propose the first method that finds time-
optimal trajectories for a given series of waypoints and show how
they beat professional human pilots in a drone race. However,
these trajectories take several hours to compute, and hence their
use is prohibitive for any online adaption to unpredicted changes
(e.g., moving gates or wind gusts). To overcome this limitation,
we need an algorithm to generate time-optimal trajectories
in real-time. In [6], a Model Predictive Contouring Control
(MPCC) method is introduced that is able to track non-feasible
paths in a near-time-optimal fashion. By solving the difficult
time-allocation problem online, at every time step, the MPCC
method optimally selects the states and inputs that maximize the

2377-3766 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on January 08,2024 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

7736 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

Fig. 10. Comparison in the real world of response to wind disturbance of 18.8 m/s, with and without replanning. Our online replanning approach (red line) is
able to quickly correct for the disturbance and steers the drone back to the center of the gate.

Summarizing, even with wind disturbances affecting very
close to the waypoint, our approach is able to promptly correct
for the external force and pass through the waypoint accurately,
while still retaining time optimality.

V. REAL WORLD EXPERIMENTS

To further display the capabilities of the proposed online
replanning method, in this section, we deploy the algorithm on
the physical platform. This platform has been built in-house
from off-the-shelf components and it carries an NVIDIA Jetson
TX2 board. A more detailed description of our platform can be
found in [23]. Our method can run in both, an offboard desktop
computer equipped with an Intel(R) Core(TM) i7-8550 CPU
@ 1.80 GHz, and on the Jetson TX2. A Radix FC board that
contains the Betaflight2 firmware is used as a low level controller.
This low-level controller takes as inputs body rates and collective
thrusts. In this case, the body rates are commanded directly from
the MPCC controller, and the collective thrust is computed as the
sum of the single rotor thrusts. It is, however, still advantageous
that the MPCC considers the full state dynamics. This way,
the body rates, and collective thrust are generated taking into
account possible current and predicted saturations at the single
rotor thrust level.

For state estimation, we use a VICON3 system with 36 cam-
eras in one of the world’s largest drone flying arenas (30× 30×
8 m) that provide the platform with down to millimeter accuracy
measurements of position and orientation.

A. Implementation Details

In order to deploy our MPCC controller, (4) needs to be solved
in real-time. To this end, we have implemented our optimization
problem using acados [24] as a code generation tool, in contrast
to [6], where its previous version, ACADO [25] was used. It is
important to note that for consistency, the optimization problem
that is solved online is written in (4) and is exactly the same as
in [6]. The main benefit of using acados is that it provides an
interface to HPIPM (High Performance Interior Point Method)
solver [26]. HPIPM solves optimization problems using BLAS-
FEO [27], a linear algebra library specifically designed for

2https://betaflight.com/
3https://www.vicon.com/

embedded optimization. The usage of this new tools and new
solver shows a large decrease in solve times that allows the
deployment of our MPCC algorithm in an embedded platform, in
real time. The solve times and their comparison with the previous
implementation are shown in Table IV. Our MPCC is run at a
100 Hz frequency, and the prediction steps are of 60 ms, with a
prediction horizon length of 20 steps.

Thanks to this re-implementation, we can run the MPCC
together with the online replanning proposed in this letter in
the Jetson TX2. To achieve this, the planning is running in a
different thread, and triggered once every 2 control iterations.

B. Nominal Case

In this section we compare the tracking performance in the
SplitS race track, in real flight. The tracking performance is
shown in Fig. 9. Both approaches achieve similar speed of
around 18 m/s, and the behaviour is very similar to the one
shown for the same case in the simulation experiments.

In Table V we see how the laptimes for the proposed approach
are also lower than for the fixed reference case. This follows the
same explanation we mentioned in the simulation experiments
section: the MPCC controller has less contour error because of
the replanning, and this allows for a better maximization of the
progress term.

C. Moving Waypoint

With this experiment we aim to showcase the ability of our
approach to steer the platform through the waypoints even in the
case when they move. Fixed time-optimal reference generating
methods cannot adapt to changing conditions, since they cannot
run in real-time. Our method can run at every control iteration,
therefore, assuming perfect knowledge of the waypoints, we can
directly plan a new trajectory that passes through them. In Fig. 9
we show how the drone perfectly flies through all the waypoints,
even when the gate that is in the center of the frame is constantly
moving.

D. Response to Wind Disturbance

In this section we analyze how the online replanning strategy
used in this letter helps when reacting to unknown disturbances
in the real world. To this end, with the purpose of generating a
very strong stream of wind we adapt our experimental setup.

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on January 08,2024 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

Example 2: Quadrotor Racing (U Zurich, Scaramuzza)Example 1: Autonomous Driving (in Freiburg)

Latest acados development:
differentiable nonlinear MPC via adjoint approach [Frey et al. 2025, subm.]

https://ieeexplore.ieee.org/abstract/document/9805699
https://www.youtube.com/watch?v=zBVpx3bgI6E

Nonlinear Optimal Control often used for Model Predictive Control (MPC)
One widely used nonlinear MPC package is acados [Verscheuren et al. 2021]

Paper: https://ieeexplore.ieee.org/abstract/document/9805699

Video: https://www.youtube.com/watch?v=zBVpx3bgI6E

7730 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

Time-Optimal Online Replanning for Agile
Quadrotor Flight

Angel Romero , Robert Penicka , and Davide Scaramuzza

Abstract—In this letter, we tackle the problem of flying a quadro-
tor using time-optimal control policies that can be replanned online
when the environment changes or when encountering unknown dis-
turbances. This problem is challenging as the time-optimal trajec-
tories that consider the full quadrotor dynamics are computation-
ally expensive to generate, on the order of minutes or even hours.
We introduce a sampling-based method for efficient generation of
time-optimal paths of a point-mass model. These paths are then
tracked using a Model Predictive Contouring Control approach
that considers the full quadrotor dynamics and the single rotor
thrust limits. Our combined approach is able to run in real-time,
being the first time-optimal method that is able to adapt to changes
on-the-fly. We showcase our approach’s adaption capabilities by
flying a quadrotor at more than 60 km/h in a racing track where
gates are moving. Additionally, we show that our online replanning
approach can cope with strong disturbances caused by winds of up
to 68 km/h.

