
From core to clusters: tailoring optimization algorithms
to modern compute architectures

Z. Wang, J. Lindbäck, V. Mai, J. Zhang, X. Wu, and Mikael Johansson



A hardware–algorithm disconnect

Modern ML requires solving larger optimization problems, faster:

– training models with billions of parameters using trillions of data tokens

– solving multi-million variable LPs in every training iteration for generative models



A hardware–algorithm disconnect

Modern ML requires solving larger optimization problems, faster:

– training models with billions of parameters using trillions of data tokens

– solving multi-million variable LPs in every training iteration for generative models

Compute scales and diversifies, but algorithms are often designed with idealized assumptions

– sequential execution, uniform memory, perfect communication.



A hardware–algorithm disconnect

Modern ML requires solving larger optimization problems, faster:

– training models with billions of parameters using trillions of data tokens

– solving multi-million variable LPs in every training iteration for generative models

Compute scales and diversifies, but algorithms are often designed with idealized assumptions

– sequential execution, uniform memory, perfect communication.

Hardware-algorithm disconnect creates practical paradoxes

– GPU-friendly O(n3) algorithms may outperform O(n2) methods

– “optimal” distributed algorithms spend 80% of time waiting while cores idle



Hardware-aware optimization is more than implementation

Hardware-aware optimization is more than just implementation tricks:

– bottlenecks often block the asymptotics from kicking in

– algorithms aligned with the compute fabric are more efficient in practice



Hardware-aware optimization is more than implementation

Hardware-aware optimization is more than just implementation tricks:

– bottlenecks often block the asymptotics from kicking in

– algorithms aligned with the compute fabric are more efficient in practice

This requires restructuring the algorithm design itself:

– reorganizing computation patterns for parallel execution (SIMD/SIMT)

– redesigning memory access for coalescence and locality

– overlapping communication with computation

Large gains from rethinking algorithms to respect hardware constraints!



This talk: two hardware-aware optimization designs

GPU acceleration: optimal transport solver

– Douglas-Rachford method restructured for GPU warp execution patterns

– memory access reorganized for coalescence and bandwidth efficiency

– result: 10–100× speedup over standard implementations



This talk: two hardware-aware optimization designs

GPU acceleration: optimal transport solver

– Douglas-Rachford method restructured for GPU warp execution patterns

– memory access reorganized for coalescence and bandwidth efficiency

– result: 10–100× speedup over standard implementations

Distributed training: a system-level design

– overlap communication and computation, use bottleneck-aware topology designs

– a decentralized Adam optimizer redesigned for small local batch effects and asynchrony

– result: 30–60% faster wall-clock time + better generalization

Results from concrete algorithm restructuring – not just efficient implementation!



Contents

• Motivation
• A GPU-based optimal transport solver
• An efficient decentralized DNN training system
• Conclusions and outlook



Optimal transport in machine learning

Optimal transport (OT): cheapest way to transform one probability distribution into another

– defines a geometrically meaningful distance

– has tons of ML applications: domain adaptation, generative models, learning to rank, . . .

deep-net

OT cost measures distance between distribution of true and generated images.



Discrete optimal transport as a linear program

Given

– two discrete probability distributions p ∈ Rm and q ∈ Rn,
– a matrix C ∈ Rm×n where Ci j is the cost for moving mass from bin pi 7→ bin qj ,
find transportation plan X that solves

minimize ⟨C,X⟩
subject to X1 = p, XT1 = q

X ≥ 0

For appropriate C, optimal value is Wasserstein distance: W (p, q) = ⟨C,X⋆⟩



Discrete optimal transport as a linear program

Given

– two discrete probability distributions p ∈ Rm and q ∈ Rn,
– a matrix C ∈ Rm×n where Ci j is the cost for moving mass from bin pi 7→ bin qj ,
find transportation plan X that solves

minimize ⟨C,X⟩
subject to X1 = p, XT1 = q

X ≥ 0

For appropriate C, optimal value is Wasserstein distance: W (p, q) = ⟨C,X⋆⟩

A huge linear program: quickly many millions of variables.

