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Continuous-Time Optimal Control Problems (OCP)

Continuous-Time OCP with Ordinary Differential Equation (ODE) Constraints

Can in most applications assume convexity of all "outer” problem functions: L., E, h,r.
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Continuous-Time OCP (a) Linear ODE: f(z,u) = Az + Bu

: _ 1
in OTLC(a:(t),u(t))dt—l— E(z(T)) (b) Nonlinear smooth ODE: f € C
(+)u(") (c) Nonsmooth Dynamics (NSD):
s.t. x(0) =z, > f not differentiable (NSD1),
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f not finite valued, discontinuous state
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Three Levels of Difficulty in Continuous-Time OCP

Three levels of difficulty:

(a) Linear ODE: f(,u) = Az + Bu
x(r.gl,iun(.) OTLC(a:(t),u(t))dt—I—E(x(T)) (b) Nonlinear smooth ODE: f € ¢
s.t. x(0) =
z(t) = f(a(t), u(t))
0> h(z(t),u(t)), t €[0,T]
0>r(x(T)) First focus ‘o'n gmoot.h cases (a) and (b).



Recall: Runge-Kutta Discretization for Smooth Systems

Ordinary Differential Equation (ODE
4 i ( ) Discretization: N Runge-Kutta steps of each n, stages

2/~

w0,0 = 3_30, At =

Vg5 = f(xk,jauk)
Tp =Tpo+ ALY 01 Ginlkn

Initial Value Problem (IVP) Thpi1,0=Trpo+ Aty 2 b,k .,
' k=0,...,N—1

] — 17 ° 7n87

z(0) = Zg

v(t) = f(x(t),u(t)) For fixed controls and initial value: square system with

i(t) = v(t) n, + N(2n, + 1)n, unknowns, implicitly defined via

t € [0,7] ny + N(2ng + 1)n, equations.
’ (trivial eliminations in case of explicit RK methods)

o £y Vi1 V12 -o- Ving g T3
® . . - | - o ® ¢ ° ° ° ¢ -
to  to1 too to,n, t lo t3
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Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP 1. Parameterize controls, e.g.
U(t) — uTL’t = [tnatn—l—l]-

uin L o(t), u(t)) de + Ea(T)
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then optimize”
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z(t) = f(z(t), u(?))
0> h(z(t),u(t)), t € [0,T]
02> r(z(T))

» Direct methods " first discretize,
then optimize”

. Parameterize controls, e.g.
u(t) = Uy, t € [ty i)
. Discretize cost and dynamics

L, 2psty) / Lo (), u()) dt

n

Replace & = f(z,u) by
Tpnt1 — qbf(xnv Zn un)

0= qbint (xna Zn un)

. Also discretize path constraints

0> op(T,, 2n,Uy), n=0,...N —1.



Continuous time OCP

s.t. x(0) =z,
z(t) = f(x(t), u(t))
0> h(z(t),u(t)), t €[0,T]
0= r(x(T))

» Direct methods "first discretize,
then optimize”

Discrete time OCP (an NLP)

. N-1
min > ;o La(zg, 2, ux) + E(zy)
S.t. Lo = CEO
xn—l—l — ¢f(xn7 Z?’uun)
0= ¢int(xna 2% un)

0> ¢h(xnazn7un)7 n=0,...,N-1
0> r(zy)

Variables x = (x¢,...,xn), 2= (20,---,2N)
and u = (Uo, e 7UN—1)-

Here, z are the intermediate variables of the
integrator (e.g. Runge-Kutta)



Simplest Direct Transcription: Single Step Explicit Euler

(not recommended in practice, other Runge-Kutta methods are much more efficient)

x(%l,iun(.) p el @ el @) d a8l I I)Icllgl Z]kvz_ol Le(wy, up) At + E(xy)
s.t. - 2(0) =z s.t. xg =T
z(t) = f(z(t), u(?)) Tpi1 = Ty + f(T,,u,) Al
0> h(a(t), u(t)), ¢ € [0, 7] 0> hiz,u). n=0... N—1
02 r(=(T)) 0>r(zy)
» Direct methods: first discretize, Variables x = (xg,...,xy) and
then optimize u= (ug,...,uUn_1)-

(single step explicit Euler has no internal
integrator variables z)