Index Terms—Aerial systems: Applications, integrated planning
and control, motion and path planning.

SUPPLEMENTARY MATERIAL

Video of the experiments: https://youtu.be/zBVpx3bgI6E

I. INTRODUCTION

QUADROTORS are one of the most versatile flying robots.
Depending on the task at hand, their design can vary from
very robust to extremely fast and powerful agile machines.

When it comes to speed, racing quadrotors are among the fastest
and most agile flying devices ever built [1]. Winning a drone race
requires a set of visual, coordination and motor skills that are
only achieved by the most dexterous and experienced human
pilots [2]. For this reason, finding algorithms that conquer the
sport of drone racing would represent a giant step forward for
the entire robotics community. Thus, drone racing research has
not only been feeding from the latest advances in perception,

Manuscript received 24 February 2022; accepted 7 June 2022. Date of
publication 23 June 2022; date of current version 1 July 2022. This letter was
recommended for publication by Associate Editor S. Sakaino and Editor T.
Ogata upon evaluation of the reviewers’ comments. This work was supported
in part by the National Centre of Competence in Research (NCCR) Robotics
through the Swiss National Science Foundation (SNSF), in part by the European
Union’s Horizon 2020 Research and Innovation Programme under Grant 871479
(AERIAL-CORE), and in part by the European Research Council (ERC) under
Grant 864042 (AGILEFLIGHT). (Corresponding author: Angel Romero.)

The authors are with the Robotics and Perception Group, University of Zurich,
8006 Zürich, Switzerland (e-mail: roagui@ifi.uzh.ch; penicrob@fel.cvut.cz;
davide.scaramuzza@ieee.org).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2022.3185772, provided by the authors.

Digital Object Identifier 10.1109/LRA.2022.3185772

Fig. 1. The proposed algorithm is able to adapt on-the-fly when encountering
unknown disturbances. In the figure we show a quadrotor platform flying at
speeds of more than 60 km/h. Thanks to our online replanning method, the
drone can adapt to wind disturbances of up to 68 km/h while flying as fast as
possible.

learning, planning, and control, but it has also been a strong
contributor to these fields [3]–[10]. A backbone piece in the
drone racing is time-optimal (i.e., minimum-time) quadrotor
flight through a series of waypoints (i.e., gates). An extremely
challenging and currently missing piece of the puzzle is solving
this problem on-the-fly.

Planning a minimum-time trajectory is a complex problem.
Algorithms need to both come up with the exact sequence of
positions, velocities, orientations, inputs, etc. of the platform at
every potential situation, and their allocation in time. Addition-
ally, for this sequence to be tracked by classical control methods,
it needs to be dynamically feasible, i.e., it needs to fulfill the
complex non-linear dynamics of the quadrotor platform, and its
actuator constraints.

Different approaches have attempted to tackle this problem.
In [5], the authors propose the first method that finds time-
optimal trajectories for a given series of waypoints and show how
they beat professional human pilots in a drone race. However,
these trajectories take several hours to compute, and hence their
use is prohibitive for any online adaption to unpredicted changes
(e.g., moving gates or wind gusts). To overcome this limitation,
we need an algorithm to generate time-optimal trajectories
in real-time. In [6], a Model Predictive Contouring Control
(MPCC) method is introduced that is able to track non-feasible
paths in a near-time-optimal fashion. By solving the difficult
time-allocation problem online, at every time step, the MPCC
method optimally selects the states and inputs that maximize the

2377-3766 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on January 08,2024 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

7736 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

Fig. 10. Comparison in the real world of response to wind disturbance of 18.8 m/s, with and without replanning. Our online replanning approach (red line) is
able to quickly correct for the disturbance and steers the drone back to the center of the gate.

Summarizing, even with wind disturbances affecting very
close to the waypoint, our approach is able to promptly correct
for the external force and pass through the waypoint accurately,
while still retaining time optimality.

V. REAL WORLD EXPERIMENTS

To further display the capabilities of the proposed online
replanning method, in this section, we deploy the algorithm on
the physical platform. This platform has been built in-house
from off-the-shelf components and it carries an NVIDIA Jetson
TX2 board. A more detailed description of our platform can be
found in [23]. Our method can run in both, an offboard desktop
computer equipped with an Intel(R) Core(TM) i7-8550 CPU
@ 1.80 GHz, and on the Jetson TX2. A Radix FC board that
contains the Betaflight2 firmware is used as a low level controller.
This low-level controller takes as inputs body rates and collective
thrusts. In this case, the body rates are commanded directly from
the MPCC controller, and the collective thrust is computed as the
sum of the single rotor thrusts. It is, however, still advantageous
that the MPCC considers the full state dynamics. This way,
the body rates, and collective thrust are generated taking into
account possible current and predicted saturations at the single
rotor thrust level.

For state estimation, we use a VICON3 system with 36 cam-
eras in one of the world’s largest drone flying arenas (30× 30×
8 m) that provide the platform with down to millimeter accuracy
measurements of position and orientation.

A. Implementation Details

In order to deploy our MPCC controller, (4) needs to be solved
in real-time. To this end, we have implemented our optimization
problem using acados [24] as a code generation tool, in contrast
to [6], where its previous version, ACADO [25] was used. It is
important to note that for consistency, the optimization problem
that is solved online is written in (4) and is exactly the same as
in [6]. The main benefit of using acados is that it provides an
interface to HPIPM (High Performance Interior Point Method)
solver [26]. HPIPM solves optimization problems using BLAS-
FEO [27], a linear algebra library specifically designed for

2https://betaflight.com/
3https://www.vicon.com/

embedded optimization. The usage of this new tools and new
solver shows a large decrease in solve times that allows the
deployment of our MPCC algorithm in an embedded platform, in
real time. The solve times and their comparison with the previous
implementation are shown in Table IV. Our MPCC is run at a
100 Hz frequency, and the prediction steps are of 60 ms, with a
prediction horizon length of 20 steps.

Thanks to this re-implementation, we can run the MPCC
together with the online replanning proposed in this letter in
the Jetson TX2. To achieve this, the planning is running in a
different thread, and triggered once every 2 control iterations.