– unless special structure in C, complexity is O((m + n)3).



Entropic regularization and the Sinkhorn algorithm

Replace non-negativity with entropic penalty term

Wε(p, q) = minX ⟨C,X⟩ − εH(X)
subject to X1 = p, XT1 = q

where H = −
∑
i

∑
j Xi j logXi j is the entropy of X.



Entropic regularization and the Sinkhorn algorithm

Replace non-negativity with entropic penalty term

Wε(p, q) = minX ⟨C,X⟩ − εH(X)
subject to X1 = p, XT1 = q

where H = −
∑
i

∑
j Xi j logXi j is the entropy of X.

A convex optimization problem with simple constraints.

An approximation to optimal transport. Can (often) be solved very quickly.



The Sinkhorn algorithm

The Sinkhorn algorithm, starts with v0 = 1, and alternates

uk+1 = p/Kvk , vk+1 = q/K
T uk+1

where division is elementwise and Ki j = exp(−Ci j/ε).



The Sinkhorn algorithm

The Sinkhorn algorithm, starts with v0 = 1, and alternates

uk+1 = p/Kvk , vk+1 = q/K
T uk+1

where division is elementwise and Ki j = exp(−Ci j/ε).

Optimal solution to entropy-regularized OT is X⋆ε = diag(u
⋆)Kdiag(v ⋆).



The Sinkhorn algorithm

The Sinkhorn algorithm, starts with v0 = 1, and alternates

uk+1 = p/Kvk , vk+1 = q/K
T uk+1

where division is elementwise and Ki j = exp(−Ci j/ε).

Optimal solution to entropy-regularized OT is X⋆ε = diag(u
⋆)Kdiag(v ⋆).

Widely used, but has many limitations:

– sensitive to ε: too small risks numerical instability; too large causes blurry Xε

– solution (if found) does not define a proper distance

– cannot encourage sparsity or structure. . .



Can we design a scalable algorithm for the real OT problem?

Perhaps, if we make clever use of modern hardware, such as GPUs.

GPUs offer massive parallelism, but are memory bound

– Registers: fastest (1 cycle), few KB

– Shared memory: fast (100 cycles), 48–96KB/block

– Global memory: large but slow (500+ cycles)

Key to success: algorithm should fit in fast memory, minimize memory traffic, avoid branching

Our approach: Douglas-Rachford splitting



Douglas-Rachford splitting

Solves problems on the form
minimize

x
f (x) + g(x)

where f and g are closed convex functions, with cheap prox-operators.

For penalty parameter ρ > 0, repeat

xk+1 = proxρf (y
k)

y k+1 = y k + proxρg(2x
k+1 − y k)− xk+1

Global convergence of {xk} to x such that 0 ∈ ∂f (x) + ∂g(x), for all values of ρ > 0.



How to split the optimal transport?

A result by Bauschke et al. (2021) gives a hint.

Lemma. Let p, q ≥ 0 satisfy 1T p = 1T q. Then,

X =
{
X ∈ Rm×n | X1 = p, XT1 = q

}
is non-empty, and for every given X ∈ Rm×n, we have

PX (X) = X −
1

n

(
(X1− p)1T − γ11T

)
−
1

m

(
1(XT1− q)T − γ11T

)
:= X + φ1⊤ + 1ϕ⊤

where γ = 1T (X1− p)/(m + n) = 1T (XT1− q)/(m + n).

Projection computed using only matrix-vector multiplies/rank-one updates.



