
A Calculus for Orchestration of Web ServicesI

Rosario Pugliesea, Francesco Tiezzib,∗

aUniversità degli Studi di Firenze, Viale Morgagni, 65 - 50134 Firenze, Italy
bIMT Institute for Advanced Studies Lucca, Piazza S. Ponziano. 6 - 55100 Lucca, Italy

Abstract

Service-oriented computing, an emerging paradigm for distributed computing based on the use of
services, is calling for the development of tools and techniques to build safe and trustworthy sys-
tems, and to analyse their behaviour. Therefore, many researchers have proposed to use process
calculi, a cornerstone of current foundational research on specification and analysis of concur-
rent, reactive, and distributed systems. In this paper, we follow this approach and introduce
C�WS, a process calculus expressly designed for specifying and combining service-oriented
applications, while modelling their dynamic behaviour. We show that C�WS can model all the
phases of the life cycle of service-oriented applications, such as publication, discovery, negoti-
ation, orchestration, deployment, reconfiguration and execution. We illustrate the specification
style that C�WS supports by means of a large case study from the automotive domain and a
number of more specific examples drawn from it.

Keywords: Service-oriented computing, Formal methods, Process calculi

1. Introduction

Recently, the increasing success of e-business, e-learning, e-government, and other similar
emerging models, has led the World Wide Web, initially thought of as a system for human use,
to evolve towards an architecture for Service-Oriented Computing (SOC) supporting automated
use. This emerging paradigm finds its origin in object-oriented and component-based software
development, and aims at enabling developers to build networks of interoperable and collabora-
tive applications, regardless of the platform where the applications run and of the programming
language used to develop them, through the use of independent computational units, called ser-
vices. Services are loosely coupled reusable components, that are built with little or no knowl-
edge about clients and other services involved in their operating environment. SOC systems thus
deliver application functionalities as services to either end-user applications or other services.

There are by now some successful and well-developed instantiations of the general SOC
paradigm, like e.g. Web Services and Grid Computing, that exploit the pervasiveness of Internet

IThis work has been partially sponsored by the EU project ASCENS (257414) and by MIUR (PRIN 2009 DISCO).
∗Corresponding author
Email addresses: rosario.pugliese@unifi.it (Rosario Pugliese), francesco.tiezzi@imtlucca.it

(Francesco Tiezzi)
URL: http://www.dsi.unifi.it/~pugliese/ (Rosario Pugliese),

http://www.imtlucca.it/francesco.tiezzi (Francesco Tiezzi)
Preprint submitted to Journal of Applied Logic October 11, 2011

and related standards. However, current software engineering technologies for SOC remain at
the descriptive level and lack rigorous formal foundations. In the design of SOC systems we are
still experiencing a gap between practice (programming) and theory (formal methods and anal-
ysis techniques). The challenges come from the necessity of dealing at once with such issues as
asynchronous interactions, concurrent activities, workflow coordination, business transactions,
failures, resource usage, and security, in a setting where demands and guarantees can be very
different for the many different components. Many researchers have hence put forward the idea
of using process calculi, a cornerstone of current foundational research on specification and anal-
ysis of concurrent, reactive and distributed systems through mathematical — mainly algebraic
and logical — tools. Due to their algebraic nature, process calculi provide intuitive and concise
notations, and convey in a distilled form the compositional programming style of SOC. Ser-
vices are built in a compositional way by using the operators provided by the calculus and are
syntactically finite, even when the corresponding semantic model is not.

Process calculi enjoy a rich repertoire of elegant meta-theories, proof techniques and analyt-
ical tools. SOC could benefit from this large body of knowledge and from the experience gained
in the specification and analysis of concurrent, reactive and distributed systems during the last
few decades. In fact, it has been already argued that type systems, modal and temporal logics,
and observational equivalences provide adequate tools to address topics relevant to SOC (see e.g.
[1, 2]). This ‘proof technology’ can eventually pave the way for the development of automatic
property validation tools. Therefore, process calculi might play a central role in laying rigorous
methodological foundations for specification and validation of SOC applications. Many process
calculi for SOC have hence been proposed either by enriching well-established process calculi
with specific constructs (e.g. the variants of π-calculus with transactions [3, 4, 5] and of CSP with
compensation [6]) or by designing completely new formalisms (e.g. [7, 8, 9, 10, 11, 12, 13, 14]).

The work presented in this paper falls within the above line of research, since it introduces a
process calculus, called C�WS (Calculus for Orchestration of Web Services), that aims at cap-
turing the basic aspects of SOC systems and supporting their analysis. In designing C�WS, the
main principles underlying the OASIS standard for orchestration of web services WS-BPEL [15]
have been considered as first-class aspects. This permits a direct representation of the mecha-
nisms underlying the SOC paradigm and is, then, an important step towards their investigation
and comprehension. In fact, C�WS supports service instances with shared states, allows a pro-
cess to play more than one partner role, permits programming stateful sessions by correlating
different service interactions, and enables management of long-running transactions. However,
C�WS intends to be a foundational model not specifically tight to web services’ current tech-
nology. Thus, some WS-BPEL constructs, such as flow graphs and fault and compensation
handlers, do not have a precise counterpart in C�WS, rather they are expressed in terms of more
primitive operators. Of course, C�WS has also taken advantage of previous work on process
calculi. Indeed, it combines in an original way constructs and features borrowed from well-
known process calculi, e.g. non-binding input activities, asynchronous communication, polyadic
synchronization, pattern matching, protection, delimited receiving and killing activities, while
however resulting different from any of them.

We illustrate syntax, operational semantics and pragmatics of C�WS by means of a large
case study from the automotive domain and a number of more specific examples drawn from
it. We also present a C�WS’s dialect that smoothly incorporates constraints and operations on
them, thus permitting to model Quality of Service requirement specifications and Service Level
Agreement achievements. This dialect is obtained by specialising a few syntactic objects (e.g.,
the set of expressions that can occur within terms of the calculus) and semantic mechanisms

2

of C�WS’s definition. By means of our case study, we show that the formalism thus obtained
can model all the phases of the life cycle of service-oriented applications, such as publication,
discovery, negotiation, orchestration, deployment, reconfiguration and execution. This, on the
one hand, provides evidence of the quality of the C�WS’s design, on the other hand, may enable
the application of a wide range of techniques for the analysis of services (see, e.g., [9, 16, 17, 18,
19, 20, 21]).

Summary of the rest of the paper. In Section 2, we provide an overview of SOC and an informal
presentation of the case study that will be used throughout the paper for illustration purposes. In
Section 3, to gradually introduce C�WS’s technicalities and distinctive features, we present its
syntax and operational semantics in four steps: for each of the four calculi we show many simple
clarifying examples. In Section 4, we present the formal specification of the case study, infor-
mally described in Section 2, in the calculus corresponding to the untimed fragment of C�WS
and provide a glimpse of the properties that can be verified over this specification. Then, in Sec-
tion 5, we introduce the C�WS’s dialect that permits modelling dynamic service publication,
discovery and negotiation; we further elaborate the case study for illustrating both the additional
aspects and the ones related to time. In Section 6, we review some strictly related work. Finally,
in Section 7, we conclude with some final remarks and touch upon directions for future work.

This work is an extended and revisited version of our former developments introduced in
[8, 22, 23]. The novel contribution is a comprehensive, uniform, more detailed and neater pre-
sentation of the process calculus C�WS and of how it can be effectively used to model the basic
aspects of SOC systems. More specifically, Sections 3.1, 3.2 and 3.3 are a revised version of [8],
although here we adopt a more detailed step-by-step presentation in order to gradually introduce
the C�WS’s features and discuss, for each of them, the underlying motivations. Moreover, the
newer version uses many notations, conventions, definitions and examples that make the presen-
tation of the operational semantics of the calculus simpler and clearer (in the preliminary version,
e.g., the definitions of the predicates for checking the presence of receive conflicts and enabled
kill activities resort to the notion of ‘active context’). Section 3.4 is drawn from [22], while the
dialect of C�WS presented in Section 5.1 comes from [23]; they have been properly integrated
in this uniform presentation. All C�WS’s features are illustrated by means of a large case study
from the automotive domain and a number of more specific examples drawn from it. To sum
up, this paper aims at providing the interested reader with a novel presentation of the calculus,
where both design motivations and technical details about primitives and mechanisms are taken
into account. From a more general perspective, the paper illustrates how SOC systems can be
modelled by using an approach based on process calculi.

2. Background notions

In this introductory section, we set the scene of the whole paper by providing the background
notions from Service-Oriented Computing that we aim at modelling and by informally presenting
a case study used throughout the paper for describing how such notions are rendered in C�WS.

2.1. Service-Oriented Computing

Service-Oriented Computing (SOC) is emerging as an evolutionary paradigm for distributed
and e-business computing that finds its origin in object-oriented and component-based soft-
ware development. Early examples of technologies that are at least partly service-oriented are

3

ServiceService
requestorrequestor

ServiceService
providerprovider

ServiceService
brokerbroker

W
SD

L W
SDL

SOAP

fin
d

publish

bind and invoke

UDDI
registry

Figure 1: Service-Oriented Architecture

CORBA, DCOM, J2EE or .NET. A more recent successful instantiation of the SOC paradigm
are web services. These are sets of operations (i.e. functionalities) that can be published, located
and invoked through the Web via XML messages complying with given standard formats. To
support the web service approach, several new languages and technologies have been designed
and many international companies, like IBM, Microsoft and Oracle, have invested a lot of efforts.

There is a common way to view the web service architecture. It focuses on three major roles:

• Service provider: The software entity that implements a service specification and makes
it available on the Internet. Providers publish machine-readable service descriptions on
registries to enable automated discovery and invocation.

• Service requestor (or client): The software entity that invokes a service provider. A service
requestor can be an end-user application or another service.

• Service broker: A specific kind of service provider that allows automated publication and
discovery of services by relying on a registry.

Figure 1 shows the three service roles and how they interact with each other. This architecture,
and the context of services use, imposes a series of constraints. Here are some key characteristics
for effective use of services (see, e.g., [24]):

• Coarse-grain: Operations on services are frequently implemented to encompass more
functionalities and operate on larger data sets, compared to those of fine-grained com-
ponents as well as object-oriented interfaces.

• Interface-based design: Services implement separately defined interfaces. The set of inter-
faces implemented by a service is called service description. In addition to the functions
that the service performs, service descriptions should also include non-functional proper-
ties (e.g. response time, availability, reliability, security, performance) that jointly repre-
sent the quality of the service (QoS). In this case, they are also called service contracts.

• Discoverability: Services need to be found at both design time and run time by service
requestors. Moreover, since services are often developed and run by different organiza-
tions, a key issue of the discovery process is to define a flexible negotiation mechanism

4

that allows two or more parties to reach a joint agreement about cost and quality of a ser-
vice, prior to service execution. The outcome of the negotiation phase is a Service Level
Agreement (SLA), i.e. a contract among the involved parties that sets out both type and
bounds on various performance metrics of the service to be provided.

• Loosely coupling: Services are connected to other services and clients using standard,
dependency-reducing, decoupled message-based methods, as XML document exchanges.

• Asynchrony: In general, services use an asynchronous message passing approach, but this
is not necessarily required.

Some of these criteria, such as interface-based design and discoverability, are also used in
component-based development; however, it is the sum of these attributes that differentiates a
service-based application from a component-based one. It is beneficial, for example, to make
web services asynchronous to reduce the time a requestor spends waiting for responses. In fact,
by making a service call asynchronous, with a separate return message, the requestor will be
able to continue execution while the provider has a chance to respond. This is not to say that
synchronous service behavior is wrong, just that experience has demonstrated that asynchronous
service behavior is desirable, especially where communication costs are high or network latency
is unpredictable, and provides the developer with a simpler scalability model [24].

To support the web service approach, many new languages, most of which based on XML,
have been designed. The technologies that form the foundations of web services are SOAP,
WSDL, and UDDI. Simple Object Access Protocol (SOAP, [25]) is responsible for encoding
messages in a common XML format so that they can be understood at either end by all com-
municating services. Currently, SOAP is the principal XML-based standard for exchanging
information between applications within a distributed environment. Web Service Description
Language (WSDL, [26]) is responsible for describing the public interface of a specific web ser-
vice. Through a WSDL description, that is an XML document, a client application can determine
the location of the remote web service, the functions it implements, as well as how to access and
use each function. After parsing a WSDL description, a client application can appropriately
format a SOAP request and dispatch it to the location of the web service. In this setting, Univer-
sal Description, Discovery, and Integration (UDDI [27]) is responsible for centralizing services
into a common registry and providing easy publish and find functionalities. The relationships
between SOAP, WSDL, and UDDI are depicted in Figure 1.