B. Nominal Case

In this section we compare the tracking performance in the
SplitS race track, in real flight. The tracking performance is
shown in Fig. 9. Both approaches achieve similar speed of
around 18 m/s, and the behaviour is very similar to the one
shown for the same case in the simulation experiments.

In Table V we see how the laptimes for the proposed approach
are also lower than for the fixed reference case. This follows the
same explanation we mentioned in the simulation experiments
section: the MPCC controller has less contour error because of
the replanning, and this allows for a better maximization of the
progress term.

C. Moving Waypoint

With this experiment we aim to showcase the ability of our
approach to steer the platform through the waypoints even in the
case when they move. Fixed time-optimal reference generating
methods cannot adapt to changing conditions, since they cannot
run in real-time. Our method can run at every control iteration,
therefore, assuming perfect knowledge of the waypoints, we can
directly plan a new trajectory that passes through them. In Fig. 9
we show how the drone perfectly flies through all the waypoints,
even when the gate that is in the center of the frame is constantly
moving.

D. Response to Wind Disturbance

In this section we analyze how the online replanning strategy
used in this letter helps when reacting to unknown disturbances
in the real world. To this end, with the purpose of generating a
very strong stream of wind we adapt our experimental setup.

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on January 08,2024 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

Example 2: Quadrotor Racing (U Zurich, Scaramuzza)Example 1: Autonomous Driving (in Freiburg)

Latest acados development:
differentiable nonlinear MPC via adjoint approach [Frey et al. 2025, subm.]

https://ieeexplore.ieee.org/abstract/document/9805699
https://www.youtube.com/watch?v=zBVpx3bgI6E

Nonlinear Optimal Control often used for Model Predictive Control (MPC)
One widely used nonlinear MPC package is acados [Verscheuren et al. 2021]

Paper: https://ieeexplore.ieee.org/abstract/document/9805699

Video: https://www.youtube.com/watch?v=zBVpx3bgI6E

7730 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

Time-Optimal Online Replanning for Agile
Quadrotor Flight

Angel Romero , Robert Penicka , and Davide Scaramuzza

Abstract—In this letter, we tackle the problem of flying a quadro-
tor using time-optimal control policies that can be replanned online
when the environment changes or when encountering unknown dis-
turbances. This problem is challenging as the time-optimal trajec-
tories that consider the full quadrotor dynamics are computation-
ally expensive to generate, on the order of minutes or even hours.
We introduce a sampling-based method for efficient generation of
time-optimal paths of a point-mass model. These paths are then
tracked using a Model Predictive Contouring Control approach
that considers the full quadrotor dynamics and the single rotor
thrust limits. Our combined approach is able to run in real-time,
being the first time-optimal method that is able to adapt to changes
on-the-fly. We showcase our approach’s adaption capabilities by
flying a quadrotor at more than 60 km/h in a racing track where
gates are moving. Additionally, we show that our online replanning
approach can cope with strong disturbances caused by winds of up
to 68 km/h.

Index Terms—Aerial systems: Applications, integrated planning
and control, motion and path planning.

SUPPLEMENTARY MATERIAL

Video of the experiments: https://youtu.be/zBVpx3bgI6E

I. INTRODUCTION

QUADROTORS are one of the most versatile flying robots.
Depending on the task at hand, their design can vary from
very robust to extremely fast and powerful agile machines.

When it comes to speed, racing quadrotors are among the fastest
and most agile flying devices ever built [1]. Winning a drone race
requires a set of visual, coordination and motor skills that are
only achieved by the most dexterous and experienced human
pilots [2]. For this reason, finding algorithms that conquer the
sport of drone racing would represent a giant step forward for
the entire robotics community. Thus, drone racing research has
not only been feeding from the latest advances in perception,

Manuscript received 24 February 2022; accepted 7 June 2022. Date of
publication 23 June 2022; date of current version 1 July 2022. This letter was
recommended for publication by Associate Editor S. Sakaino and Editor T.
Ogata upon evaluation of the reviewers’ comments. This work was supported
in part by the National Centre of Competence in Research (NCCR) Robotics
through the Swiss National Science Foundation (SNSF), in part by the European
Union’s Horizon 2020 Research and Innovation Programme under Grant 871479
(AERIAL-CORE), and in part by the European Research Council (ERC) under
Grant 864042 (AGILEFLIGHT). (Corresponding author: Angel Romero.)

The authors are with the Robotics and Perception Group, University of Zurich,
8006 Zürich, Switzerland (e-mail: roagui@ifi.uzh.ch; penicrob@fel.cvut.cz;
davide.scaramuzza@ieee.org).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2022.3185772, provided by the authors.

Digital Object Identifier 10.1109/LRA.2022.3185772

Fig. 1. The proposed algorithm is able to adapt on-the-fly when encountering
unknown disturbances. In the figure we show a quadrotor platform flying at
speeds of more than 60 km/h. Thanks to our online replanning method, the
drone can adapt to wind disturbances of up to 68 km/h while flying as fast as
possible.

learning, planning, and control, but it has also been a strong
contributor to these fields [3]–[10]. A backbone piece in the
drone racing is time-optimal (i.e., minimum-time) quadrotor
flight through a series of waypoints (i.e., gates). An extremely
challenging and currently missing piece of the puzzle is solving
this problem on-the-fly.

Planning a minimum-time trajectory is a complex problem.
Algorithms need to both come up with the exact sequence of
positions, velocities, orientations, inputs, etc. of the platform at
every potential situation, and their allocation in time. Addition-
ally, for this sequence to be tracked by classical control methods,
it needs to be dynamically feasible, i.e., it needs to fulfill the
complex non-linear dynamics of the quadrotor platform, and its
actuator constraints.