DROT: DR splitting for OT

Re-writing the OT problem as

minimize
X

⟨C,X⟩+ ιRm×n+
(X)︸ ︷︷ ︸

f (X)

+ ιX (X)︸ ︷︷ ︸
g(X)

yields the DR iterations

Xk+1 = [Y k − ρC]+
Y k+1 = Xk+1 + φk+11

⊤ + 1ϕ⊤k+1

Eliminating Y , we only need to manipulate a single large matrix

Xk+1 = [Xk + φk1
⊤ + 1ϕ⊤k − ρC]+

No exponentials, no divisions, only rank-one updates.



DROT GPU kernel

Organize GPU threads into a 2D grid of blocks

– each thread block (SP) handles a submatrix of X

– each thread handles a single column (for memory efficiency)



DROT GPU kernel

Organize GPU threads into a 2D grid of blocks

– each thread block (SP) handles a submatrix of X

– each thread handles a single column (for memory efficiency)

Respect the memory hierarchy

– registers for private data, shared memory for common data across threads (e.g. φ, ϕ)

– perform partial reductions (e.g. row sums, cost evaluation) during matrix updates

– fuse operations into a single kernel pass to minimize memory transactions



DROT GPU kernel

Organize GPU threads into a 2D grid of blocks

– each thread block (SP) handles a submatrix of X

– each thread handles a single column (for memory efficiency)

Respect the memory hierarchy

– registers for private data, shared memory for common data across threads (e.g. φ, ϕ)

– perform partial reductions (e.g. row sums, cost evaluation) during matrix updates

– fuse operations into a single kernel pass to minimize memory transactions

Reduce global memory access

– each element of X is read or written once per iteration

– can skip loading C every other iteration (by writing X+ − ρC)



DROT GPU kernel

atomicAdd

Thread register (on-chip)

Shared memory (on-chip)

Global memory (off-chip)

warp-level reduction

atom
icAdd



Numerical results

0 2500 5000 7500 10000 12500 15000 17500 20000
Dimension m = n

0

20

40

60

80

100

Ti
m

e 
[m

s]

DROT
SK
SK-Log

10−3 10−2 10−1 100 101

Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 ra

tio

DROT
SK1
SK2
SK3
SK4
Sk5
SK6

Faster and more robust than Sinkhorn. Solves the true OT problem, returns sparse plans.



Adding regularization to DROT

Regularization: standard approach for encouraging structure in solution

minimize ⟨C,X⟩+ h(X)
subject to X1 = p, XT1 = q

X ≥ 0

Useful in practice, but non-trivial for Sinkhorn.



Adding regularization to DROT

Regularization: standard approach for encouraging structure in solution

minimize ⟨C,X⟩+ h(X)
subject to X1 = p, XT1 = q

X ≥ 0

Useful in practice, but non-trivial for Sinkhorn.

We can extend the DROT approach to a family of useful regularizers.

Definition. h is sparsity promoting if h(X̃) ≤ h(X) for every X̃ with X̃i j ∈ {0, Xi j}

Includes weighted ℓ1, group-lasso, quadratic, constrained OT, and more . . .



Sparsity-promoting regularizers

Proposition. Let f (X) = ⟨C,X⟩+ IRm×n+
(X) + h(X) with h sparsity promoting. Then

proxρf (X) = proxρh([X − ρC]+)

Consequence. splitting as

minimize
X

⟨C,X⟩+ h(X) + ιRm×n+
(X)︸ ︷︷ ︸

f (X)

+ ιX (X)︸ ︷︷ ︸
g(X)

results in a minimal update of the DROT approach. Efficient when prox is GPU-compatible.



Numerical results: domain adaptation using group-lasso regularized OT

Comparison with method of Courty et al. (sequential linearization, solved by SK)

Speedups of over 100x, with better accuracy!



Theoretical guarantees

Theorem. (informal) Let {Xk} be generated by DROT. Then

⟨C, X̄k⟩+ h(X̄k)− (⟨C,X⋆⟩+ h(X⋆)) ≤
c

k

where X̄k =
∑k
i=1Xk/k and c is a constant depending on X0, Y0, X

⋆ and Y ⋆.