To move beyond the basic framework describe-publish-interact and to better appreciate the
real value of web services, mechanisms for service composition are required. Several specifica-
tions have been proposed in these areas, among which we would like to mention the composition
language Web Services Business Process Execution Language (WS-BPEL, [15]), the OASIS
standard for orchestration of web services. In the web services literature [28], the term orches-
tration is used to indicate composition of web services and, in particular, it describes how a
collection of web services can interact with each other at the message level, including the busi-
ness logic and the execution order of the interactions. These interactions may span applications
and/or organizations, and result in a long-lived, transactional, multi-step process model.

A service orchestration combines services following a certain composition pattern to achieve
a business goal or provide new service functions in general. For example, handling a purchase
order is the summation of processes that calculate the final price for the order, select a shipper,
and schedule the production and shipment for the order. It is worth emphasizing that service
orchestrations may themselves become services, making composition a recursive operation. In

5

the example above, handling a purchase order may become a service that is instantiated to serve
each received purchase order separately from other similar requests. This is necessary because a
client might be carrying on many simultaneous purchase order interactions with the same service.

Service descriptions are thus used as templates for creating service instances that deliver
application functionality to either end-user applications or other instances. The technology sup-
porting tightly coupled communication frameworks typically establishes an active connection
between interacting entities that persists for the duration of a given business activity (or even
longer). Because the connection remains active, context is inherently present, and correlation
between individual transmissions of data is intrinsically managed by the technology protocol it-
self. Instead, the loosely coupled nature of SOC implies that a same service should be identifiable
by means of different logic names and the connection between communicating instances cannot
be assumed to persist for the duration of a whole business activity. Therefore, there is no intrinsic
mechanism for associating messages exchanged under a common context or as part of a common
activity. Even the execution of a simple request-response message exchange pattern provides no
built-in means of automatically associating the response message with the original request. It is
up to each single message to provide a form of context thus enabling services to associate the
message with others. This is achieved by embedding values in the message which, once located,
can be used to correlate the message with others logically forming the same stateful interaction
‘session’ (also called ‘conversation’). A key observation is that message correlation is an es-
sential part of messaging within SOC as it enables the persistence of activities’ context and state
across multiple message exchanges while preserving service statelessness and autonomy, and the
loosely coupled nature of service-oriented systems.

A further key feature of languages for service composition is the recovery mechanism for
long-running business transactions. In SOC environments, the ordinary assumptions about prim-
itive operations in traditional databases (Atomicity, Consistency, Isolation and Durability, ACID)
are not applicable in general because local locks and isolation cannot be maintained for long pe-
riods (see [15], Section 12.3). Therefore, many languages for service composition rely on the
concept of compensation, i.e. activities that attempt to reverse the effects of a previous activity
that was carried out as part of a larger unit of work that is being abandoned.

All aspects of SOC we have just described are at the basis of the C�WS’s design. This
because we believe that having them as first-class aspects would permit a more direct represen-
tation and a deeper comprehension of the mechanisms underlying the SOC paradigm. This is
witnessed by the several examples described in the paper.

2.2. An automotive case study
We introduce here a significant case study [29] in the area of automotive systems defined

within the EU project Sensoria [30]. We consider a scenario where vehicles are equipped with
a multitude of sensors and actuators that provide the driver with services that assist in conduct-
ing the vehicle more safely. Driver assistance systems become automatically operative when
the vehicle context renders it necessary. Due to the advances in mobile technology, automo-
tive software installed in the vehicles can contact relevant specific services to deal with driver’s
necessities.

Specifically, let us consider the case in which, while a driver is on the road with her/his
car, the vehicle’s sensors monitor reports a severe failure, which results in the car being no
longer driveable. The car’s discovery system then identifies garages, car rentals and towing truck
services in the car’s vicinity. At this point, the car’s reasoner system chooses a set of adequate
services taking into account personalised policies and preferences of the driver, e.g. balancing

6

cost and delay, and tries to order them. To be authorised to order services, the car’s system has
to deposit on behalf of the car owner a security payment, which will be given back if ordering
the services fails. Other components of the in-vehicle service platform involved in this assistance
activity are a GPS system, providing the car’s current location, and an orchestrator, coordinating
all the described services.

An UML-like activity diagram of the orchestration of services using UML4SOA, an UML
Profile for service-oriented systems [31], is shown in Figure 2. The orchestrator is triggered by
a signal from the sensors monitor (concerning, e.g., an engine failure) and consequently contacts
the other components to locate and compose the various services to reach its goal. The process
starts with a request from the orchestrator to the bank to charge the car owner’s credit card with
the security deposit payment. This is modelled by the UML action CardCharge for charging the
credit card whose number is provided as an output parameter of the action call. In parallel to the
interaction with the bank, the orchestrator requests the current location of the car from the car’s
internal GPS system. The current location is modelled as an input to the RequestLocation action
and subsequently used by the FindServices interaction which retrieves a list of services. If no
service can be found, an action to compensate the credit card charge will be launched. For the
selection of services, the orchestrator synchronises with the reasoner service to obtain the most
appropriate services.

Service ordering is modelled by the UML actions OrderGarage, OrderTowTruck and Rent-
Car. When the orchestrator makes an appointment with the garage, the diagnostic data are au-
tomatically transferred to the garage, which could then be able, e.g., to identify the spare parts
needed to perform the repair. Then, the orchestrator makes an appointment with the towing ser-
vice, providing the GPS data of the stranded vehicle and of the garage, to tow the vehicle to the
garage. Concurrently, the orchestrator makes an appointment with the rental service, by indicat-
ing the location (i.e. the GPS coordinates either of the stranded vehicle or of the garage) where
the car will be handed over to the driver.

The workflow described in Figure 2 models the overall behaviour of the system. Besides
interactions among services, it also includes activities using concepts developed for long running
business transactions (in e.g. [32, 15]). These activities entail fault and compensation handling,
kind of specific activities attempting to reverse the effects of previously committed activities, that
are an important aspect of SOC applications. According to UML4SOA Profile, the installation
of a compensation handler is modelled by an edge stereotyped�compensationEdge�, and its
activation by an activity stereotyped�compensate�. Since each compensation handler is asso-
ciated to a single UML activity, we omit drawing the enclosing ‘scope’ construct. Moreover, we
use dashed boxes to represent compensation handlers. Specifically, in the considered scenario:

• the security deposit payment charged to the car owner’s credit card must be revoked
if either the discovery phase does not succeed or ordering the services fails, i.e. both
garage/tow truck and car rental services reject the requests;

• if ordering a tow truck fails, the garage appointment has to be cancelled;

• if ordering a garage fails or a garage order cancellation is requested, the rental car delivery
has to be redirected to the stranded car’s actual location;

• instead, if ordering the car rental fails, it should not affect the tow truck and garage orders.

These requirements motivate the fact that ordering garage/tow truck and renting a car are mod-
elled as activities running in parallel.

7

Figure 2: Orchestration in the automotive scenario

3. The language C�WS

To gradually introduce the technicalities and distinctive features of C�WS, we present its
syntax and operational semantics in four steps. More specifically, in Section 3.1 we consider

8

µCOWSm (µCOWS minus priority), the fragment of C�WS without priority, primitives dealing
with termination and timed activities. It retains all the other C�WS’s features, like e.g. global
scope and pattern matching. In Section 3.2 we move on µCOWS (micro COWS), the calculus
obtained by enriching µCOWSm with priority. In Section 3.3 we consider COWS, which extends
µCOWS with primitives dealing with termination. Finally, in Section 3.4 we study the full calcu-
lus, C�WS, which incorporates timed orchestration constructs, thus permitting to express, e.g.,
choices among alternative activities constrained by expiration times. For each of the four calculi
we show some accurate clarifying examples.

3.1. µCOWSm : the priority-, protection-, kill- and time-free fragment of C�WS
The fragment of C�WS introduced in this section, namely µCOWSm, dispenses with priority,

primitives dealing with termination, and timed activities.

3.1.1. Syntax
The syntax of µCOWSm is presented in Table 1. We use two countable disjoint sets: the set

of values (ranged over by v, v′, . . .) and the set of ‘write once’ variables (ranged over by x,
y, . . .). The set of values is left unspecified; however, we assume that it includes the set of names
(ranged over by n, m, p, o, . . .) mainly used to represent partners and operations. We also use a
set of expressions (ranged over by ε), whose exact syntax is deliberately omitted; we just assume
that expressions contain, at least, values and variables.

Services are structured activities built from basic activities, i.e. the empty activity 0, the in-
voke activity • ! and the receive activity • ? , by means of prefixing . , choice + , parallel
composition | , delimitation [] and replication ∗ . The empty activity does nothing. Invoke
and receive are the communication activities, which permit invoking an operation offered by a
service and waiting for an invocation to arrive, respectively. Prefixing permits starting the execu-
tion of some service activities after the execution of a given basic activity is concluded. Choice
permits selecting one between two alternative activities for execution, while parallel composition
permits interleaving executions and enables communication between parallel services. Delimi-
tation is used, according to its first argument, for two different purposes: to regulate the range
of application of substitutions and to generate fresh names. Finally, replication permits imple-
menting recursive behaviours and persistent services. We adopt the following conventions about
the operators precedence: monadic operators bind more tightly than parallel composition, and
prefixing more tightly than choice.

In the sequel, w ranges over values and variables and u ranges over names and variables. No-
tation ·̄ stands for tuples, e.g. x̄ means 〈x1, . . . , xn〉 (with n ≥ 0) where variables in the same tuple
are pairwise distinct. We write a, b̄ to denote the tuple obtained by concatenating the element
a to the tuple b̄. All notations shall extend to tuples component-wise. n ranges over communi-
cation endpoints that do not contain variables (e.g. p • o), while u ranges over communication
endpoints that may contain variables (e.g. u • u′). Sometimes, we will use notation n and u for
the tuples 〈p, o〉 and 〈u, u′〉, respectively, and rely on the context to resolve any ambiguity. When
convenient, we shall regard a tuple (hence, also an endpoint) simply as a set, writing e.g. x ∈ ȳ
to mean that x is an element of ȳ. We will omit trailing occurrences of 0, writing e.g. p • o?w̄
instead of p • o?w̄.0, and write [〈u1, . . . , un〉] s in place of [u1] . . . [un] s. We will write I , s to
assign a name I to the term s.

The only binding construct is delimitation: [u] s binds u in the scope s. In fact, to enable
concurrent threads within each service instance to share (part of) the state, receive activities in

9

Expressions: ε, ε′, . . . Variables/Names: u, u′, . . .
Variables: x, y, . . . Variables/Values: w, w′, . . .
Values: v, v′, . . .

Names: n, m, . . . Endpoints:
Partners: p, p′, . . . without variables: p • o, n, . . .
Operations: o, o′, . . . may contain variables: u • u′, u, . . .

Services: Receive-guarded choice:
s ::= g ::=

u • u′!ε̄ (invoke) 0 (nil)
| g (receive-guarded choice) | p • o?w̄.s (request processing)
| s | s (parallel composition) | g + g (choice)
| [u] s (delimitation)
| ∗ s (replication)

Table 1: µCOWSm syntax

µCOWSm bind neither names nor variables. This is different from most process calculi and
somewhat similar to update [33] and fusion [34] calculi. In µCOWSm, however, inter-service
communication give rise to substitutions of variables with values (alike [33]), rather than to
fusions of names (as in [34]). The range of application of the substitutions generated by a com-
munication is regulated by the delimitation operator, that additionally permits to generate fresh
names (as the restriction operator of π-calculus). Thus, the occurrence of a name/variable is free
if it is not under the scope of a delimitation for it. Bound and free names are also called private
and public names, respectively. We denote by fu(t) the set of free names/variables that occur free
in t. Two terms are α-equivalent if one can be obtained from the other by consistently renaming
bound names/variables. As usual, we identify terms up to α-equivalence.