Different approaches have attempted to tackle this problem.
In [5], the authors propose the first method that finds time-
optimal trajectories for a given series of waypoints and show how
they beat professional human pilots in a drone race. However,
these trajectories take several hours to compute, and hence their
use is prohibitive for any online adaption to unpredicted changes
(e.g., moving gates or wind gusts). To overcome this limitation,
we need an algorithm to generate time-optimal trajectories
in real-time. In [6], a Model Predictive Contouring Control
(MPCC) method is introduced that is able to track non-feasible
paths in a near-time-optimal fashion. By solving the difficult
time-allocation problem online, at every time step, the MPCC
method optimally selects the states and inputs that maximize the

2377-3766 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on January 08,2024 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

7736 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

Fig. 10. Comparison in the real world of response to wind disturbance of 18.8 m/s, with and without replanning. Our online replanning approach (red line) is
able to quickly correct for the disturbance and steers the drone back to the center of the gate.

Summarizing, even with wind disturbances affecting very
close to the waypoint, our approach is able to promptly correct
for the external force and pass through the waypoint accurately,
while still retaining time optimality.

V. REAL WORLD EXPERIMENTS

To further display the capabilities of the proposed online
replanning method, in this section, we deploy the algorithm on
the physical platform. This platform has been built in-house
from off-the-shelf components and it carries an NVIDIA Jetson
TX2 board. A more detailed description of our platform can be
found in [23]. Our method can run in both, an offboard desktop
computer equipped with an Intel(R) Core(TM) i7-8550 CPU
@ 1.80 GHz, and on the Jetson TX2. A Radix FC board that
contains the Betaflight2 firmware is used as a low level controller.
This low-level controller takes as inputs body rates and collective
thrusts. In this case, the body rates are commanded directly from
the MPCC controller, and the collective thrust is computed as the
sum of the single rotor thrusts. It is, however, still advantageous
that the MPCC considers the full state dynamics. This way,
the body rates, and collective thrust are generated taking into
account possible current and predicted saturations at the single
rotor thrust level.

For state estimation, we use a VICON3 system with 36 cam-
eras in one of the world’s largest drone flying arenas (30× 30×
8 m) that provide the platform with down to millimeter accuracy
measurements of position and orientation.

A. Implementation Details

In order to deploy our MPCC controller, (4) needs to be solved
in real-time. To this end, we have implemented our optimization
problem using acados [24] as a code generation tool, in contrast
to [6], where its previous version, ACADO [25] was used. It is
important to note that for consistency, the optimization problem
that is solved online is written in (4) and is exactly the same as
in [6]. The main benefit of using acados is that it provides an
interface to HPIPM (High Performance Interior Point Method)
solver [26]. HPIPM solves optimization problems using BLAS-
FEO [27], a linear algebra library specifically designed for

2https://betaflight.com/
3https://www.vicon.com/

embedded optimization. The usage of this new tools and new
solver shows a large decrease in solve times that allows the
deployment of our MPCC algorithm in an embedded platform, in
real time. The solve times and their comparison with the previous
implementation are shown in Table IV. Our MPCC is run at a
100 Hz frequency, and the prediction steps are of 60 ms, with a
prediction horizon length of 20 steps.

Thanks to this re-implementation, we can run the MPCC
together with the online replanning proposed in this letter in
the Jetson TX2. To achieve this, the planning is running in a
different thread, and triggered once every 2 control iterations.

B. Nominal Case

In this section we compare the tracking performance in the
SplitS race track, in real flight. The tracking performance is
shown in Fig. 9. Both approaches achieve similar speed of
around 18 m/s, and the behaviour is very similar to the one
shown for the same case in the simulation experiments.

In Table V we see how the laptimes for the proposed approach
are also lower than for the fixed reference case. This follows the
same explanation we mentioned in the simulation experiments
section: the MPCC controller has less contour error because of
the replanning, and this allows for a better maximization of the
progress term.

C. Moving Waypoint

With this experiment we aim to showcase the ability of our
approach to steer the platform through the waypoints even in the
case when they move. Fixed time-optimal reference generating
methods cannot adapt to changing conditions, since they cannot
run in real-time. Our method can run at every control iteration,
therefore, assuming perfect knowledge of the waypoints, we can
directly plan a new trajectory that passes through them. In Fig. 9
we show how the drone perfectly flies through all the waypoints,
even when the gate that is in the center of the frame is constantly
moving.

D. Response to Wind Disturbance

In this section we analyze how the online replanning strategy
used in this letter helps when reacting to unknown disturbances
in the real world. To this end, with the purpose of generating a
very strong stream of wind we adapt our experimental setup.

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on January 08,2024 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

Example 2: Quadrotor Racing (U Zurich, Scaramuzza)Example 1: Autonomous Driving (in Freiburg)

Latest acados development:
differentiable nonlinear MPC via adjoint approach [Frey et al. 2025, subm.]

https://ieeexplore.ieee.org/abstract/document/9805699
https://www.youtube.com/watch?v=zBVpx3bgI6E

Next Challenge: Nonsmooth Optimal Control

Three Levels of Di�culty in Continuous-Time OCP

Continuous-Time OCP

min
x(·),u(·)

R T
0 Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 � h(x(t), u(t)), t 2 [0, T]

0 � r(x(T))

Three levels of di�culty:

(a) Linear ODE: f(x, u) = Ax+Bu

(b) Nonlinear smooth ODE: f 2 C1

(c) Nonsmooth Dynamics (NSD):
I f not di↵erentiable (NSD1),
I f not continuous (NSD2), or even
I f not finite valued, discontinuous state

x(t) (NSD3)

First focus on smooth cases (a) and (b).

Next Challenge: Nonsmooth Optimal ControlNext Challenge: Nonsmooth Optimal Control

Nonsmooth di↵erential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

Ordinary di↵erential equation (ODE) with a nonsmooth right-hand side (RHS).

NSD1
non-di↵erentiable RHS

NSD2
discontinuous RHS

NSD3
state dependent jump

Solving nonsmooth optimal control problems A. Nurkanović 3/33

Nonsmooth di↵erential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

Ordinary di↵erential equation (ODE) with a nonsmooth right-hand side (RHS).

NSD1
non-di↵erentiable RHS

NSD2
discontinuous RHS

NSD3
state dependent jump

Solving nonsmooth optimal control problems A. Nurkanović 3/33

Nonsmooth di↵erential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

Ordinary di↵erential equation (ODE) with a nonsmooth right-hand side (RHS).