Significant improvement over SK’s O(1/
√
k), but not how method actually behaves.



Convergence behaviour in practice

Initial 1/k rate followed by fast linear convergence when sparsity stabilizes.

Convergence Sparsity



Takeaways

DROT: GPU-native optimal transport solver

– accurate: solves true OT problem, not an approximation

– flexible: easily incorporates sparsity-promoting regularizers

– fast: up to 100x speedup vs Sinkhorn; avoids exponentials, divisions

Hardware-awareness is key: from a method that ”does not work” to one that excels!



Contents

• Motivation
• A GPU-based optimal transport solver
• An efficient decentralized DNN training system
• Conclusions and outlook



The challenge of large-scale model training

#neurons in human brain

Implies similar explision in training data (Chinchilla scaling: 20 tokens/parameter)



Parallelizing large-scale training

Centralized

Model-parallel

Data-parallel

Two main approaches

– Distribute data: data parallelism (our focus)

– Distribute compute: model, pipeline, and tensor parallelism



Decentralized optimization for large-scale training

Q: Can we make decentralized optimization competitive for large-scale DNN training?

Earlier attempts fail to beat synchronous training on wall-clock time/validation loss.

Our recipe: eliminate all idle times, resist stragglers, respect heterogeneity.



Contents

• Motivation
• Basics of DNN training
• Our proposal
• Conclusion



Basics of DNN training



Basics of DNN training



Basics of DNN training



DNN training using parallel gradient descent

θt+1 = θt − α
N∑
i=1

gi(θt)



Reducing idle time

Bucketing: communicate gradient blocks (layers) when they are done

Simple idea, but can yield substantial improvements!



Why AllReduce can be hard to beat. . .

Parallel GD hard to beat with fast communication, homogeneous hardware, workloads.

Can happen with few workers, or in the very high-end of dedicated HPC clusters

Still need to wait until all gradients are computed and communicated.



. . . and why decentralized optimization could be superior

Image
Language

Natural language tasks introduce work-load variations.

Many HPC clusters have heterogeneous hardware, limited interconnect

Global synchronization (waiting for slowest node) becomes increasingly wasteful!



Our proposal

A framework for data-parallel training of DNNs based on:

– a decentralized system with GPUs as workers

– a decentralized Adam algorithm, with a twist

– use of time-varying (switched) communication topology to deal with heterogeneity

– an execution model for efficient system tuning

Resilient to workload variations, system noise and hardware heterogeneity.



A few words about decentralized optimization



A decentralized Adam algorithm

A decentralized Adam algorithm based on decentralized gradient descent

θ
(t+1)
i = αd

(t)
i (θ

(t)
i ) +

∑
j∈Ni

wi jθ
(t)
j

Rationale:

– Sharing models instead of gradients allows to increase overlap dramatically

– Nodes only share models with neighbors (in a communication topology)

– Adam essential for training transformer-based architectures



A decentralized Adam algorithm

Resilient to stragglers, can approach 100% utilization



A decentralized Adam algorithm

Algorithm 1 Decentralized Adam on worker i

m
(0)
i , v

(0)
i ← 0; θ(0)i ← θ(0)

for t = 1, 2, . . . , T do

g
(t)
i ← ∇ℓ

(
θ
(t)
i ; ξ

(t)
i

)
m
(t)
i ← β1m

(t−1)
i + (1− β1)g(t)i

v
(t)
i ← β2v

(t−1)
i + (1− β2)

[
g
(t)
i

]2
θ
(t+1)
i ← −α m

(t)
i /(1−β

t
1)√

v
(t)
i /(1−β

t
2)+ϵ
+
∑
j∈Ni wi jθ

(t)
j

end for



A decentralized Adam algorithm

Theorem. If Algorithm 1 uses 0 < β1 < β2 < 1, then

E
[
∥∇ℓ(θ̄(τ))∥22

]
≤
4R

αT̃

(
ℓ(θ̄(0))− ℓ∗

)
+ E

[
1

T̃
ln

(
1 +

R

ϵ(1− β2)

)
−
T

T̃
ln(β2)

]
, (1)

where θ̄(t) = 1
N

∑N
i=1 θ

(t)
i , τ is a random stopping time, and E ∼ α2.