Sparse NLP resulting from direct transcription

Discrete time OCP (an NLP) Nonlinear Program (NLP)
min 30" La(2y, 20, up,) + E(zy)
x,z,u k=0 " min F(w
st. xg== weR's
° ’ s.t. G(w) =
xn—l—l — ¢f(xn7 2% un)
H(w) >0
0= ¢int(xn7 2% un)
0> op(Ty, 2n,Uy), n=0,... N—1
Large and sparse NLP
02>r(zy)

Variables w = (x,z, u)



Sparse NLP resulting from direct transcription

Vo L(w, A, )

Nonlinear Program (NLP)
20
0 VuG(w)
D.‘.“ 40 +
‘h;‘.‘.. 60t min F(’LU)
‘5‘.‘ weRnw
bl Y9N 80
o 50 100 Lol s.t. G(w) =0
nz =196
120} | | H(w) >0
0 50 100
nz =611

Variables w = (x, z,u) Large and sparse NLP



lllustrative example of direct collocation with Newton-type optimization:

lllustrative nonlinear optimal control problem (with one state and one control)

3
- / 2(1)? + u(t)? dt
2Oy Jo

subject to
z(0) = zg (initial value, Z, = 0.6)
t=(14+2z)r+ u, (ODE model)
—1 <wu(t) <1, t €(0,3] (bounds)
z(3) =0 (terminal constraint)

» choose N =9 equal intervals and Radau-IlA collocation with n, = 2 stages
» obtain nonlinear program with n, + (2n, + 1)Nn, + Nn,, variables

» initialize with zeros everywhere, solve with CasADi and Ipopt (interior point)



lllustrative example: Initialization
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lllustrative example: Second lterate




lllustrative example: Third lterate




lllustrative example: Fourth lterate
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lllustrative example: Sixth lterate




lllustrative example: Seventh Iterate




lllustrative example: Eighth lterate
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More Complex Example: Power Optimal Trajectories in Airborne Wind Energy (AWE)

formulated and solved daily by practitioners using open-source python package “AWEBox” [De Schutter et al. 2023]

For simple plane attached to a tether:

- 20 differential states (3+3 trans, 9+3 rotation, 1+1 tether)
- 1 algebraic state (tether force)

- 8 invariants (6 rotation, 2 due to tether constraint)

- 3 control inputs (aileron, elevator, tether length)

m 0 0 =x i F.+m (SQTA+52£L‘+2(§Q+5y
Translational: 0 m 0y Yil=| Fy+m yo? —2i0 — 6(rA + )
0O 0 m =z z
x z 0 A Fx—gm
Yy I _:t.Q _ 92 _ 22 |
' 0
Rotational: R = Rwy, — RT 0 , Jw=T—wx Juw, R = [ Ex Ey EZ ]
)
&~ by Ty Bl
Aero. coefficients: U= | 04+6(rx +2x —w(x,y,z,0,t), o= ——, b ==
Y (Z.A ) (#9:2,0:1) ETo ET3

1 = -~ 1
Aero. forces/torques: Fa = 5pA||17||(CL17 x E, — Cp?), T = §pA||17||2

Cr
Cp



Newton-Type Optimization Iterations for Power Optimal Flight
(video by Greg Horn, using CasADi and Ipopt as optimization engine)

P 2 _“'grl
w0: 10.0
iter: 1
endTime: 25.3343874701
average power: 540.342156108 W




Nonlinear Optimal Control often used for Model Predictive Control (MPC

One widely used nonlinear MPC package is acados [Verscheuren et al. 2021]

Example 1: Autonomous Driving (in Freiburg) Example 2: Quadrotor Racing (U Zurich, Scaramuzza)

Paper: https://ieeexplore.ieee.org/abstract/document/9805699

Video: https://www.youtube.com/watch?v=zBVpx3bgl6E

7730 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

Time-Optimal Online Replanning for Agile
Quadrotor Flight

Angel Romero “, Robert Penicka . and Davide Scaramuzza

when i i di

turbances. This problem is challenging as the time-optimal trajec-
tories that consider the full quadrotor dynamics are computation-
ally expensive to generate, on the order of minutes or even hours.
‘We introduce a sampling-based method for efficient generation of
time-optimal paths of a point-mass model. These paths are then
tracked using a Model Predictive Contouring Control approach
ders the full quadrotor dynamics and the single rotor
thrust limits. Our combined approach is able to run in real-time,
being the first time-optimal method that is able to adapt to changes
on-the-fly. We showcase our approach’s adaption capabilities by
flying a quadrotor at more than 60 kmvh in a racing track where
gates are moving. Additionally, we show that our online replanning
approach can cope with strong disturbances caused by winds of up