NSD1
non-di↵erentiable RHS

NSD2
discontinuous RHS

NSD3
state dependent jump

Solving nonsmooth optimal control problems A. Nurkanović 3/33

Bouncing Ball (NSD3)

Nonsmooth di↵erential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

Ordinary di↵erential equation (ODE) with a nonsmooth right-hand side (RHS).

NSD1
non-di↵erentiable RHS

NSD2
discontinuous RHS

NSD3
state dependent jump

Solving nonsmooth optimal control problems A. Nurkanović 3/33

Bouncing Ball (NSD3)

Tutorial example: thermostat with hysteresis

ẋ = �0.2x
w = 0

ẋ = �0.2x+ uh

w = 1

x  18

x � 20

0 0.5 1 1.5 2 2.5 3 3.5
14

16

18

20

t [phyisical time]

x
(
t)

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

t [phyisical time]

w
(
t)

Time-freezing for optimal control with state jump Moritz Diehl 27

Hybrid systems and finite automaton

ẋ = fA(x)
w = 0

ẋ = fB(x)
w = 1

 (x) � 1

 (x)  0

0 1

0

1

 (x)

w
2

H
(

(
x
)
)

Hybrid system with hysteresis (incomplete description)

ẋ = f(x,w) = (1� w)fA(x) + wfB(x)

Time-freezing for optimal control with state jump Moritz Diehl 26

State Machine in Hysteresis Control (NSD3)

Nonsmooth di↵erential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

Ordinary di↵erential equation (ODE) with a nonsmooth right-hand side (RHS).

NSD1
non-di↵erentiable RHS

NSD2
discontinuous RHS

NSD3
state dependent jump

Solving nonsmooth optimal control problems A. Nurkanović 3/33

Bouncing Ball (NSD3)

Tutorial example: thermostat with hysteresis

ẋ = �0.2x
w = 0

ẋ = �0.2x+ uh

w = 1

x  18

x � 20

0 0.5 1 1.5 2 2.5 3 3.5
14

16

18

20

t [phyisical time]

x
(
t)

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

t [phyisical time]

w
(
t)

Time-freezing for optimal control with state jump Moritz Diehl 27

Hybrid systems and finite automaton

ẋ = fA(x)
w = 0

ẋ = fB(x)
w = 1

 (x) � 1

 (x)  0

0 1

0

1

 (x)

w
2

H
(

(
x
)
)

Hybrid system with hysteresis (incomplete description)

ẋ = f(x,w) = (1� w)fA(x) + wfB(x)

Time-freezing for optimal control with state jump Moritz Diehl 26

State Machine in Hysteresis Control (NSD3)

Walking Robot (unitree at LAAS, NSD3)

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:
• Can transform many NSD3 systems into (easier) NSD2 via time-freezing
• Can discretize NSD2 systems with highly accurate Finite Elements with

Switch Detection (FESD), removing spurious local minimisers
• Can solve the resulting Mathematical Programs with Complementarity

Constraints (MPCC) via homotopy of NLP (e.g. based on IPOPT)
• Can use open-source software NOSNOC, from MATLAB and Python

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:
• Can transform many NSD3 systems into (easier) NSD2 via time-freezing
• Can discretize NSD2 systems with highly accurate Finite Elements with

Switch Detection (FESD), removing spurious local minimisers
• Can solve the resulting Mathematical Programs with Complementarity

Constraints (MPCC) via homotopy of NLP (e.g. based on IPOPT)
• Can use open-source software NOSNOC, from MATLAB and Python

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:
• Can transform many NSD3 systems into (easier) NSD2 via time-freezing
• Can discretize NSD2 systems with highly accurate Finite Elements with

Switch Detection (FESD), removing spurious local minimisers
• Can solve the resulting Mathematical Programs with Complementarity

Constraints (MPCC) via homotopy of NLP (e.g. based on IPOPT)
• Can use open-source software NOSNOC, from MATLAB and Python

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:
• Can transform many NSD3 systems into (easier) NSD2 via time-freezing
• Can discretize NSD2 systems with highly accurate Finite Elements with

Switch Detection (FESD), removing spurious local minimisers
• Can solve the resulting Mathematical Programs with Complementarity

Constraints (MPCC) via homotopy of NLP (e.g. based on IPOPT)
• Can use open-source software NOSNOC, from MATLAB and Python

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:
• Can transform many NSD3 systems into (easier) NSD2 via time-freezing
• Can discretize NSD2 systems with highly accurate Finite Elements with

Switch Detection (FESD), removing spurious local minimisers
• Can solve the resulting Mathematical Programs with Complementarity

Constraints (MPCC) via homotopy of NLP (e.g. based on IPOPT)
• Can use open-source software NOSNOC, from MATLAB and Python

Two families of MPCC methods

1. Regularization, smoothing, penalty methods: solve a sequence of regular nonlinear
programs parametrized by a parameter �k

> 0.
I Pro: easy to implement.
I Con: ill-conditioning, weaker theoretical properties.

2. Combinatorial, active-set, pivoting methods: solve a sequence of piece MPCCs
(TNLP, BNLP), until a piece problem is found that solves also the MPCC.
I Pro: strong theoretical properties, can be combined with 1.
I Con: more di�cult to implement, worst-case combinatorial complexity.

Both classes of methods are available in nosnoc’s mpccsol() function:

github.com/nosnoc/nosnoc
To get started see: github.com/nosnoc/nosnoc/tree/main/examples/generic_mpcc

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:
• Can transform many NSD3 systems into (easier) NSD2 via time-freezing
• Can discretize NSD2 systems with highly accurate Finite Elements with

Switch Detection (FESD), removing spurious local minimisers
• Can solve the resulting Mathematical Programs with Complementarity

Constraints (MPCC) via homotopy of NLP (e.g. based on IPOPT)
• Can use open-source software NOSNOC, from MATLAB and Python

Two families of MPCC methods

1. Regularization, smoothing, penalty methods: solve a sequence of regular nonlinear
programs parametrized by a parameter �k

> 0.
I Pro: easy to implement.
I Con: ill-conditioning, weaker theoretical properties.