Partner names and operation names can be combined to designate endpoints, written p • o. In
fact, alike channels in [35], an endpoint is not atomic but results from the composition of a partner
name p and of an operation name o, which can also be interpreted as a specific implementation
of o provided by p. This results in a very flexible naming mechanism that allows a service to
be identified by means of different logic names (i.e. to play more than one partner role as in
WS-BPEL). For example, the following service

pslow • o?w̄.sslow + pfast • o?w̄.sfast

accepts requests for the same operation o through different partners with distinct access modal-
ities: process sslow implements a slower service provided when the request is processed through
the partner pslow, while sfast implements a faster service provided when the request arrives through
pfast. Additionally, the names composing an endpoint can be dealt with separately, as in a request-
response interaction, where usually the service provider knows the name of the response oper-
ation, but not the partner name of the service it has to reply to. For example, the ping service
p • oreq?〈x〉.x • ores!〈“I live”〉 will know at run-time the partner name for the reply activity. This
mechanisms is also sufficiently expressive to support implementation of explicit locations: a lo-
cated service can be represented by using a same partner for all its receiving endpoints. Partner
and operation names can be exchanged in communication, thus enabling many different interac-
tion patterns among service instances. However, dynamically received names can only be used
for service invocation (as in localised π-calculus [36]). Indeed, endpoints of receive activities

10

∗ 0 ≡ 0 ∗ s ≡ s | ∗ s
s | 0 ≡ s s1 | s2 ≡ s2 | s1 (s1 | s2) | s3 ≡ s1 | (s2 | s3)

g + 0 ≡ g g1 + g2 ≡ g2 + g1 (g1 + g2) + g3 ≡ g1 + (g2 + g3)
[u] 0 ≡ 0 [u1] [u2] s ≡ [u2] [u1] s s1 | [u] s2 ≡ [u] (s1 | s2) if u < fu(s1)

Table 2: µCOWSm structural congruence

are identified statically because their syntax only allows using names and not variables.

Remark 3.1 (Localised receive activities). As in localised π-calculus and differently from the
standard π-calculus, C�WS disallows passing of ‘input capability’, i.e. the ability of services to
receive a name and subsequently accept inputs along an endpoint containing such name. This
choice is motivated, on the one hand, by the fact that the design of C�WS has been influenced
by the current (web) service technologies where endpoints of receive activities are statically
determined1 (recall that service endpoints are not π-calculus channels) and, on the other hand,
by the will to support an easier implementation of the calculus. However, the former is the major
motivation. In fact, implementation problems due to input capability could be solved by relying
on the theory of linear forwarders [37] as in PiDuce [38].

To model asynchronous communication, invoke activities cannot be used as prefixes and
choice can only be guarded by receive activities (as in asynchronous π-calculus [39]). Indeed,
in service-oriented systems, communication paradigms are usually asynchronous (as we pointed
out in Section 2.1), in the sense that there may be an arbitrary delay between the sending and
the receiving of a message, the ordering in which messages are received may differ from that in
which they were sent, and a sender cannot determine if and when a sent message will be received.

3.1.2. Operational semantics
The operational semantics of µCOWSm is defined only for closed services, i.e. services with-

out free variables. By following an approach commonly used for process calculi, the semantics
is formally given in terms of a structural congruence and of a labelled transition relation. The
structural congruence, written ≡, identifies syntactically different services that intuitively repre-
sent the same service. It is defined as the least congruence relation induced by the equational
laws shown in Table 2. All the laws are straightforward. In particular, commutativity of con-
secutive delimitations implies that the order among the ui in [〈u1, . . . , un〉] s is irrelevant, thus
in the sequel we may use the simpler notation [u1, . . . , un] s. The last law permits to extend the
scope of names (as in the π-calculus) and variables, thus enabling possible communication (see
the examples “Communication” and “Communication of private names” in Section 3.1.3).

The definition of the labelled transition relation is parameterized by two auxiliary functions;
we present here their basic definitions and show in Section 5.1 how they can be specialised to
obtain a dialect of the language. Firstly, we use the function [[]] for evaluating closed expressions
(i.e. expressions without variables): it takes a closed expression and returns a value. It is not
explicitly defined since the exact syntax of expressions is deliberately not specified. Secondly,
we use the partial functionM(,) for performing pattern-matching on semi-structured data and,

1Indeed, if a WS-BPEL process receives an operation name, it cannot make this operation available to other services
and then receive messages through it. In fact, this would require the process to be able to modify at runtime its WSDL
interface to add the definition of the new operation, but WS-BPEL provides no construct allowing this dynamic change.

11

M(x, v) = {x 7→ v} M(v, v) = ∅ M(〈〉, 〈〉) = ∅
M(w1, v1) = σ1 M(w̄2, v̄2) = σ2

M((w1, w̄2), (v1, v̄2)) = σ1] σ2

Table 3: Matching rules

[[ε̄]] = v̄
(inv)

n!ε̄
n� v̄
−−−−−→ 0

n?w̄.s
n� w̄
−−−−−−→ s (rec)

g
α
−−−→ s

(choice)
g + g′

α
−−−→ s

s1
n� w̄
−−−−−−→ s′1 s2

n� v̄
−−−−−→ s′2 M(w̄, v̄)=σ

(com)
s1 | s2

σ
−−−→ s′1 | s

′
2

s1
α
−−−→ s′1 (par)

s1 | s2
α
−−−→ s′1 | s2

s
σ] {x 7→v}
−−−−−−−−−→ s′

(delcom)
[x] s

σ
−−−→ s′ · {x 7→ v}

s
α
−−−→ s′ u< u(α)

(del)
[u] s

α
−−−→ [u] s′

s ≡
α
−−−→≡ s′

(str)
s

α
−−−→ s′

Table 4: µCOWSm operational semantics

thus, determining if a receive and an invoke over the same endpoint can synchronise. The rules
defining M(,) are shown in Table 3. They state that two tuples match if they have the same
number of fields and corresponding fields have matching values/variables. Variables match any
value, and two values match only if they are identical. When tuples w̄ and v̄ do match,M(w̄, v̄)
returns a substitution for the variables in w̄; otherwise, it is undefined. Substitutions (ranged over
by σ) are functions mapping variables to values and are written as collections of pairs of the form
x 7→ v. Application of substitution σ to s, written s · σ, has the effect of replacing every free
occurrence of x in s with v, for each x 7→ v ∈ σ, by possibly using α-conversion for avoiding v
to be captured by name delimitations within s. We use ∅ to denote the empty substitution, |σ | to
denote the number of pairs in σ, and σ1] σ2 to denote the union of σ1 and σ2 when they have
disjoint domains.

The labelled transition relation
α
−−−→ is the least relation over services induced by the rules in

Table 4, where label α is generated by the following grammar:

α ::= n� v̄ | n� w̄ | σ

The meaning of labels is as follows: n � v̄ and n � w̄ denote execution of invoke and receive
activities over the endpoint n with arguments v̄ and w̄, respectively; σ denotes execution of
a communication with generated substitution σ to be still applied. The empty substitution ∅
denotes a computational step corresponding to taking place of communication without pending
substitutions. In the sequel, we will use u(α) to denote the set of names and variables occurring
in α, where u({x 7→ v}) = {x} ∪ fu(v) and u(σ1] σ2) = u(σ1) ∪ u(σ2).

Let us now comment on the operational rules. A service invocation can proceed only if the
expressions in the argument can be evaluated (rule (inv)). This means, for example, that if it con-
tains a variable x (in its endpoint or argument) it is stuck until x is not replaced by a value because
of execution of a receive assigning a value to x. A receive activity offers an invocable operation
along a given partner name (rule (rec)), and execution of a receive permits to take a decision
between alternative behaviours (rule (choice)). Communication can take place when two parallel
services perform matching receive and invoke activities (rule (com)). Communication generates

12

a substitution that is recorded in the transition label (for subsequent application), rather than a
silent transition as in most process calculi. Execution of parallel services is interleaved (rule
(par)). When the delimitation of a variable x argument of a receive involved in a communication
is encountered, i.e. the whole scope of the variable is determined, the delimitation is removed and
the substitution for x is applied to the term (rule (delcom)). Variable x disappears from the term and
cannot be reassigned a value (for this reason we say that µCOWSm’s variables are ‘write once’).
Notably, since in closed services all variables are delimited, the taking place of a communication
within such kind of services always corresponds to a computational step and leads to services
that are closed too. [u] s behaves like s (rule (del)), except when the transition label α contains u.
Rule (str) is standard and states that structurally congruent services have the same transitions.

3.1.3. Examples
We report here a few examples aimed at clarifying the peculiarities of µCOWSm. For the

sake of presentation, the examples focus on a part of the automotive case study described in
Section 2.2 that involves the interactions with a service of the car owner’s bank. This service
allows its clients to charge a credit card for a specified amount by sending charge requests via
the endpoint pbank • ocharge. A client, besides his credit card number, the amount to be charged
and the timestamp (i.e. date and time) of the transaction, is required to provide the partner name
that he will use to receive a response.

Communication. Communication can exploit scope extension (last law of Table 2) to allow re-
ceive and invoke activities to interact. In fact, they can synchronise only if both are in the scope
of the delimitations that bind the variables argument of the receive. Thus, we must possibly ex-
tend the scopes of some variables, as in the following example, where a client with partner name
pc invokes the bank service for charging his credit card 1234 with 100 euros at time t:

pbank • ocharge!〈pc, 1234, 100, t〉
| [xcust, xcc, xamount, xts] (pbank • ocharge?〈xcust, xcc, xamount, xts〉. s | s′) ≡

[xcust, xcc, xamount, xts] (pbank • ocharge!〈pc, 1234, 100, t〉
| pbank • ocharge?〈xcust, xcc, xamount, xts〉. s | s′)

∅
−−−→

(s | s′) · {xcust 7→ pc , xcc 7→ 1234 , xamount 7→ 100 , xts 7→ t}

Notice that, as shown by the inference of the above transition reported in Table 5, the substi-
tution {xcust 7→ pc , xcc 7→ 1234 , xamount 7→ 100 , xts 7→ t} is applied to all terms delimited by
[xcust, xcc, xamount, xts] , not only to the continuation s of the service performing the receive. This
is different from most process calculi and accounts for the global scope of variables. This very
feature permits, e.g., to easily model the delayed input of fusion calculus [34], which is instead
difficult to express in π-calculus.

Communication of private names. Communication of private names is standard and exploits
scope extension as in π-calculus. To enable communication of private names, besides their
scopes, we must possibly extend the scopes of some variables. Consider to modify the previ-
ous example by restricting the scope of the partner name pc to the invoke activity, with pc fresh
in s and s′. Now, the communication can take place as follow:

13

pbank • ocharge!〈pc, 1234, 100, t〉
pbank •ocharge�〈pc,1234,100,t〉
−−−−−−−−−−−−−−−−−−−−−−→ 0 (inv)

pbank • ocharge?〈xcust, xcc, xamount, xts〉. s
pbank •ocharge�〈xcust ,xcc,xamount ,xts〉

−−−−−−−−−−−−−−−−−−−−−−−−−−→ s (rec)

M(〈xcust, xcc, xamount, xts〉, 〈pc, 1234, 100, t〉) =

{xcust 7→ pc , xcc 7→ 1234 , xamount 7→ 100 , xts 7→ t}
(com)

pbank • ocharge!〈pc, 1234, 100, t〉 | pbank • ocharge?〈xcust, xcc, xamount, xts〉. s
{xcust 7→pc ,xcc 7→1234 ,xamount 7→100 ,xts 7→t}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s

(par)
pbank • ocharge!〈pc, 1234, 100, t〉 | pbank • ocharge?〈xcust, xcc, xamount, xts〉. s | s′
{xcust 7→pc ,xcc 7→1234 ,xamount 7→100 ,xts 7→t}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s | s′

(delcom)
[xts] (pbank • ocharge!〈pc, 1234, 100, t〉

| pbank • ocharge?〈xcust, xcc, xamount, xts〉. s | s′)
{xcust 7→pc ,xcc 7→1234 ,xamount 7→100}
−−−−−−−−−−−−−−−−−−−−−−−−−−→ (s | s′) · {xts 7→ t}