A. Implementation Details

In order to deploy our MPCC controller, (4) needs to be solved
in real-time. To this end, we have implemented our optimization
problem using acados [24] as a code generation tool, in contrast
to [6], where its previous version, ACADO [25] was used. It is

to 68 km/h. impquanl to nolc'lhaQ for §0nsi§lcncy, the pplimizalion problem
I " tcarated pl: that is solved online is written in (4) and is exactly the same as

index Te Aerial systems: Applications, integrated plannin; . . . > ; .
and cantrol, motion and path planning. PINME  Fig. 1. The proposed algoritim is able o adapt on-the Ay when encountering in [6]. The main benefit of using acados is that it provides an
! “““"X"”"ﬁ‘““"’;:‘“z(“'u:; figure we show a quadrolor platform fying ot interface to HPIPM (High Performance Interior Point Method)

speeds of more than anks o our online replanning method, the P .

SUPPLEMENTARY MATERIAL drone can adapt to wind disturbances of up to 68 kmv/h while flying as fast as solver [26]. HPIPM solves optimization problems using BLAS-
possible. FEO [27], a linear algebra library specifically designed for

Video of the experiments: https://youtu.be/zBVpx3bgI6E

Latest acados development:
differentiable nonlinear MPC via adjoint approach [Frey et al. 2025, subm.]
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Three levels of difficulty:

Continuous-Time OCP (a) Linear ODE: f(z,u) = Az + Bu

. _ 1
min OTLC(a:(t),u(t))dt—l— E(2(T)) (b) Nonlinear smooth ODE: f € C
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Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

T T T T T T T T T

NSD1
non-differentiable RHS

1
-
= // S
4
o ¢ q
NSD2 NSD3

discontinuous RHS state dependent jump
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state dependent jump
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Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

- AC- -~ “AC- - AC-----

18-S N NN

16 Pla) > 1
14 ‘ ‘ ‘ V | | | | j
0 0.5 1 1.5 Y(z) <0 »

State Machine in Hysteresis Control (NSD3)

NSD3
state dependent jump

Bouncing Ball (NSD3)

Walking Robot (unitree at LAAS, NSD3)
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Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:

-+ Can transform many NSD3 systems into (easier) NSD2 via time-freezing
Can discretize NSD2 systems with highly accurate Finite Elements with
Switch Detection (FESD), removing spurious local minimisers
Can solve the resulting Mathematical Programs with Complementarity
Constraints (MPCC) via homotopy of NLP (e.g. based on IPOPT)

Can use open-source software NOSNOC, from MATLAB and Python

A github.com/nosnoc/nosnoc

PhD and Postdoc Work by Armin Nurkanovic
(currently serving as replacement professor of
mathematical optimization at Technical University
of Braunschweig)




NOSNOC examples




Hopping robot - move with minimal effort from start to end position

Homotopy initialized with start position everywhere. Optimizer finds creative solution.

-0.5 0 05 1 1.5 2 2.5 3 3.5



Christian Dietz
(MSc Mathematics)
industrial PhD
student at
University of
Freiburg,
supervised by
Armin Nurkanovic
and MD




Dream: just specify start and end position...but linear interpolation does not work
(simulation)




Dream: just specify start and end position...but linear interpolation does not work
(experiment)




How to formulate and solve OCP for assembly robot at Siemens?

1.
2.
3.
4.
S.
6.

~

Divide colliding bodies each into rigidly connected convex polyhedra
Define Signed Distance Function (SDF) between polyhedra

Compute Contact Normal of SDF (unique if slightly smoothed)
Formulate Complementarity Lagrangian System Model (NSD3)
Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
Solve resulting Mathematical Program with Complementarity Constraints
(MPCC) via Scholtes’ Relaxation Method

Play open-loop control trajectory on real robot
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Optimization-based signed distance function (SDF) for polytopes

Halfspace representation of polytopes for
ne € {2,3}:

Pi={peR™|Gip<hi}, Po={peR"™|Gyp < hy}.

Associating degrees of freedom:
» p, center of mass of i-th polytope
» ¢, orientation of i-th polytope
» System configuration: ¢ = (pq, &2, pa, o)
> R(&;) - rotation matrices

Calculating the SDF as growth distance:

®y(qg) = min «
p,a X

st. GiR(&) (p—p1) < L+ a)hy,
GoR(&) ' (p— p2) < (14 a)hy.