2. Combinatorial, active-set, pivoting methods: solve a sequence of piece MPCCs
(TNLP, BNLP), until a piece problem is found that solves also the MPCC.
I Pro: strong theoretical properties, can be combined with 1.
I Con: more di�cult to implement, worst-case combinatorial complexity.

Both classes of methods are available in nosnoc’s mpccsol() function:

github.com/nosnoc/nosnoc
To get started see: github.com/nosnoc/nosnoc/tree/main/examples/generic_mpcc

PhD and Postdoc Work by Armin Nurkanovic
(currently serving as replacement professor of
mathematical optimization at Technical University
of Braunschweig)

M. Diehl 50

NOSNOC examples

Some videos

Time-freezing for optimal control with state jumps Moritz Diehl 11

M. Diehl 51

Hopping robot - move with minimal e↵ort from start to end position
Homotopy initialized with start position everywhere. Optimizer finds creative solution.

Time-freezing for optimal control with state jump Moritz Diehl 25

Today’s Focus: Assembly Robots at Siemens Research in Munich (NSD3)

Christian Dietz
(MSc Mathematics)
industrial PhD
student at
University of
Freiburg,
supervised by
Armin Nurkanovic
and MD

Dream: just specify start and end position…but linear interpolation does not work
(simulation)

Dream: just specify start and end position…but linear interpolation does not work
(experiment)

How to formulate and solve OCP for assembly robot at Siemens?

1. Divide colliding bodies each into rigidly connected convex polyhedra
2. Define Signed Distance Function (SDF) between polyhedra
3. Compute Contact Normal of SDF (unique if slightly smoothed)
4. Formulate Complementarity Lagrangian System Model (NSD3)
5. Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
6. Solve resulting Mathematical Program with Complementarity Constraints

(MPCC) via Scholtes’ Relaxation Method
7. Play open-loop control trajectory on real robot

How to formulate and solve OCP for assembly robot at Siemens?

1. Divide colliding bodies each into rigidly connected convex polyhedra
2. Define Signed Distance Function (SDF) between polyhedra
3. Compute Contact Normal of SDF (unique if slightly smoothed)
4. Formulate Complementarity Lagrangian System Model (NSD3)
5. Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
6. Solve resulting Mathematical Program with Complementarity Constraints

(MPCC) via Scholtes’ Relaxation Method
7. Play open-loop control trajectory on real robot

Optimization-based signed distance function (SDF) for polytopes

Halfspace representation of polytopes for
nw 2 {2, 3}:

P1 = {p 2 Rnw |G1p  h1}, P2 = {p 2 Rnw |G2p  h2}.

Associating degrees of freedom:

I ⇢i center of mass of i-th polytope

I ⇠i orientation of i-th polytope

I System configuration: q = (⇢1, ⇠2, ⇢2, ⇠2)

I R(⇠i) - rotation matrices

Calculating the SDF as growth distance:

�0(q) = min
p,↵

↵

s.t. G1R(⇠1)
>(p� ⇢1)  (1 + ↵)h1,

G2R(⇠2)
>(p� ⇢2)  (1 + ↵)h2.

�2 0 2

�2

�1

0

1

2

p

c1

c2

cx

c y

Smoothing the signed distance function

The optimization-based SDF is given by a parametric linear program

�0(q) = min
z

c
>
z

s.t. A(q)z  b(q),

with primal variables z = (p,↵).
Perturbed KKT conditions as considered in interior-point methods with barrier parameter
⌧ > 0 are given by

0 = c+A(q)>�,

y = b(q)�A(q)z,

�iyi = ⌧, i = 1, . . . ,m,

� > 0, y > 0,

� are Lagrange multipliers and y are inequality constraint slacks.

Smoothing the signed distance function (1)

By writing the equality conditions compactly the perturbed
KKT conditions are denoted by

F⌧ (�; q) = 0,

� > 0, y > 0,

with primal, dual and slack variables � = (z,�, y).

Proposition

The solution �⌧ = (z⌧ ,�⌧ , y⌧) of the perturbed optimality
conditions exists and is unique.1

This implies that the distance function defined by

�⌧ (q) = {↵ | F⌧ (�⌧ ; q) = 0,�⌧ > 0, y⌧ > 0},

is well-defined for ⌧ > 0.
1

C. Dietz, S. Albrecht, A. Nurkanović, M. Diehl. Smoothed Distance Functions for Direct Optimal Control of Contact-Rich Systems. European Control Conference
(ECC) 2025.

Smoothing the signed distance function (2)

�4 �2 0 2 4

�2

�1

0

1

cx

c y

Level lines �⌧ (q) = 1, q point mass

⌧ = 0
⌧ = 0.1

Contact normal approximation for the smooth SDF
Recap on definitions

The SDF is given by

�0(q) = min
z

c
>
z

s.t. A(q)z  b(q),
(1)

with inequality constraint slacks

y(z, q) = b(q)�A(q)z.

We additionally define

I Z̄(q) denotes the set of all primal optimal
solutions to (1)

I ⇤̄(q) denotes the set of all corresponding
dual optimal solutions

I Modelling of contact-rich systems requires
definition of a contact normal vector

I Normally the contact normal is chosen as
the gradient of the SDF (results in
third-order sensitivities in Newton-type
optimization!)

Directional derivatives at an exact solution:2

@d�0(q) = min
z2Z̄(q)

max
�2⇤̄(q)

�d
>rqy(z, q)�,

Proposed contact normal approximation:

n⌧ (q) =
�rqy(z⌧ , q)�⌧

krqy(z⌧ , q)�⌧k2
.

2
W. Hogan. Directional derivatives for extremal-value functions with applications to the completely convex case. Operations Research 1973.

Contact normal approximation for the smooth SDF

1 1.5 2 2.5 3

�0.5

0

0.5

1

1.5

cx

c y

Exact and approximated contact normals

Exact
Approximated

SDF implementation

I Numerical experiments use the
CasADi toolbox through its
Python interface and IPOPT as
solver

I The SDF is specified through
CasADi’s Callback class

I HPIPM is used to solve the
distance problems up to barrier
parameter ⌧ > 0

I A C++ wrapper is used to
e�ciently manage HPIPM
structures and parallel
computing

I C++ code is interfaced back to
Python by using the nanobind
library

CasADi NLP IPOPT

CasADi Callback

SDF with sensitivities CasADi

HPIPM

Python

Python

C++

C++

C++

C

nanobind

How to formulate and solve OCP for assembly robot at Siemens?