(delcom)
[xamount, xts] (pbank • ocharge!〈pc, 1234, 100, t〉

| pbank • ocharge?〈xcust, xcc, xamount, xts〉. s | s′)
{xcust 7→pc ,xcc 7→1234}
−−−−−−−−−−−−−−−−−→ (s | s′) · {xamount 7→ 100 , xts 7→ t}

(delcom)
[xcc, xamount, xts] (pbank • ocharge!〈pc, 1234, 100, t〉

| pbank • ocharge?〈xcust, xcc, xamount, xts〉. s | s′)
{xcust 7→pc}
−−−−−−−−−→ (s | s′) · {xcc 7→ 1234 , xamount 7→ 100 , xts 7→ t}

(delcom)
[xcust, xcc, xamount, xts] (pbank • ocharge!〈pc, 1234, 100, t〉

| pbank • ocharge?〈xcust, xcc, xamount, xts〉. s | s′)
∅
−−−→ (s | s′) · {xcust 7→ pc , xcc 7→ 1234 , xamount 7→ 100 , xts 7→ t}

Table 5: Inference of a computational step

[pc] (pbank • ocharge!〈pc, 1234, 100, t〉)
| [xcust, xcc, xamount, xts] (pbank • ocharge?〈xcust, xcc, xamount, xts〉. s | s′) ≡

[pc] (pbank • ocharge!〈pc, 1234, 100, t〉
| [xcust, xcc, xamount, xts] (pbank • ocharge?〈xcust, xcc, xamount, xts〉. s | s′)) ≡

[pc, xcust, xcc, xamount, xts] (pbank • ocharge!〈pc, 1234, 100, t〉
| pbank • ocharge?〈xcust, xcc, xamount, xts〉. s | s′)

∅
−−−→

[pc] (s | s′) · {xcust 7→ pc , xcc 7→ 1234 , xamount 7→ 100 , xts 7→ t}

Persistent services. The replication operator, which spawns in parallel as many copies of its
argument term as necessary (law ∗ s ≡ s | ∗ s of Table 2), permits specifying persistent services,
i.e. services capable of creating multiple instances to serve several requests simultaneously2.

2It is worth noticing that this is the standard behaviour of web services and, in particular, this is always the case for
services resulting from WS-BPEL orchestrations [15, Section 5.5].

14

Thus, the bank service previously introduced can be made persistent by simply applying
the replication operator to the µCOWSm term as shown in the following example, where the
(persistent) service definition runs in parallel with two clients:

(pbank • ocharge!〈pcA, 1234, 100, tA〉 | [x] pcA • oresp?〈x, tA〉.sA)
| (pbank • ocharge!〈pcB, 5678, 200, tB〉 | [y] pcB • oresp?〈y, tB〉.sB)
| ∗ [xcust, xcc, xamount, xts] pbank • ocharge?〈xcust, xcc, xamount, xts〉. xcust • oresp!〈check(xcc, xamount), xts〉

For each client request, the bank service creates an instance that replies to the corresponding
client with a message, containing the result of the transaction and the timestamp, along either the
endpoint pcA • oresp or pcB • oresp. Here, for the sake of simplicity, the acceptance or rejection of a
charge request is the result of the evaluation of a function check(,), which is left unspecified,
that takes as arguments a credit card number and an amount. Symmetrically, the client A (resp.
B) invokes the bank service and, once a response along pcA • oresp (resp. pcB • oresp) is received,
proceeds as sA (resp. sB).

After a computational step, due to the interaction between the service definition and the client
A, a new instance (highlighted by a gray background) runs in parallel with the other terms:

[x] pcA • oresp?〈x, tA〉.sA

| (pbank • ocharge!〈pcB, 5678, 200, tB〉 | [y] pcB • oresp?〈y, tB〉.sB)
| ∗ [xcust, xcc, xamount, xts] pbank • ocharge?〈xcust, xcc, xamount, xts〉. xcust • oresp!〈check(xcc, xamount), xts〉

| pcA • oresp!〈check(1234, 100), tA〉

If, similarly, the client B invokes the service, a second instance (highlighted by a dark gray
background) is created:

[x] pcA • oresp?〈x, tA〉.sA

| [y] pcB • oresp?〈y, tB〉.sB

| ∗ [xcust, xcc, xamount, xts] pbank • ocharge?〈xcust, xcc, xamount, xts〉. xcust • oresp!〈check(xcc, xamount), xts〉

| pcA • oresp!〈check(1234, 100), tA〉

| pcB • oresp!〈check(5678, 200), tB〉

Now, the two instances can reply to the corresponding clients by invoking the operation oresp

through the two different client partner names pcA and pcB. Thus, assuming that the check func-
tion returns ok for the A’s request and fail for the B’s one, after two computational steps the
system becomes

sA · {x 7→ ok}
| sB · {y 7→ fail}
| ∗ [xcust, xcc, xamount, xts] pbank • ocharge?〈xcust, xcc, xamount, xts〉. xcust • oresp!〈check(xcc, xamount), xts〉

Services’ execution modalities. In µCOWSm, a service can be modelled by a term of the form
∗ [ū] s, where tuple ū contains all the free variables of s. The use of replication enables providing
as many concurrent instances as needed, while that of delimitation permits modelling the state
(by restricting the scope of variables). This means that the previous term corresponds to a service
whose instances do not share a state. For instance, consider the following service definition:

∗ [x1, . . . , xn] p • o?〈x1〉.s
15

If we put it in parallel with the invocation p • o!〈v1〉, the resulting system can evolve as follows:

∗ [x1, . . . , xn] p • o?〈x1〉.s | p • o!〈v1〉
∅
−−→

∗ [x1, . . . , xn] p • o?〈x1〉.s | [x2, . . . , xn] s · {x1 7→ v1}

Each time an invocation is processed, a new service instance with private variables x2, . . . , xn is
activated. For example, if we have two concurrent invocations, we get

∗ [x1, . . . , xn] p • o?〈x1〉.s | p • o!〈v1〉 | p • o!〈v2〉
∅
−−→

∅
−−→

∗ [x1, . . . , xn] p • o?〈x1〉.s | [x2, . . . , xn] s · {x1 7→ v1} | [x2, . . . , xn] s · {x1 7→ v2}

The resulting system is composed of the service definition and of two different instances, each
with its own state.

To allow instances of a same service to share (part of) the state, we move the delimitations
of the variables to be shared outside the scope of replication. Thus, if x1, . . . , xk are shared and
xk+1, . . . , xn are not, the previous example can be modified as follows:

[x1, . . . , xk] ∗ [xk+1, . . . , xn] p • o?〈x1〉.s

After a parallel request p • o!〈v1〉 has been processed, we have:

[x2, . . . , xk] (∗ [xk+1, . . . , xn] p • o?〈v1〉.s · {x1 7→ v1} | [xk+1, . . . , xn] s · {x1 7→ v1})

In this case, since x1 is shared both by the service definition and by its instances, new instances
can be created only if the service definition receives requests along p • o with the same value (i.e.
v1) as the first invocation. In general, however, instantiation variables, such as x1, are not shared,
in order to allow service invocations with different arguments to trigger instance creation. To
model this behaviour, we can simply leave instantiation variables within the scope of replication.
Consider for example the term:

[x2] ∗ [x1, x3] p • o?〈x1〉.s

If requests p • o!〈v1〉 and p • o!〈v2〉 are put in parallel, the resulting system can evolve as follows:

[x2] ∗ [x1, x3] p • o?〈x1〉.s | p • o!〈v1〉 | p • o!〈v2〉
∅
−−→

∅
−−→

[x2] (∗ [x1, x3] p • o?〈x1〉.s | [x3] s · {x1 7→ v1} | [x3] s · {x1 7→ v2})

After two computational steps, two instances, each with a local state (i.e. the variable x3) and
sharing variable x2, are activated.

Message correlation. The loosely coupled nature of SOC implies that the connection between
communicating instances should not be assumed to persist for the duration of a whole business
activity. Therefore, it is up to each single message to provide a form of context that enables
services to associate the message with others. This is achieved by embedding values, called
correlation data, in the content of the message itself. Pattern-matching is the mechanism for
locating such data important to identify service instances for the delivering of messages.

To explain how message correlation is realized in µCOWSm, let us consider a variant of the
bank service composed of two persistent subservices: BankInterface, that is publicly invocable
by customers, and CreditRating, that instead is an ‘internal’ service that can only interact with

16

BankInterface (indeed, all the operations used by CreditRating, i.e. ocheck, ocheckOk and ocheckFail,
are restricted and this prevents them to be invoked from the outside). Specifically, Bank is the
µCOWSm term

[ocheck, ocheckOk, ocheckFail] (∗BankInterface | ∗CreditRating)

where BankInterface and CreditRating are defined as follows:

BankInterface , [xcust, xcc, xamount, xts]
pbank • ocharge?〈xcust, xcc, xamount, xts〉.
(pbank • ocheck!〈xts, xcc, xamount〉

| [xinfo] (pbank • ocheckFail?〈xts, xcc, xinfo〉. xcust • oresp!〈 f ail, xts, xinfo〉

+ pbank • ocheckOk?〈xts, xcc, xinfo〉. xcust • oresp!〈ok, xts, xinfo〉)

CreditRating , [xts, xcc, xa]
pbank • ocheck?〈xts, xcc, xa〉.
[p, o] (p • o!〈〉 | p • o?〈〉. pbank • ocheckOk!〈xts, xcc, ratingInfo(xcc, xa)〉

+ p • o?〈〉. pbank • ocheckFail!〈xts, xcc, ratingInfo(xcc, xa)〉)

Whenever prompted by a client request, BankInterface creates an instance to serve that spe-
cific request and is immediately ready to concurrently serve other requests. Each instance for-
wards the request to CreditRating, by invoking the internal operation ocheck through the invoke
activity pbank • ocheck!〈xts, xcc, xamount〉, then waits for a reply on one of the other two internal oper-
ations ocheckFail and ocheckOk, by exploiting the receive-guarded choice operator, and finally sends
the reply back to the client by means of a final invoke activity using the partner name of the client
stored in the variable xcust. Service CreditRating takes care of checking clients’ requests and de-
cides if they can be authorised or not. For the sake of simplicity, the choice between approving
or not a request is left here completely non-deterministic, and rating information are calculated
by an (unspecified) function ratingInfo(,).

Consider now the above ‘compound’ bank service running in parallel with two clients:

(pbank • ocharge!〈pcA, 1234, 100, tA〉 | [x, xi] pcA • oresp?〈x, tA, xi〉.sA)
| (pbank • ocharge!〈pcB, 5678, 200, tB〉 | [y, yi] pcB • oresp?〈y, tB, yi〉.sB)
| [ocheck, ocheckOk, ocheckFail]

(∗BankInterface | ∗CreditRating)

After a certain number of computational steps have taken place, two instances of BankInterface
(highlighted by a gray background) and two of CreditRating (highlighted by a dark gray back-
ground) would have been created and the system would be:

[x, xi] pcA • oresp?〈x, tA, xi〉.sA

| [y, yi] pcB • oresp?〈y, tB, yi〉.sB

| [ocheck, ocheckOk, ocheckFail]
(∗BankInterface | ∗CreditRating
| [xinfo] (pbank • ocheckFail?〈tA, 1234, xinfo〉. pcA • oresp!〈 f ail, tA, xinfo〉

+ pbank • ocheckOk?〈tA, 1234, xinfo〉. pcA • oresp!〈ok, tA, xinfo〉)

| pbank • ocheckOk!〈tA, 1234, ratingInfo(1234, 100)〉
17

| [xinfo] (pbank • ocheckFail?〈tB, 5678, xinfo〉. pcB • oresp!〈 f ail, tB, xinfo〉

+ pbank • ocheckOk?〈tB, 5678, xinfo〉. pcB • oresp!〈ok, tB, xinfo〉)

| pbank • ocheckFail!〈tB, 5678, ratingInfo(5678, 200)〉)

Notably, the BankInterface’s instance created to serve the client A (resp. B) is identified by the
client data tA and 1234 (resp. tB and 5678) that are exploited as correlation values. In fact, we
assume that, from the point of view of the bank service, each client request is uniquely identified
by the timestamp of the transaction and the client’s credit card. Instead, if we consider the point
of view of the client and suppose that he has only one credit card and has sent more charge
requests for it, thus the timestamp would be enough to correlate a bank service response to a
client instance. Recall that it is the responsibility of the service programmer to individuate the
proper correlation data in a given conversation.