Smoothing the signed distance function

The optimization-based SDF is given by a parametric linear program

Dy(g) = min ¢'z
z

s.t. Alg)z < blq),

with primal variables z = (p, ).
Perturbed KKT conditions as considered in interior-point methods with barrier parameter
T > (0 are given by

0=c+ A(q) '\
y = b(q) — A(q)z,

)\iyi:T, 221,...,m,

A>0,y >0,

A are Lagrange multipliers and y are inequality constraint slacks.



Smoothing the signed distance function (1)

By writing the equality conditions compactly the perturbed
KKT conditions are denoted by

F.(v:q) =0,
A>0,y >0,

with primal, dual and slack variables v = (z, A, y).

The solution v, = (2., \,,y,) of the perturbed optimality
conditions exists and is unique.

This implies that the distance function defined by

®.(q) ={a| F.(v+19) =0, > 0,y, > 0},

is well-defined for 7 > 0.

1 C. Dietz, S. Albrecht, A. Nurkanovié, M. Diehl. Smoothed Distance Functions for Direct Optimal Control of Contact-Rich Systems. European Control Conference
(ECC) 2025.



Contact normal approximation for the smooth SDF

Recap on definitions

The SDF is given b
' Blven by » Modelling of contact-rich systems requires

®o(g) = min el s definition of a contact normal vector

: (1)

s.t. A(g)z < b(q), » Normally the contact normal is chosen as
the gradient of the SDF (results in
with inequality constraint slacks third-order sensitivities in Newton-type
: y optimization!)
y(z,4) = bla) — Alg)z. Directional derivatives at an exact solution:*
We additionally defi :
© o TRy B . . 04Po(g) = min max —d' V,y(z,q)A,
» Z(q) denotes the set of all primal optimal 2€Z(q) AeA(q)

solutions to (1
(1) Proposed contact normal approximation:

» A(q) denotes the set of all corresponding SV y(z )\
dual optimal solutions n,(q) = aJ o DAr
||vqy(z7'7 Q))\THQ

W. Hogan. Directional derivatives for extremal-value functions with applications to the comple



Contact normal approximation for the smooth SDF

Exact and approximated contact normals

1.5
—— Exact
1= —— Approximated
1=
$ 0.5 “/V
0 >
—0.5 j ‘ ‘



SDF implementation

» Numerical experiments use the
CasADi toolbox through its
Python interface and IPOPT as

solver ‘
» The SDF is specified through T *

Python C++
CasADi NLP D IPOPT

CasADi's Callback class Python ‘.
_ CasADi Callback ‘e
» HPIPM is used to solve the "
: : .
distance problems up to barrier T e bing ... .
parameter 7 > 0 S *
> AC ] d C++ CH+
++ . e .
> WrApPer 1s Lse to SDF with sensitivities |€=— CasADi
efficiently manage HPIPM
structures and parallel
computing T

» C++ code is interfaced back to
Python by using the nanobind
library

HPIPM




How to formulate and solve OCP for assembly robot at Siemens?

1.Divide colliding bodies each into rigidly connected convex polyhedra

2.Define Signed Distance Function (SDF) between polyhedra

3.Compute Contact Normal of SDF (unique if slightly smoothed)

4.Formulate Complementarity Lagrangian System Model (NSD3)

5.Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)

6.Solve resulting Mathematical Program with Complementarity Constraints
(MPCC) via Scholtes’ Relaxation Method

7.Play open-loop control trajectory on real robot



Robust contact-implicit trajectory optimization

Continuous-time contact-rich dynamical system:
q=v,

ng
Mv =u + Z nT,i(Q)An,ia

=1
OS(I)T,Z(Q) 1 )\n,iZO, ’i:1,...,nd,

Multi impact law.

» v € R" system velocity
» M € R"™”™ ™ jnertia matrix
» u € R™ control input

> ng € N object pairs with smooth SDF @ ; and corresponding contact normals n., ;



Implicit-Euler time-stepping discretization

Time-stepping discretization:
Qet1 = QT MVkq1,

ng
V41 = Vi T hM_l(Uk: + Z N i (Qk+1) An ki)
i=1

(I)T,i(Qk—i—l))‘n,k:,i < g, 1= ]-7 <oy N,
0< (I)T,i(Qk+1)7 0 < )‘n,k,i7 L= 17 RN

with time-step h > 0 and using Scholtes’ relaxation to relax complementarity constraints with
o> 0.
Compact notation for the discretized system:

HO‘,T('CU]C7 Lh+15 )‘n,ka uk) =0,
GO’,T(xki?xki-l—l?)\n,k?uk) < 0



How to formulate and solve OCP for assembly robot at Siemens?