1.Divide colliding bodies each into rigidly connected convex polyhedra
2.Define Signed Distance Function (SDF) between polyhedra
3.Compute Contact Normal of SDF (unique if slightly smoothed)
4.Formulate Complementarity Lagrangian System Model (NSD3)
5.Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
6.Solve resulting Mathematical Program with Complementarity Constraints

(MPCC) via Scholtes’ Relaxation Method
7.Play open-loop control trajectory on real robot

Robust contact-implicit trajectory optimization

Continuous-time contact-rich dynamical system:

q̇ = ⌫,

M ⌫̇ = u+
ndX

i=1

n⌧,i(q)�n,i,

0  �⌧,i(q) ? �n,i � 0, i = 1, . . . , nd,

Multi impact law.

I ⌫ 2 Rnq system velocity

I M 2 Rnq⇥nq inertia matrix

I u 2 Rnu control input

I nd 2 N object pairs with smooth SDF �⌧,i and corresponding contact normals n⌧,i

Implicit-Euler time-stepping discretization

Time-stepping discretization:

qk+1 = qk + h⌫k+1,

⌫k+1 = ⌫k + hM
�1(uk +

ndX

i=1

n⌧,i(qk+1)�n,k,i),

�⌧,i(qk+1)�n,k,i  �, i = 1, . . . , nd,

0  �⌧,i(qk+1), 0  �n,k,i, i = 1, . . . , nd,

with time-step h > 0 and using Scholtes’ relaxation to relax complementarity constraints with
� > 0.
Compact notation for the discretized system:

H�,⌧ (xk, xk+1,�n,k, uk) = 0,

G�,⌧ (xk, xk+1,�n,k, uk)  0.

How to formulate and solve OCP for assembly robot at Siemens?

1.Divide colliding bodies each into rigidly connected convex polyhedra
2.Define Signed Distance Function (SDF) between polyhedra
3.Compute Contact Normal of SDF (unique if slightly smoothed)
4.Formulate Complementarity Lagrangian System Model (NSD3)
5.Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
6.Solve resulting Mathematical Program with Complementarity Constraints

(MPCC) via Scholtes’ Relaxation Method
7.Play open-loop control trajectory on real robot

Numerical methods for MPCCs

MPEC

min
w2Rn

f(w) (3a)

s.t. g(w) = 0, (3b)

h(w) � 0, (3c)

0  w1 ? w2 � 0, (3d)

w = (w0, w1, w2) 2 Rn
, w0 2 Rp

, w1, w2 2 Rm
,

⌦ = {x2Rn | g(w)=0, h(w)�0, 0w1 ? w2�0}, -1 0 1 2

w1

-1

-0.5

0

0.5

1

1.5

2

w
2

f(w)
+

w$

I Standard NLP methods solve the KKT conditions.

I MPECs violate constraint qualifications, and the KKT conditions may not be necessary.

I There are many stationary concepts for MPECs, and not all are useful.

I Workaround/main idea: solve a (finite) sequence of more regular problems.

Numerical methods for MPCCs

MPEC

min
w2Rn

f(w) (3a)

s.t. g(w) = 0, (3b)

h(w) � 0, (3c)

0  w1 ? w2 � 0, (3d)

w = (w0, w1, w2) 2 Rn
, w0 2 Rp

, w1, w2 2 Rm
,

⌦ = {x2Rn | g(w)=0, h(w)�0, 0w1 ? w2�0}, -1 0 1 2

w1

-1

-0.5

0

0.5

1

1.5

2

w
2

f(w)
+

w$

I Standard NLP methods solve the KKT conditions.

I MPECs violate constraint qualifications, and the KKT conditions may not be necessary.

I There are many stationary concepts for MPECs, and not all are useful.

I Workaround/main idea: solve a (finite) sequence of more regular problems.

Scholtes’ global relaxation method
The easiest to implement and the most e�cient regularization method [Scholtes, 2001].

Reg(�k)

min
w2Rn

f(w)

s.t. g(w) = 0,

h(w) � 0,

w1, w2 � 0,

w1,iw2,i  �
k
, i = 1, . . . ,m.

w1

w
2

Scholtes’ global relaxation method
The easiest to implement and the most e�cient regularization method [Scholtes, 2001].

Reg(�k)

min
w2Rn

f(w)

s.t. g(w) = 0,

h(w) � 0,

w1, w2 � 0,

w1,iw2,i  �
k
, i = 1, . . . ,m.

w1

w
2

Scholtes’ global relaxation method
The easiest to implement and the most e�cient regularization method [Scholtes, 2001].

Reg(�k)

min
w2Rn

f(w)

s.t. g(w) = 0,

h(w) � 0,

w1, w2 � 0,

w1,iw2,i  �
k
, i = 1, . . . ,m.

w1

w
2

Scholtes’ global relaxation method
The easiest to implement and the most e�cient regularization method [Scholtes, 2001].

Reg(�k)

min
w2Rn

f(w)

s.t. g(w) = 0,

h(w) � 0,

w1, w2 � 0,

w1,iw2,i  �
k
, i = 1, . . . ,m.

w1

w
2

Theorem ([Scholtes, 2001, Hoheisel et al., 2013])

Let {�k} # 0 and let wk be a stationary point of Reg(�k) with w
k ! w

⇤ such that
MPEC-MFCQ holds at w⇤. Then w

⇤ is a C-stationary point of the the MPEC (3).

Other regularization methods
There exist many elaborate ways to relax the L-shaped set. Convergence theory in [Hoheisel et al., 2013]

(a) Scholtes

w1

w
2

w1

w
2

(b) Lin-Fukushima (c) Ste,ensen-Ulbrich

w1

w
2

w1

w
2

(d) Kadrani et al.

w1

w
2

(e) Kanzow-Schwartz

I They have better convergence properties than Scholtes’ method if the NLP’s are solved
exactly.