Now, if the invocation along the endpoint pbank • ocheckOk is performed (we assume
ratingInfo(1234, 100) = info), since the sent message contains the correlation data tA and
1234, the interaction takes place with the instance created to serve the client A (indeed,
M(〈tB, 5678, xinfo〉, 〈tA, 1234, info〉) does not hold):

[x, xi] pcA • oresp?〈x, tA, xi〉.sA

| [y, yi] pcB • oresp?〈y, tB, yi〉.sB

| [ocheck, ocheckOk, ocheckFail]
(∗BankInterface | ∗CreditRating
| pcA • oresp!〈ok, tA, info〉

| [xinfo] (pbank • ocheckFail?〈tB, 5678, xinfo〉. pcB • oresp!〈 f ail, tB, xinfo〉

+ pbank • ocheckOk?〈tB, 5678, xinfo〉. pcB • oresp!〈ok, tB, xinfo〉)

| pbank • ocheckFail!〈tB, 5678, ratingInfo(5678, 200)〉)

Therefore, although two BankInterface’s instances waiting for a message along the endpoint
pbank • ocheckOk were available when the service is invoked, the message sent by the CreditRating’s
instance has been delivered to the correct instance.

It is worth noticing that, as witnessed by the above example, this correlation mechanism is
flexible enough for allowing a single message to participate in multiparty conversations (indeed,
the above conversation involves one provider service and two clients).

Notice also that, differently from other correlation-based formal languages for SOC, such as
ws-calculus [7], SOCK [12] and Blite [40], correlation variables in C�WS are not syntactically
distinguished by other data variables. In fact, correlation variables can be recognized by their use
(as the variables xts and xcc of the example above). This is due to the fact that C�WS intends to
be a foundational formalism, with a small number of simple primitives.

3.2. µCOWS : the protection-, kill- and time-free fragment of C�WS
The fragment of C�WS presented in this section, namely µCOWS, extends µCOWSm with

priority among concurrent activities.

3.2.1. Syntax and operational semantics
The syntax of µCOWS and the set of laws defining the structural congruence coincide with

those of µCOWSm, shown in Tables 1 and 2, respectively. Instead, the labelled transition relation
18

s1
n� w̄
−−−−−−→s′1 s2

n� v̄
−−−−−→s′2 M(w̄, v̄)=σ noConf(s1 | s2, n, v̄, |σ |) (com 2)

s1 | s2
nσ |σ| v̄
−−−−−−−→ s′1 | s

′
2

s1
α
−−−→ s′1 α , nσ ` v̄

(par 2)
s1 | s2

α
−−−→ s′1 | s2

s1
nσ ` v̄
−−−−−−→ s′1 noConf(s2, n, v̄, `) (parcom)

s1 | s2
nσ ` v̄
−−−−−−→ s′1 | s2

s
nσ]{x 7→v} ` v̄
−−−−−−−−−−−→ s′

(delcom 2)
[x] s

nσ ` v̄
−−−−−−→ s′ ·{x 7→ v}

Table 6: µCOWS operational semantics (additional rules)

noConf(u!ε̄, n, v̄, `) = noConf(0, n, v̄, `) = true

noConf(n′?w̄.s, n, v̄, `) =

{
false if n′ = n ∧ |M(w̄, v̄) |< `
true otherwise

noConf(g + g′, n, v̄, `) = noConf(g, n, v̄, `) ∧ noConf(g′, n, v̄, `)

noConf(s | s′, n, v̄, `) = noConf(s, n, v̄, `) ∧ noConf(s′, n, v̄, `)

noConf([u] s, n, v̄, `) =

{
noConf(s, n, v̄, `) if u < n
true otherwise

noConf(∗ s, n, v̄, `) = noConf(s, n, v̄, `)

Table 7: There are not conflicting receives along n matching v̄

α
−−−→ is the least relation over µCOWS services induced by the rules in Tables 4 and 6, where
rules (com 2), (par 2) and (delcom 2) replace (com), (par) and (delcom), respectively. Labels are now
generated by the following grammar:

α ::= n� v̄ | n� w̄ | nσ ` v̄

The new label nσ ` v̄ enriches the previous communication label σ with information about the
communication that has taken place, i.e. the endpoint, the transmitted values, and the length of
the generated substitution. These information are carried during the inference of a computational
step to establish a priority-based execution in the presence of conflicting receives. Specifically,
nσ ` v̄ (with ` natural number) denotes execution of a communication over n with matching
values v̄, originally generated substitution having ` pairs, and substitution σ to be still applied.
Now, computational steps are denoted by labels of the form n ∅ ` v̄. Notation u(α), indicating the
set of names and variables occurring in α, is extended by letting u(nσ ` v̄) = u(σ).

The definition of the labelled transition relation exploits an auxiliary no conflict predicate
noConf(s, n, v̄, `). The predicate, defined inductively by the clauses in Table 7, holds true if s
cannot immediately perform a receive over the endpoint n matching v̄ and generating a substitu-
tion σ with | σ |< `. Notably, in the clauses for the choice and parallel operators the predicate
holds true if and only if all arguments of the operators do not contain conflicting receives.

19

We comment on the new rules. In µCOWS, as mentioned above, the communication label
nσ ` v̄, produced by rule (com2), carries information used to check the presence of conflicting
receives in parallel components. Indeed, if more than one matching is possible, the receive that
needs fewer substitutions is selected to progress (rules (com2) and (parcom)). This mechanism
permits to correlate different service communications thus implicitly creating interaction ses-
sions and can be exploited to model the precedence of a service instance over the corresponding
service specification when both can process the same request (see Section 3.2.2 for some ex-
amples). Rule (delcom 2) is similar to (delcom) (shown in Table 4) but deals with labels generated
by communications subject to priority. Notably, during the inference of a transition labelled by
nσ ` v̄, the length of the substitution to be applied decreases, while the length ` of the initial
substitution does never change, which makes it suitable to check, in any moment, existence of a
better matching, i.e. of parallel receives with greater priority. Execution of parallel services is
interleaved (rule (par 2)), but when a communication is performed. In such case, the progress of
the receive activity with greater priority must be ensured.

3.2.2. Examples
We present now some examples and observations that point out the peculiarities of µCOWS.

Multiple start activities. Services could be able of receiving multiple messages in a statically
unpredictable order and in such a way that the first incoming message triggers the creation of a
service instance which subsequent messages are routed to. This would require all those receive
activities that can be immediately executed (according to [15], Section 16.3, there are multiple
start activities) to share a non-empty set of variables (the so-called correlation set).

Consider, for example, a variant of the bank service that deals with joint accounts. Now,
to charge a credit card associated to a joint account, the service requires each co-holder of the
account to send a charge request, thus making sure that the transaction is authorized by all co-
holders. An excerpt of such service running in parallel with two co-holder clients, willing to
charge their card 1234 with 100 euros, is as follows:

(pbank • ocharge1!〈pcA, 1234, 100, tA〉 | sA)
| (pbank • ocharge2!〈pcB, 1234, 100, tB〉 | sB)
| ∗ [xcust1, xcust2, xcc, xamount, xts1, xts2] (pbank • ocharge1?〈xcust1, xcc, xamount, xts1〉.s1

| pbank • ocharge2?〈xcust2, xcc, xamount, xts2〉.s2)

After an interaction with the client B, an instance running in parallel with the service definition
is created:

(pbank • ocharge1!〈pcA, 1234, 100, tA〉 | sA)
| sB

| ∗ [xcust1, xcust2, xcc, xamount, xts1, xts2] (pbank • ocharge1?〈xcust1, xcc, xamount, xts1〉 .s1

| pbank • ocharge2?〈xcust2, xcc, xamount, xts2〉.s2)
| [xcust1, xts1] (pbank • ocharge1?〈xcust1, 1234, 100, xts1〉 .s1 | s2) · σ

where σ is {xcust2 7→ pcB, xcc 7→ 1234, xamount 7→ 100, xts2 7→ tB}. Now, the service definition and
the created instance, being both able to receive the same tuple 〈pcA, 1234, 100, tA〉 along the end-
point pbank • ocharge1, compete for the request pbank • ocharge1!〈pcA, 1234, 100, tA〉, i.e. in WS-BPEL
jargon, two conflicting receive activities (in the term above, highlighted by a gray background)

20

are enabled. However, µCOWS’s (prioritized) semantics, in particular rule (com 2) in combination
with rule (parcom), allows only the existing instance to evolve. Indeed, suppose to try to infer the
transition corresponding to the interaction between client A and the service definition. Then, the
generated substitution would have length 4 and, hence, let sinst be the term representing the cre-
ated instance, the predicate noConf(sinst, pbank • ocharge1, 〈pcA, 1234, 100, tA〉, 4) would not hold. In
fact, the instance can perform a receive matching the same message and producing a substitution
with fewer pairs (it has length 2). This way, the creation of a new instance is prevented and the
only feasible computation leads to the following term:

sA

| sB

| ∗ [xcust1, xcust2, xcc, xamount, xts1, xts2] (pbank • ocharge1?〈xcust1, xcc, xamount, xts1〉.s1
| pbank • ocharge2?〈xcust2, xcc, xamount, xts2〉.s2)

| (s1 | s2) · σ] σ′

where σ′ is {xcust1 7→ pcA, xts1 7→ tA}.
It is worth noticing that the above considerations still hold if we use choice rather than parallel

to compose the start activities of the bank service, as shown below:

∗ [xcust1, xcust2, xcc, xamount, xts1, xts2]
(pbank • ocharge1?〈xcust1, xcc, xamount, xts1〉. pbank • ocharge2?〈xcust2, xcc, xamount, xts2〉. . . .)
+ pbank • ocharge2?〈xcust2, xcc, xamount, xts2〉. pbank • ocharge1?〈xcust1, xcc, xamount, xts1〉. . . .)

noConf predicate. Rules (com 2) and (parcom) use the predicate noConf(, n, v̄, `) for checking the
presence of concurrent conflicting receives. When these rules must be used to infer a transition, a
preventive α-conversion may be necessary. Indeed, condition noConf(n?w̄.s, n, v̄, `) might single
out patterns that could not really match the transmitted values. These ‘false alarms’ would block
the inference (but allow us to stay on the ‘safe’ side).

For instance, consider the following term:

n!〈m〉 | [x] n?〈x〉 | [m] n?〈m〉 (1)

Apparently, both receive activities match the invoke activity, but only n?〈x〉 can synchronise with
n!〈m〉, because the argument of n?〈m〉 is a restricted name, thus it is certainly different from the
name transmitted by the invoke. However, if we try to naively infer the transition corresponding
to the synchronisation between n!〈m〉 and n?〈x〉, we fail due to rules (com 2) or (parcom). In fact,
noConf([m] n?〈m〉, n, 〈m〉, 1) does not hold becauseM(m,m) produces the substitution ∅, that is
smaller than {x 7→ m}, that is produced byM(x,m).

However, the wanted transition can be inferred by first applying α-conversion. In fact, (1)
can be re-written as follows:

n!〈m〉 | [x] n?〈x〉 | [m′] n?〈m′〉

Now, it is clear that n?〈m′〉 is not a conflicting receive, becauseM(m′,m) is undefined.
The same observations hold for the term:

[m] (n!〈m〉 | [x] n?〈x〉) | n?〈m〉

Again, α-conversion is necessary for inferring the correct transitions. Instead, if in (1) we re-
place delimitation of m with that of n, the correct transition can be directly inferred because
noConf([n] n?〈m′〉, n, v̄, `) holds true.

21

Default behaviour. The previous examples show that the µCOWS’s priority mechanism can be
used for orchestration purposes, i.e. to properly coordinate interactions among services. How-
ever, this priority mechanism can be also exploited to coordinate activities (i.e. to mange their in-
terdependencies) within the same service. For example, in the variant of the service CreditRating
reported below

[xts, xcc, xa] (pbank • ocheck?〈xts, 4321, xa〉. pbank • ocheckFail!〈xts, 4321, ratingInfo(4321, xa)〉
+ pbank • ocheck?〈xts, 5432, xa〉. pbank • ocheckFail!〈xts, 5432, ratingInfo(5432, xa)〉
+ pbank • ocheck?〈xts, 6543, xa〉. pbank • ocheckFail!〈xts, 6543, ratingInfo(6543, xa)〉
+ pbank • ocheck?〈xts, xcc, xa〉.