Note. Last term new compared to single-machine setting, but vanishes quickly with α.



The vanishing mini-batch problem

For good generalization performance, the batch size should not be too large.

– with fixed batch-size, local mini-batches vanish in size as worker count increases

– small batches gives high-variance of momentum parameter updates



The vanishing mini-batch problem

For good generalization performance, the batch size should not be too large.

– with fixed batch-size, local mini-batches vanish in size as worker count increases

– small batches gives high-variance of momentum parameter updates

Proposed fix: accumulate gradients, update momentum parameters every s iterations.

g
(t)
i ← ∇ℓ

(
θ
(t)
i ; ξ

(t)
i

)
m
(t)
i ← β1m

(t−1)
i + (1− β1)g(t)i

v
(t)
i ← β2v

(t−1)
i + (1− β2)

[
g
(t)
i

]2
⇒

m
(t)
i ← β1m̄

(t−1)
i + (1− β1)g(t)i

v
(t)
i ← β2v̄

(t−1)
i + (1− β2)

[
g
(t)
i

]2
b
(t+1)
i ← b(t)i + g

(t)
i /s

if t mod s == 0 then

update m̄i , v̄i based on bi
end if



Communication in a typical HPC cluster

Simple graph abstraction of communication topology is not enough.

– intra-node communication (bus) is much faster (say, 20x) than inter-node

– congestion can occur at switches and interfaces

Need to respect this when designing communication pattern (and mixing weights wi j)!

GPU1

GPU2

GPU4

GPU3

PCIe switches

NIC

GPU1

GPU2

GPU4

GPU3

PCIe switches

NIC

Switch



What is the optimal communication scheme?

We do not know, but clearly

• limiting inter-node communication reduces costly communications and congestion
• increasing intra-node communication enhances convergence

We propose to use an alternating exponential ring:



An execution model

Cannot hope to have better iteration-complexity than centralized optimization

– should try to optimize per-iteration runtime

– captured by run-time model (communication/compute times, workload variations)



Evaluation

Training of transformer for English-to-German translation task (65M parameters)



Evaluation

Scaling in high-performance and communication-bound scenarios (GPT-2 training)



Takaways

Decentralized optimization for large-DNN training

– clearly useful, and perhaps more so in the years to come

Our solution:

– a decentralized system with GPUs as workers

– a decenrralized Adam algorithm, with a twist

– use of time-varying (switched) communication topology to deal with heterogeneity

– an execution model for efficient system tuning

Strong practical performance, but many open theoretical problems



Summary and outlook

Bridging the hardware–algorithm disconnect:

– modern architectures require algorithms designed with hardware in mind.

– hardware-aware design as a core algorithmic principle?



Summary and outlook

Bridging the hardware–algorithm disconnect:

– modern architectures require algorithms designed with hardware in mind.

– hardware-aware design as a core algorithmic principle?

Two case studies, one message:

– a GPU-native OT solver designed for memory-aware computation, streamlined updates.

– decentralized training resilient to stragglers, hiding communication, eliminating idling



Summary and outlook

Bridging the hardware–algorithm disconnect:

– modern architectures require algorithms designed with hardware in mind.

– hardware-aware design as a core algorithmic principle?

Two case studies, one message:

– a GPU-native OT solver designed for memory-aware computation, streamlined updates.

– decentralized training resilient to stragglers, hiding communication, eliminating idling

Looking ahead:

– generalize the co-design principles to other classes of optimization problems

– explore tighter theoretical bounds for decentralized and DR-based algorithms

– investigate adaptability: can algorithms dynamically tune to hardware in real-time?