I In practice, they perform better only on easier problems [Nurkanović et al., 2024].

:

a) [Scholtes, 2001]: C-stationarity under MPEC-MFCQ.

b) [Lin and Fukushima, 2005]: C-stationarity under MPEC-MFCQ..

c) [Ste↵ensen and Ulbrich, 2010]: C-stationarity under MPEC-CPLD.

d) [Kadrani et al., 2009]: M-stationarity under MPEC-CPLD.

e) [Kanzow and Schwartz, 2013]: M-stationarity under MPEC-CPLD.

How to formulate and solve OCP for assembly robot at Siemens?

1.Divide colliding bodies each into rigidly connected convex polyhedra
2.Define Signed Distance Function (SDF) between polyhedra
3.Compute Contact Normal of SDF (unique if slightly smoothed)
4.Formulate Complementarity Lagrangian System Model (NSD3)
5.Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
6.Solve resulting Mathematical Program with Complementarity Constraints

(MPCC) via Scholtes Relaxation Method
7.Play open-loop control trajectory on real robot

Solution of Optimal Control Problem (L2-Control Penalty)
(simulation)

Solution of Optimal Control Problem (L2-Control Penalty)
(experiment)

Solution of Optimal Control Problem (L2-Control Penalty)
(experiment)

 EXPERIMENT FAILED !

How to formulate and solve OCP for assembly robot at Siemens?

1.Divide colliding bodies each into rigidly connected convex polyhedra
2.Define Signed Distance Function (SDF) between polyhedra
3.Compute Contact Normal of SDF (unique if slightly smoothed)
4.Formulate Complementarity Lagrangian System Model (NSD3)
5.Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
6.Solve resulting Mathematical Program with Complementarity Constraints

(MPCC) via Scholtes Relaxation Method
7.Play open-loop control trajectory on real robot
8. Robustify by optimizing an ensemble of perturbed trajectories
9. Include Real Robot’s Internal Impedance Control Law into Model
10. Play robust open-loop control trajectory on real robot

Simulation of robust trajectory for peg in hole

Impedance law for reliable motion execution on real systems

I To achieve closed-loop execution on a
real system, we utilize an impedance law
as control strategy

I The goal of the planning algorithm is to
determine a desired trajectory which
results in robust assembly motions if it is
tracked by the impedance controller

I For a given desired trajectory
xd = (qd, ⌫d), a trajectory

x
(j)
e = (q(j)e , ⌫

(j)
e) in the ensemble is

controlled by the impedance force

uj = D(⌫d � ⌫
(j)
e) +K((qd � q

(j)
o) q

(j)
e),

with gain matrices D,K and a fixed
o↵set q(j)o .

⇢x

⇢
y

t = 0

⇢x

t = 0.5

⇢x

t = 1
O↵set q(j)o = 0

⇢x
⇢
y

t = 0

⇢x

t = 0.5

⇢x

t = 1
O↵set q(j)o 6= 0

Blue rectangle represents q(j)e , red rectangle
qd.

Discretization and cost function for robust motion generation

Contact-rich system with quaternion
dynamics:

q̇d = Q(qd)⌫d,

For j = 1, . . . , ns :

q̇
(j)
e = Q(q(j)e)⌫(j)e ,

M ⌫̇
(j)
e = uj +

ndX

i=1

Q(q(j)e)>n⌧,i(q
(j)
e)�(j)

n,i ,

�
(j)
n,i�⌧,i(q

(j)
e)  �, i = 1, . . . , nd

0  �
(j)
n,i , 0  �⌧,i(q

(j)
e), i = 1, . . . , nd,

uj = D(⌫d � ⌫
(j)
e) +K((qd � q

(j)
o) q

(j)
e),

I Discretization through Ncnt intervals with
Nsim simulation intervals per control
interval

I Total simulation steps Ntot = NcntNsim

I On each simulation interval an implicit
Euler time-stepping discretization is
utilized

I On each control interval a constant
⌫d,k, k = 1, . . . , Ncnt is used

I Cost function for terminal state
x̄ = (q̄, ⌫̄):

cost =

NcntX

k=1

0.001k⌫d,k,trsk
2
2 + 0.01k⌫d,k,angk

2
2

+ 1k⇢̄ � ⇢d,Ntot
k2
2 + 10(1 � (⇠̄

>
⇠d,Ntot

)
2
)

+

neX

j=1

100k⇢̄ � ⇢
(j)
e,Ntot

k2
2 + 1000(1 � (⇠̄

>
⇠
(j)
e,Ntot

)
2
)

Computational performance comparison of reduced and lifted SDF
implementations

I The SDF �⌧,i can be either
evaluated as proposed by using
HPIPM or by adding the perturbed
KKT conditions directly in the
optimal control problem (reduced or
lifted implementation)

I We compare computational
performance on a two-dimensional
peg-in-hole problem for di↵erent
trajectory lengths N and number of
simultaneously simulated trajectories
ne

I Using the reduced modelling with
external SDF evaluation results in
less IPOPT iterations and less total
wall time for all considered problem
sizes

N = 30
ne = 5

N = 40
ne = 6

N = 50
ne = 7

N = 60
ne = 8

N = 70
ne = 9

N = 80
ne = 10

0

200

400

600

I
P
O
P
T
it
er
at
io
n
s

Reduced Lifted

N = 30
ne = 5

N = 40
ne = 6

N = 50
ne = 7

N = 60
ne = 8

N = 70
ne = 9

N = 80
ne = 10

10
1

10
2

10
3

to
ta
l
w
al
l
ti
m
e
(s
)

Reduced Lifted

Robust Optimal Control Solution
(simulation)

Robust Optimal Control Solution (5 scenarios)
(experiment)

Conclusions

• Newton-type optimization can address seemingly
combinatorial optimization problems in nonsmooth optimal
control

• Mathematical Programs with Complementarity Constraints
(MPCC) are a powerful tool for “disciplined nonsmooth
programming”

• Derivatives remain a crucial optimization ingredient also
when the nonconvexity of problems increases

Conclusions (2)

The great watershed in optimization isn’t between
convexity and nonconvexity, but between computer
functions that do - or do not - provide derivatives.