[p, o] (p • o!〈〉 | p • o?〈〉. pbank • ocheckOk!〈xts, xcc, ratingInfo(xcc, xa)〉
+ p • o?〈〉. pbank • ocheckFail!〈xts, xcc, ratingInfo(xcc, xa)〉)

the priority mechanism enables implementing a sort of ‘default’ behaviour. Indeed, when the ser-
vice is invoked along the endpoint pbank • ocheck with a black-listed credit card number (e.g. num-
bers 4321, 5432, 6543) a negative response is returned; instead, if the credit card number is
not in the black list, the service by default behaves in a non-deterministic way. For example, if
CreditRating is invoked by pbank • ocheck!〈t, 4321, 100〉, although the invocation and the receive
pbank • ocheck?〈xts, xcc, xa〉 do match, the priority mechanism ensures that the service replies with
pbank • ocheckFail!〈t, 4321, ratingInfo(4321, 100)〉.

3.3. COWS : the time-free fragment of C�WS
COWS, which is basically the untimed fragment of C�WS, is obtained by enriching µCOWS

with two primitives permitting to express transactional behaviours of services and scenarios with
fault and compensation handling.

3.3.1. Syntax
The syntax of COWS is given in Table 8. Besides the sets of values and variables, we also use

a countable set of (killer) labels (ranged over by k, k′, . . .). Services syntax is extended with the
kill activity kill() and the protection operator {| |} , while now the delimitation [] accepts as first
argument also killer labels (the new constructs are highlighted in Table 8 by a gray background).
The kill activity forces the immediate termination of concurrent activities which are not enclosed
within the protection operator. The delimitation of a killer label is then used to confine the
killing effect. Notably, expressions do not include killer labels that, hence, are non-communic-
able values. This way the scope of killer labels cannot be dynamically extended and the activities
whose termination would be forced by execution of a kill can be statically determined.

We still use w to range over values and variables, u to range over names and variables, while
we use e to range over elements, namely killer labels, names and variables. Delimitation now is a
binder also for killer labels. fe(t) denotes the set of free elements in t, and fk(t) denotes the set of
free killer labels in t. A closed service is a COWS term without free variables and killer labels.

3.3.2. Operational semantics
The structural congruence ≡ for COWS, besides the laws in Table 2, additionally includes

the laws in Table 9. Notably, the last law of Table 9 prevents extending the scope of a killer label
k when it is free in s1 or s2 (this avoids involving s1 in the effect of a kill activity inside s2 and is
essential to statically determine which activities can be terminated by a kill). Thus, this law can
be used to garbage-collect killer labels, e.g. [k] n!ε̄ ≡ [k] (n!ε̄ | 0) ≡ n!ε̄ | [k] 0 ≡ n!ε̄ | 0 ≡ n!ε̄.

22

Killer labels: k, k′, . . . Elements (Labels/Vars/Names): e, e′, . . .
Expressions: ε, ε′, . . . Variables/Names: u, u′, . . .

Variables: x, y, . . . Variables/Values: w, w′, . . .
Values: v, v′, . . .

Names: n, m, . . . Endpoints:
Partners: p, p′, . . . without variables: p • o, n, . . .
Operations: o, o′, . . . may contain variables: u • u′, u,. . .

Services: Receive-guarded choice:
s ::= g ::=

kill(k) (kill) 0 (nil)
| u • u′!ε̄ (invoke) | p • o?w̄.s (request processing)
| g (receive-guarded choice) | g + g (choice)
| s | s (parallel composition)
| {|s|} (protection)
| [e] s (delimitation)
| ∗ s (replication)

Table 8: COWS syntax

{|0|} ≡ 0 [k] 0 ≡ 0
{| {|s|} |} ≡ {|s|} [e1] [e2] s ≡ [e2] [e1] s
{|[e] s|} ≡ [e] {|s|} s1 | [k] s2 ≡ [k] (s1 | s2) if k < fk(s1)∪fk(s2)

Table 9: COWS structural congruence (additional laws)

To define the labelled transition relation, we need two new auxiliary functions. The func-
tion halt() takes a service s as an argument and returns the service obtained by only retaining
the protected activities inside s. halt() is defined inductively on the syntax of services. The
most significant case is halt({|s|}) = {|s|}. In the other cases, halt() returns 0, except for parallel
composition, delimitation and replication operators, for which it acts as an homomorphism.

halt(kill(k)) = halt(u!ε̄) = halt(g) = 0 halt({|s|}) = {|s|}

halt(s1 | s2) = halt(s1) | halt(s2) halt([e] s) = [e] halt(s) halt(∗ s) = ∗ halt(s)

Then, in Table 10, we inductively define the predicate noKill(s, e), that holds true if either e is not
a killer label or e = k and s cannot immediately perform a free kill activity kill(k). Moreover, the
predicate noConf(s, n, v̄, `), defined for µCOWS by the rules in Table 7, is extended to COWS by
adding the following rules:

noConf(kill(k), n, v̄, `) = true noConf({|s|}, n, v̄, `) = noConf(s, n, v̄, `)

noConf([e] s, n, v̄, `) =

{
noConf(s, n, v̄, `) if e < n
true otherwise

The labelled transition relation
α
−−−→ is the least relation over services induced by the rules in

Tables 4, 6 and 11, where (com 2), (del 2) and (delcom 2) replace (com), (del) and (delcom), respectively,
23

noKill(s, e) = true if fk(e) = ∅ noKill(s | s′, k) = noKill(s, k) ∧ noKill(s′, k)

noKill(kill(k), k) = false noKill([e] s, k) = noKill(s, k) if e , k

noKill(kill(k′), k) = true if k , k′ noKill([k] s, k) = true

noKill(u!ε̄, k) = noKill(g, k) = true noKill({|s|}, k) = noKill(∗ s, k) = noKill(s, k)

Table 10: There are no active kill(k)

kill(k)
k
−−→ 0 (kill)

s
α
−−−→ s′

(prot)
{|s|}

α
−−−→ {|s′|}

s1
α
−−−→ s′1 α , k, nσ ` v̄

(par 3)
s1 | s2

α
−−−→ s′1 | s2

s1
k
−−→ s′1 (parkill)

s1 | s2
k
−−→ s′1 | halt(s2)

s
k
−−→ s′

(delkill 1)
[k] s

†
−−→ [k] s′

s
k
−−→ s′ k , e

(delkill 2)
[e] s

k
−−→ [e] s′

s
†
−−→ s′

(delkill 3)
[e] s

†
−−→ [e] s′

s
α
−−−→ s′ e< e(α) α , k, † noKill(s, e)

(del 2)
[e] s

α
−−−→ [e] s′

Table 11: COWS operational semantics (additional rules)

and (par 3) replaces rules (par) and (par 2). Labels are now generated by the following grammar:

α ::= n� v̄ | n� w̄ | nσ ` v̄ | k | †

The meaning of the new labels is as follows: k denotes execution of a request for terminating
a term from within the delimitation [k] , and † denotes a computational step corresponding to
taking place of forced termination. In the sequel, we use e(α) to denote the set of elements
occurring in α (it is defined similarly to u(α), Section 3.1.2, page 12, and Section 3.2.1, page 19).

Let us now comment on the added rules. Activity kill(k) forces termination of all unprotected
parallel activities (rules (kill) and (parkill)) inside an enclosing [k] , that stops the killing effect by
turning the transition label k into † (rule (delkill 1)). Such delimitation, whose existence is en-
sured by the assumption that the semantics is only defined for closed services, prevents a single
service to be capable to stop all the other parallel services, which would be unreasonable in a
service-oriented setting (as services are loosely coupled and organized in different administrative
domains). Critical activities can be protected from killing by putting them into a protection {| |};
this way, {|s|} behaves like s (rule (prot)). Similarly, [e] s behaves like s (rule (del 2)), except when
the transition label α contains e, in which case α must correspond either to a communication
assigning a value to e (rule (delcom 2)) or to a kill activity for e (rule (delkill 1)), or when a free kill
activity for e is active in s, in which case only actions corresponding to kill activities can be
executed (rules (delkill 2) and (delkill 3)). This means that kill activities are executed eagerly with
respect to the activities enclosed within the delimitation of the corresponding killer label. Execu-
tion of parallel services is interleaved (rule (par 3)), but when a kill activity or a communication
is performed. Indeed, the former must trigger termination of all parallel services (according to

24

rule (parkill)), while the latter must ensure that the receive activity with greater priority progresses
(rules (com 2) and (parcom)).

3.3.3. Examples
We present here some examples aimed at clarifying the peculiar features of COWS. We will

show in Section 4 how the COWS activities dealing with termination, i.e. kill and protection, can
be used for implementing fault and compensation handling.

Protected kill activity. The following simple example illustrates the effect of executing a kill
activity within a protection block:

[k] ({|s1 | {|s2|} | kill(k)|} | s3) | s4
†
−−→ [k] {| {|s2|} |} | s4

where, for simplicity, we assume that halt(s1) = halt(s3) = 0. In essence, kill(k) terminates all
parallel services inside delimitation [k] (i.e. s1 and s3), except those that are protected at the
same nesting level of the kill activity (i.e. s2).

Interplay between communication and kill activity. Kill activities can break communication, as
the following example shows:

n!〈v〉 | [k] ([x] n?〈x〉.s | kill(k))
†
−−→ n!〈v〉 | [k] [x] 0

In fact, due to the priority of the kill activity over communication, this is the only feasible com-
putational step of the above term. Communication can however be guaranteed by protecting the
receive activity, as follows

n!〈v〉 | [k] ([x] {|n?〈x〉.s|} | kill(k))
†
−−→

n!〈v〉 | [k] [x] {|n?〈x〉.s|} ≡

[x] (n!〈v〉 | [k] {|n?〈x〉.s|})
n ∅ 1 〈v〉
−−−−−−−→

[k] {|s · {x 7→ v}|}

Notably, priority of kill activities over communication acts only with respect to the activities
enclosed within the delimitation of the corresponding killer labels (i.e. priority is local to killer
label scopes). For instance, if we re-write the above example as follows:

[y] n?〈y〉.s′ | n!〈v〉 | [k] ([x] n?〈x〉.s | kill(k))

communication between n!〈v〉 and n?〈x〉 is still preempted by kill(k), while communication with
n?〈y〉 can take place and lead to

s′ · {y 7→ v} | [k] ([x] n?〈x〉.s | kill(k))

Non-communicability of killer labels. We require killer labels not to be communicable to avoid
a service be capable to indiscriminately stop the execution of other services’ activities. However,
when desired, this behaviour can be modelled in COWS. Consider, for example, the following
term where two parallel services share the private name stop:

[stop] (s1 | s2) | s3

25

where s1 , [k] (n?〈stop〉.kill(k) | s′1) and s2 , n!〈stop〉 | s′2. In s1, the activity kill(k) is prefixed
by the receive n?〈stop〉 that does not allow forced termination to take place until the ‘termination
signal’ stop is received. In fact, if a communication between s1 and s2 takes place along the
endpoint n, the term evolves to

[stop] ([k] (kill(k) | s′1) | s′2) | s3

Now, due to the priority of the kill activity over communication, the term [k] (kill(k) | s′1) can
only perform a kill activity and evolve, e.g., to [k] halt(s′1).

3.4. C�WS
The full calculus, C�WS, is obtained by enriching COWS with an analogous of WS-BPEL’s

wait activity [15, Section 10.7] which causes execution of the invoking service to be suspended
until the time interval specified as an argument has elapsed3. The extension of COWS with
specific activities dealing with time is motivated by the fact that it is still unknown to what extent
timed computation can be reduced to untimed forms of computation [41].

3.4.1. Syntax
We assume that the set of values now includes a set of positive numbers (ranged over by δ,

δ′, . . .), used to represent time intervals. The syntax of COWS is extended as follows (the new
construct is highlighted by a gray background):

g ::= 0 | p • o?w̄.s | g + g | � ε .s

Basically, guards are extended with the wait activity � ε , that specifies the time interval, whose
value is given by evaluation of ε, the executing service has to wait for. Consequently, the choice
construct can now be guarded both by message reception and timeout expiration, like WS-BPEL
pick activity [15, Section 11.5]. We assume that evaluation of expressions and execution of basic
activities, except for � ε , are instantaneous (i.e. do not consume time units) and that time elapses
between them.