1.Divide colliding bodies each into rigidly connected convex polyhedra

2.Define Signed Distance Function (SDF) between polyhedra

3.Compute Contact Normal of SDF (unique if slightly smoothed)

4.Formulate Complementarity Lagrangian System Model (NSD3)

5.Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)

6.Solve resulting Mathematical Program with Complementarity Constraints
(MPCC) via Scholtes’ Relaxation Method

7.Play open-loop control trajectory on real robot



Numerical methods for MPCCs

9.
MPEC
min  f(w) (3a) Loy
weR"
s.t. g(w) =0, (3b) 1
h(w) = 0, (3¢c) g 0.5
OSwleQZO, (3d)

w = (wp,wy, wy) € R", wy € RY, wy,wy € R™, 05&///
-1 , /
Q= {zeR" | g(w)=0,h(w)>0, 0<w; L wy>0}, 1 0 1 ,
» Standard NLP methods solve the KKT conditions.

» MPECGs violate constraint qualifications, and the KKT conditions may not be necessary.

» There are many stationary concepts for MPECs, and not all are useful.



Numerical methods for MPCCs

\\..

w = (wp, wi, wz) € R", wy € R, wy, wy, € R™, 0°5\ ///
-1 , / .

w1y
» Standard NLP methods solve the KKT conditions.

» MPECs violate constraint qualifications, and the KKT conditions may not be necessary.
» There are many stationary concepts for MPECs, and not all are useful.

» Workaround/main idea: solve a (finite) sequence of more regular problems.



Scholtes’ global relaxation method

The easiest to implement and the most efficient regularization method [Scholtes, 2001].

Reg(c™")
min  f(w)
weR"™
s.t. g(w) =0, 5
h(w) = 0,
W1, Wa Z 07
wl’in,i S O'k7 1= 1, o o o g s

w1



Scholtes’ global relaxation method

The easiest to implement and the most efficient regularization method [Scholtes, 2001].

Reg(c™)
min  f(w)
weR
s.t. g(w) =0, 5
h(w) > 0,

Wi, Wy 2 07

k z
’lUl,L"lU2i§O' . Zzl,...,m.

Y Y

w1



Scholtes’ global relaxation method

The easiest to implement and the most efficient regularization method [Scholtes, 2001].

Reg(c")
min  f(w)
weR
s.t. g(w) =0, 5

h(w) > 0,

w17w2207 L
k .
wlin,iSO','l_l,...,m.
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Scholtes’ global relaxation method

The easiest to implement and the most efficient regularization method [Scholtes, 2001].

min  f(w)

weR"™
s.t. g(w) =0, 5
h(w) > 0,
wy, wy 2 0, L
w“ingak,z:l, , M

Theorem ( [Scholtes, 2001, Hoheisel et al., 2013

Let {c"} | 0 and let w" be a stationary point of Reg(c"™) with w" — w* such that
MPEC-MFCQ holds at w*. Then w" is a C-stationary point of the the MPEC (3).



Other regularization methods

There exist many elaborate ways to relax the L-shaped set. Convergence theory in [Hoheisel et al., 2013]

(a) Scholtes (b) Lin-Fukushima (c) Steffensen-Ulbrich (d) Kadrani et al. (e) Kanzow-Schwartz
3 3 3 3 3
w1 wi w1 w1 w1

» They have better convergence properties than Scholtes’ method if the NLP's are solved
exactly.

» In practice, they perform better only on easier problems [Nurkanovi¢ et al., 2024].



How to formulate and solve OCP for assembly robot at Siemens?

1.Divide colliding bodies each into rigidly connected convex polyhedra

2.Define Signed Distance Function (SDF) between polyhedra

3.Compute Contact Normal of SDF (unique if slightly smoothed)

4.Formulate Complementarity Lagrangian System Model (NSD3)

5.Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)

6.Solve resulting Mathematical Program with Complementarity Constraints
(MPCC) via Scholtes Relaxation Method

7.Play open-loop control trajectory on real robot



Solution of Optimal Control Problem (L2-Control Penalty)

(simulation)




Solution of Optimal Control Problem (L2-Control Penalty)

(experiment)




Solution of Optimal Control Problem (L2-Control Penalty)

(experiment)




How to formulate and solve OCP for assembly robot at Siemens?