3.4.2. Operational semantics
The operational semantics of C�WS is defined in terms of the labelled transition relation

α̂
−−−→, where α̂ stands for α or δ (that models time elapsing), obtained by adding the rules shown
in Table 12 to those defining the semantics of COWS (see Section 3.3.2 and Tables 4, 6 and 11).
Let us briefly comment on the new rules. Time can elapse while waiting on receive/invoke
activities, rules (recelaps) and (invelaps). When time elapses, but the timeout is still not expired,
the argument of wait activities is updated (rule (waitelaps)). Time elapsing cannot make a choice
within a choice activity (rule (choice2)), while the occurrence of a timeout can. Indeed, this
is signalled by label †, thus it is a computational step, generated by rule (waittout) and used by
rule (choice) (in Table 4) to discard the alternative branches. Time elapses synchronously for
all services running in parallel: this is modelled by rule (parsync) and by the remaining rules for
empty activity (rule (nilelaps)), replication (rule (repelaps)), wait activity (rule (waiterr)), protection

3For the sake of simplicity, we do not consider here the ‘until’ variant of the wait activity, which causes suspension
of the invoking service until the absolute time reaches the value specified as an argument, and refer the interested reader
to [21] for an account of this variant.

26

0
δ
−−→ 0 (nilelaps) ∗ s

δ
−−→ ∗ s (repelaps) n?w̄.s

δ
−−→ n?w̄.s (recelaps)

u!ε̄
δ
−−→ u!ε̄ (invelaps) � 0.s

†
−−→ s (waittout)

δ 6 [[ε]]
(waitelaps)

� ε .s
δ
−−→ � [[ε−δ]].s

[[ε]] , δ′
(waiterr)

� ε .s
δ
−−→ � ε .s

s
δ
−−→ s′

(protelaps)
{|s|}

δ
−−→ {|s′|}

g1
δ
−−→ g′1 g2

δ
−−→ g′2 (choice2)

g1 + g2
δ
−−→ g′1 + g′2

s1
δ
−−→ s′1 s2

δ
−−→ s′2 (parsync)

s1 | s2
δ
−−→ s′1 | s

′
2

s
δ
−−→ s′

(scopeelaps)
[e] s

δ
−−→ [e] s′

Table 12: C�WS operational semantics (additional rules)

(rule (protelaps)) and delimitation (rule (scopeelaps)). In particular, rule (waiterr) enables time passing
for the wait activity also when the expression ε used as an argument does not return a positive
number; in this case the argument of the wait is left unchanged. Note that, in agreement with
its eager semantics, the kill activity does not allow time to pass. In C�WS, computational steps
also include transitions labelled by δ corresponding to time elapsing.

Since time elapses synchronously for all services in parallel, we can think of as all services
run on a same service engine and share the same clock. By further extending the language syntax,
as shown in [21], we can make explicit the notion of service engine and of deployment of services
on engines. This way, we can model time so that it progresses synchronously for services located
within the same engine and asynchronously among services deployed onto different engines.

3.4.3. Examples
We end this section with some examples of application of the the timed constructs provided

by the full language C�WS. Such constructs are also exploited in Section 5.2 to model a variant
of the automotive case study presented in Section 2.2.

WS-BPEL pick activity. Consider again the bank service scenario used in other previous exam-
ples in Sections 3.1.3 and 3.2.2, where now clients, after having sent requests for charging their
credit cards, wait for a response for a given amount of time. By using the wait activity and
the choice operator, we can define in C�WS a client service implementing a pick activity à la
WS-BPEL as follows:

pbank • ocharge!〈pcA, 1234, 100, tA〉 | [x, xi] (pcA • oresp?〈x, tA, xi〉.sA)
+ � 15 . schargeT imeoutExpired)

If the Bank service does not reply in the given amount of time units (e.g. 15 minutes), the client
service will discard the client activities pcA • oresp?〈x, tA, xi〉.sA (hence, the activity sA dealing with
the Bank response will never be carried out) and execute the activity schargeT imeoutExpired handling
the non-response event. This latter activity can, e.g., ask the driver to provide the data of another
credit card, or simply show an error message inviting the driver to contact the assistance services
by herself/himself; in any case schargeT imeoutExpired may contact or not the Bank service to inform
it that the response to the sent request is not waited any longer. Of course, if a response from the
Bank is received before the timeout expiration, the timeout is disabled and sA is executed.

27

Time-bound search. Consider a registry service storing information about on road services and
providing searching functionalities to its clients (see, e.g., Section 5.2). A search that continues
to query the data stored in the registry until a given timeout expires can be rendered in C�WS as
a term of the following form:

[k] (ssearch | � δ. (kill(k) | {| ssearchComplete |}))

where ssearch performs the search and ssearchComplete sends the search result to the client. After δ
time units, the search is stopped by means of the kill activity and then the result is communicated.

4. The automotive case study: specification and analysis in COWS

We present in this section the most relevant parts of the specification in COWS of the auto-
motive case study introduced in Section 2.2 (the complete specification is reported in [42]) and
provide a brief description of a few properties that it satisfies. Notably, to specify the case study
we use COWS rather than C�WS, because the verification methods and tools currently available
only apply to the former language. We further refine the case study and its specification, in order
to illustrate an application of the C�WS constructs for managing time and constraints, later on
in Section 5.2.

The COWS term modelling the overall scenario is:

[pcar] (SensorsMonitor | GpsSystem | Discovery | Reasoner | Orchestrator)
| Bank | OnRoadRepairServices

All services of the in-vehicle platform share a private partner name pcar, that is used for intra-
vehicle communication and is passed to external services (e.g. the bank service) for receiving
data from them.

When an engine failure occurs, a signal (raised by SensorsMonitor) triggers the execution
of the Orchestrator and activates the corresponding ‘recovery’ service. Orchestrator, the most
important component of the in-vehicle platform, is

[xcarData, xts] (pcar • oengineFailure?〈xts, xcarData〉.sengfail + pcar • olowOilFailure?〈xts, xcarData〉.slowoil +. . .)

This term uses the choice operator + to pick one of those alternative recovery behaviours whose
execution can start immediately. Notice that, while executing a recovery behaviour, Orchestrator
does not accept other recovery requests. We are also assuming, for the sake of simplicity, that it
is reinstalled at the end of the recovery task.

The recovery behaviour sengfail executed when an engine failure occurs is

[pend, oend, xinfo, xloc, xlist, oundo]
([k] (CardCharge | FindServices) | pend • oend?〈〉. pend • oend?〈〉.ChooseAndOrder)

pend • oend is a scoped endpoint along which successful termination signals (i.e. communica-
tions that carry no data) are exchanged to orchestrate execution of the different components.
CardCharge corresponds to the homonymous UML action of Figure 2, while FindServices cor-
responds to the sequential composition of the UML actions RequestLocation and FindServices.
The two terms are defined as follows:

28

CardCharge , pbank • ocharge!〈pcar, ccNum, amount, xts〉

| {|pcar • oresp?〈 f ail, xts, xinfo〉.kill(k)
+ pcar • oresp?〈ok, xts, xinfo〉.

(pend • oend!〈〉
| pcar • oundo?〈cc〉. pcar • oundo?〈cc〉. pbank • orevoke!〈xts, ccNum〉) |}

FindS ervices , pcar • oreqLoc!〈〉
| pcar • orespLoc?〈xloc〉.

(pcar • o f indS erv!〈xloc, servicesType〉
| pcar • o f ound?〈xlist〉. pend • oend!〈〉
+ pcar • onotFound?〈〉.

({|pcar • oundo!〈cc〉 | pcar • oundo!〈cc〉|} | kill(k)))

Therefore, the recovery service concurrently contacts service Bank, to charge the car owner’s
credit card with a security amount, and services GpsSystem and Discovery, to get the car’s loca-
tion (stored in xloc) and a list of on road services (stored in xlist). When both activities terminate
(the fresh endpoint pend • oend is used to appropriately synchronise their successful termina-
tions), the recovery service forwards the obtained list to service Reasoner, that will choose the
most convenient services (see definition of ChooseAndOrder). Whenever services finding fails,
FindServices terminates the whole recovery behaviour (by means of the kill activity kill(k)) and
sends two signals cc (abbreviation of ‘card charge’) along the endpoint pcar • oundo. Similarly, if
charging the credit card fails, then CardCharge terminates the whole recovery behaviour. Oth-
erwise, it installs a compensation handler that takes care of revoking the credit card charge.
Activation of this compensation activity requires two signals cc along pcar • oundo and, thus, takes
place either whenever FindService fails or, as we will see soon, whenever both garage and car
rental orders fail.

ChooseAndOrder tries to order the selected services by contacting a car rental and, concur-
rently, a garage and a tow truck. It is defined as follows:

[xgps] (pcar • ochoose!〈xlist〉

| [xgarage, xtowTruck, xrentalCar] pcar • ochosen?〈xgarage, xtowTruck, xrentalCar〉.
(OrderGarageAndTowTruck | RentCar))

OrderGarageAndTowTruck , [xgarageIn f o]
(xgarage • oorderGar!〈pcar, xcarData〉

| pcar • ogarageFail?〈〉.
(pcar • oundo!〈cc〉 | [p, o] (p • o!〈xloc〉 | p • o?〈xgps〉))

+ pcar • ogarageOk?〈xgps, xgarageIn f o〉.
(OrderTowTruck
| pcar • oundo?〈gar〉.

(xgarage • ocancel!〈pcar〉

| pcar • oundo!〈cc〉 | pcar • oundo!〈rc〉)))

OrderTowTruck , [xtowIn f o]
(xtowTruck • oorderTow!〈pcar, xloc, xgps〉

| pcar • otowTruckFail?〈〉. pcar • oundo!〈gar〉
+ pcar • otowTruckOK?〈xtowIn f o〉)

29

RentCar , [xrcIn f o]
(xrentalCar • oorderRC!〈pcar, xgps〉

| pcar • orentalCarFail?〈〉. pcar • oundo!〈cc〉
+ pcar • orentalCarOK?〈xrcIn f o〉.

pcar • oundo?〈rc〉. xrentalCar • oredirect!〈pcar, xloc〉)

If ordering a garage fails, the compensation of the credit card charge is invoked by sending
a signal cc along the endpoint pcar • oundo, and the car’s location (stored in xloc) is assigned to
variable xgps (whose value will be passed to the rental car service). This assignment is rendered
as a communication along the private endpoint p • o. Otherwise, the tow truck ordering starts
and the garage’s location is assigned to variable xgps. Moreover, a compensation handler is
installed; it will be activated whenever tow truck ordering fails and, in that case, attempts to
cancel the garage order (by invoking operation ocancel) and to compensate the credit card charge
and the rental car order (by sending signal cc and rc along pcar • oundo). Renting a car proceeds
concurrently and, in case of successful completion, the compensation handler for the redirection
of the rented car is installed; otherwise, the compensation of the credit card charge is invoked.

For the sake of presentation, we relegate the specification of the remaining components of
the in-vehicle platform, i.e. SensorsMonitor, GpsSystem, Discovery and Reasoner, to [42].

The COWS specification of the service Bank is given by the compound term introduced in
Section 3.1.3 (paragraph “Message correlation” at page 16) where the subservice BankInterface
is extended with compensation activities (highlighted below by a gray background) for revoking
credit card charges:

BankInterface ,
[xcust, xcc, xamount, xts]
pbank • ocharge?〈xcust, xcc, xamount, xts〉.
(pbank • ocheck!〈xts, xcc, xamount〉

| [xin f o] (pbank • ocheckFail?〈xts, xcc, xin f o〉. xcust • oresp!〈 f ail, xts, xin f o〉

+ pbank • ocheckOk?〈xts, xcc, xin f o〉.

[k′] (xcust • oresp!〈ok, xts, xin f o〉 | pbank • orevoke?〈xts, xcc〉.kill(k′)))

In case of a positive answer, the possibility of revoking the request through invocation of op-
eration orevoke is enabled (in fact, should the discovery phase or ordering the services fail, the
customer charge operation should be cancelled in order to implement the wanted transactional
behaviour). Revocation causes deletion of the reply to the client, if this has still to be performed.