1.Divide colliding bodies each into rigidly connected convex polyhedra

2.Define Signed Distance Function (SDF) between polyhedra

3.Compute Contact Normal of SDF (unique if slightly smoothed)

4.Formulate Complementarity Lagrangian System Model (NSD3)

5.Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)

6.Solve resulting Mathematical Program with Complementarity Constraints
(MPCC) via Scholtes Relaxation Method

8. Robustify by optimizing an ensemble of perturbed trajectories
9. Include Real Robot’s Internal Impedance Control Law into Model
10. Play robust open-loop control trajectory on real robot



Simulation of robust trajectory for peg in hole




Impedance law for reliable motion execution on real systems

Offset ¢¥) = 0
» To achieve closed-loop execution on a t=20 t=20.5 t=1
real system, we utilize an impedance law
as control strategy

» The goal of the planning algorithm is to
determine a desired trajectory which
results in robust assembly motions if it is
tracked by the impedance controller

» For a given desired trajectory
xrq = (qq,Vq), a trajectory
29 = (¢, 9 in the ensemble is

controlled by the impedance force

w; = D(vg — v + K((qq ® ¢5) © ¢,

Px Px Px

with gain matrices D, K and a fixed Blue rectangle represents qéj ) red rectangle

offset ¢\, qq.



Discretization and cost function for robust motion generation

» Discretization through N_,. intervals with

Contact-rich system with quaternion N, simulation intervals per control
dynamics: interval
» Total simulation steps Nt = Nept Nsim
Ga = Q(qa)Va; » On each simulation interval an implicit
For j=1,...,ng: Euler time-stepping discretization is
(j ' ' utilized
(.7) = Q(q (J))V(J) |
» On each control interval a constant
MV(J) = u, +ZQ (J) Tz(qéj)))\(J), Var, k=1,..., Ny Is used
n,u ’
» Cost function for terminal state
NI, i(a) <oy i=1,0 ng T i)
— 2 2
O < )\fjg) O < @Tz(qéj)), Z — 17 . 7nd7 cost = kz::l 0'001||Vd,k,trs”2 +0'01||Vd,k,ang”2
w; = D(vg — v + K((qq ® ) & ¢¥), + 107 = pa.n,, tn% +10(1 = (€ €a,n,,,)")

- Z 100[15 — pS% 115 +1000(1 — (€T €YY, %)



Computational performance comparison of reduced and lifted SDF

Implementations

_ ,, 600 y'y
» The SDF @, ; can be either 5 _’_____‘——”
evaluated as proposed by using o 400 0~~--‘_———"/
HPIPM or by adding the perturbed ¢ 540 | ././‘ o _./.
KKT conditions directly in the = —@— Reduced - §- - Lifted
optimal control problem (reduced or ON | N | N | R \ R ‘ o N ‘
. . . — 30N = 40N = 50N = 60N = 70 N = 80
lifted implementation) n. = 5n, —6n, =7n, =8n, =—9n, — 10
» We compare computatic?nal | = 10° 4 ___”____4‘—
performance on a two-dimensional 2 . S ¥
peg-in-hole problem for different Z 102 2=
trajectory lengths N and number of 3 ]
simultaneously simulated trajectories  § 1 —@— Reduced - §-- Lifted
\ \ ! ! !
e N =30N =40N = 50N = 60N = 70 N = 80
ng=5n, =6n,=7n, =8n, =9n, = 10

» Using the reduced modelling with
external SDF evaluation results in
less IPOPT iterations and less total
wall time for all considered problem
sizes



Robust Optimal Control Solution

(simulation)




Robust Optimal Control Solution (5 scenarios)
(experiment)




Conclusions

Newton-type optimization can address seemingly
combinatorial optimization problems in nonsmooth optimal
control

Mathematical Programs with Complementarity Constraints
(MPCC) are a powerful tool for “disciplined nonsmooth
programming”

Derivatives remain a crucial optimization ingredient also
when the nonconvexity of problems increases



Conclusions (2)

The great watershed in optimization isn’'t between
convexity and nonconvexity, but between computer
functions that do - or do not - provide derivatives.