OnRoadRepairServices is actually a composition of various on road services, i.e. it is

Garage1 | Garage2 | TowTruck1 | TowTruck2 | RentalCar1 | RentalCar2 | . . .

Such concurrent on road services are all modelled in a similar way, e.g.

Garagei , ∗ [xcust, xsensorsData, ocheckOK , ocheckFail]
pgarage i • oorderGar?〈xcust, xsensorsData〉.
(pgarage i • ocheckOK!〈〉 | pgarage i • ocheckFail!〈〉
| pgarage i • ocheckFail?〈〉. xcust • ogarageFail!〈〉
+ pgarage i • ocheckOK?〈〉.

[k] (xcust • ogarageOK!〈garageGPSi, garageInfoi〉

| pgarage i • ocancel?〈xcust〉.kill(k)))
30

For simplicity, success or failure of garage orders are modelled by means of non-deterministic
choice by exploiting internal operations ocheckOK and ocheckFail.

To give a flavour of which kind of analyses COWS’s specifications can be subject to, we end
this section by illustrating some properties of the automotive case study that can be verified by
using two of the techniques devised so far.

The type system introduced in [17] uses types to express and enforce policies for regulating
the exchange of data among services. Over the specification of the automotive scenario, this
approach enables the verification of such confidentiality properties as, e.g., “information about
the credit card and location of a driver in trouble cannot become available to unauthorized
users” and “critical data sent by on-road services to the in-vehicle services, e.g. cost and quality
of the service supplied, are not disclosed to competitors”.

The logical verification methodology presented in [18] permits describing service properties
by means of a branching-time temporal logic, specifically designed to express in a convenient
way distinctive aspects of services, and verifying them over COWS specifications by exploiting
an on-the-fly model checker. Over the specification of the automotive scenario, this method-
ology enables the specification and verification of such functional properties as, e.g., “once the
service Orchestrator is requested, it always provides at least one response about the status of the
garage/tow truck ordering and at least one response about the status of the car renting”, “it will
never happen that, after the driver’s credit card has been charged and some service ordered, the
credit card charge is revoked”, and “after the garage has been booked, if the tow truck service is
not available then the garage is revoked”.

5. Service publication, discovery and negotiation with C�WS

In the previous sections, we showed that C�WS is particularly suitable for modelling dif-
ferent and typical aspects of SOC. We now present a dialect of C�WS (Section 5.1) equipped
with mechanisms of concurrent constraint programming, which permits modelling the phases
of dynamic service publication, discovery and negotiation. This way, we obtain a linguistic for-
malism capable of modelling all the phases of the life cycle of SOC applications (as we show in
Section 5.2).

5.1. A C�WS’s dialect for concurrent constraint programming

We describe here how we can define a dialect of C�WS exploiting the concurrent constraint
programming paradigm to model Service Level Agreement (SLA) achievements. Technically,
we take advantage of the fact that C�WS syntax and operational semantics are parametrically
defined with respect to the set of values, the syntax of expressions that operate on values and,
therefore, the definition of the pattern-matching function. We follow the approach put forward
in cc-pi [43], a language that combines basic features of name-passing calculi with concurrent
constraint programming [44]. Specifically, we show that constraints and operations on them can
be smoothly incorporated in C�WS, and propose a disciplined way to model and manipulate
multisets of constraints. This way, SLA requirements are expressed as constraints that can be
dynamically generated and composed, and that can be used by the involved parties both for ser-
vice publication and discovery (on the Web), and for the SLA negotiation process. Consistency
of the set of constraints resulting from negotiation means that the agreement has been reached.

Intuitively, a constraint is a relation among a specified set of variables which gives some
information on the set of possible values that these variables may assume. Such information is

31

usually not complete as a constraint may be satisfied by several assignments of values to the
variables. For example, we can employ constraints such as

cost > 350 cost = bw · 0.05 z = 1 / (1 + |x − y|)

In practice, we do not take a definite standing on which of the many kind of constraints to use.
From time to time, the appropriate kind of constraints to work with should be chosen depending
on what one intends to model.

Formally a constraint c is represented as a function c : (V → D) → {true, false}, where
V is the set of constraint variables (that, as explained in the sequel, is included in the set of
C�WS names), and D is the domain of interpretation of V , i.e. the domain of values that the
variables may assume. If we let η : V → D be an assignment of domain elements to variables,
then a constraint is a function that, given an assignment η, returns a truth value indicating if the
constraint is satisfied by η. For instance, the assignment {cost 7→ 500} satisfies the first constraint,
while {cost 7→ 500, bw 7→ 8000} does not satisfy the second constraint, that is, instead, satisfied
by {cost 7→ 400, bw 7→ 8000}. An assignment that satisfies a constraint is called a solution.

The constraints we have presented are called crisp in the literature, because they can only be
satisfied or violated. In fact, we can also use more general constraints called soft constraints [45].
These constraints, given an assignment for the variables, return an element of an arbitrary con-
straint semiring (c-semiring, [46]), namely a partially ordered set of ‘preference’ values equipped
with two suitable operations for combination (×) and comparison (+) of (tuples of) values and
constraints. Formally, a c-semiring is an algebraic structure 〈A,+,×, 0, 1〉 such that: A is a set
and 0, 1 ∈ A; + is a binary operation on A that is commutative, associative, idempotent, 0 is its
unit element and 1 is its absorbing element; × is a binary operation on A that is commutative,
associative, distributes over +, 1 is its unit element and 0 is its absorbing element. Operation +

induces a partial order ≤ on A defined by a ≤ b iff a + b = b, which means that a is more con-
strained than b. The minimal element is thus 0 and the maximal 1. For example, crisp constraints
can be understood as soft constraints on the c-semiring 〈{true, false},∨,∧, false, true〉.

The C�WS dialect we work with in this section specializes expressions to also include con-
straints, ranged over by c, and constraint multisets, ranged over by C, and to be formed by using
the following operators.

• Consistency check: predicate isCons(C) takes a constraint multiset C and holds true if C
is consistent. Formally, isCons({c1, . . . , cn}) holds true if there exists an assignment η such
that c1η∧ . . .∧cnη , false, i.e. if the combination of all constraints has at least a solution4.
The predicate isCons() is defined for crisp constraints. However, we can generalize its
definition to soft constraints by requiring that it is satisfied if there exists an assignment η
such that c1η × . . . × cnη , 0.

• Entailment check: predicate C ` c takes a constraint multiset C and a constraint c and
holds true if c is entailed by C. Formally, {c1, . . . , cn} ` c holds true if for all assignments η
it holds that c1η∧ . . .∧cnη ≤B cη, where ≤B is the partial ordering over booleans (i.e. b1 ≤B

b2 iff b1 ∨ b2 = b2). Also this predicate can be generalized to soft constraints by requiring
that {c1, . . . , cn} ` c holds true if for all assignments η it holds that c1η × . . . × cnη ≤ cη.

4We do not consider here the well-studied problem of solving a constraint system. Among the many techniques
exploited to this aim, we mention dynamic programming [47, 48] and branch and bound search [49].

32

isCons(C] {c})
M(〈c, x〉,C) = {x 7→ C}

C ` c
M(〈c`, x〉,C) = {x 7→ C}

Table 13: Pattern-matching function (additional rules)

• Retraction: operation C − c takes a constraint multiset C and a constraint c and returns the
multiset C\{c} if c ∈ C, otherwise returns C.

• Multiset union: binary operator] is the standard union operator between multisets.

Since constraints and constraint multisets are expressions, they need to be evaluated. The
(expression) evaluation function [[]] acts on constraints and constraint multisets as the iden-
tity, except for constraints containing C�WS variables, for which the function is undefined.
Therefore, evaluated constraints and constraint multisets are values that can be communicated
by means of synchronization of invoke and receive activities and can replace variables by means
of application of substitutions to terms.

To efficiently implement the primitives of the concurrent constraint programming paradigm,
we tailor the rules in Table 3 (Section 3.1) defining the pattern-matching function M(,) to
deal with constraints and operations on them, by adding the rules in Table 13. We assume here
that tuples can be arbitrarily nested. The original matching rules (reported in Table 3) are still
valid and state that variables match any value (thus, e.g., M(x,C) = {x 7→ C}), two values
match only if they are identical, and two tuples match if they have the same number of fields and
corresponding fields do match. The new rules allow a two-field tuple to match a single value in
two specific cases: a tuple 〈c, x〉 and a multiset of constraints C do match if C] {c} is consistent,
while a tuple 〈c`, x〉 and a multiset of constraints C do match if c is entailed by C; in both cases,
the substitution {x 7→ C} is returned. Notably, by applying the operator ` to a constraint one can
require an entailment check instead of a consistency check.

The concurrent constraint computing model is based on a shared store of constraints that
provides partial information about possible values that variables can assume. In C�WS the store
of constraints is represented by the following service:

storeC , [n] (n!〈C〉 | ∗ [x] n?〈x〉. (ps • oget!〈x〉 | [y] ps • oset?〈y〉. n!〈y〉))

where ps is a distinguished partner, oget and oset are distinguished operations. Other services can
interact with the store service in mutual exclusion, by acquiring the lock (and, at the same time,
the stored value) with a receive along ps • oget and by releasing the lock (providing the new stored
value) with an invoke along ps • oset. Notably, local stores of constraints can be simply modelled
by restricting the scope of the partner name ps.

The store is composed in parallel with the other services, which can act on it by performing
operations for adding/removing constraints to/from the store (tell and retract, respectively), and
for checking entailment/consistency of a constraint by/with the store (ask and check, respec-
tively). These four operations can be rendered in C�WS as follows:

〈〈tell c.s〉〉 = [n] (n!〈c〉 | [y] n?〈y〉. [x] ps • oget?〈〈y, x〉〉. ({| ps • oset!〈x] {y}〉 |} | 〈〈s〉〉))

〈〈ask c.s〉〉 = [n] (n!〈c`〉 | [y] n?〈y〉. [x] ps • oget?〈〈y, x〉〉.({| ps • oset!〈x〉 |} | 〈〈s〉〉))

〈〈check c.s〉〉 = [n] (n!〈c〉 | [y] n?〈y〉. [x] ps • oget?〈〈y, x〉〉. ({| ps • oset!〈x〉 |} | 〈〈s〉〉))

〈〈retract c.s〉〉 = [n] (n!〈c〉 | [y] n?〈y〉. [x] ps • oget?〈x〉. ({| ps • oset!〈x − y〉 |} | 〈〈s〉〉))
33

where n is fresh. Essentially, each operation is a term that first takes the store of constraints (thus
acquiring the lock so that other services cannot concurrently interact with the store) and then
returns the (possibly) modified store (thus releasing the lock). Since the invoke activities n!〈c〉
and n!〈c`〉 can be performed only if [[c]] is defined, i.e. if c does not contain C�WS variables,
the store can only contain evaluated constraints. Availability of the store is guaranteed by the
fact that, once the store and the lock have been acquired, the activities reintroducing the store
and releasing the lock are protected from the effect of kill activities. This disciplined use of the
store permits to preserve its consistency. Notably, the matching rules in Table 13 are essential for
faithfully modelling the semantics of the original operations. Also notice that, in the definition
of tell, the expression x] {y} is well-defined, since the variable x is replaced by a multiset of
constraints while y by a single constraint.

While tell and ask are the classical concurrent constraint programming primitives, operations
check and retract are borrowed from [43]. In particular, operation retract is debatable since its
adoption prevents the store of constraints to be ‘monotonically’ refined. In fact, in concurrent
constraint programming a computation step does not change the value of a variable, but may rule
out certain values that were previously possible; therefore, the set of possible values for the vari-
able is contained in the set of possible values at any prior step. This monotonic evolution of the
store during computations permits to define the result of a computation as the least upper bound
of all the stores occurring along the computation and provides concurrent constraint languages
with a simple denotational semantics in which programs are identified to closure operators on
the semi-lattice of constraints [50]. Therefore, if one wants to exploit some of the properties
of concurrent constraint programming that require monotonicity, he must consider the fragment
of C�WS without retract. On the other hand, in the context of dynamic service discovery and
negotiation, the use of operation retract enables modelling many frequent situations where it is
necessary to remove a constraint from the store for, e.g., weakening a request.

To avoid interference between communication and operations on the store, we do not allow
constraints in the store to contain variables, thus they cannot change due to application of sub-
stitutions generated by communication. Indeed, suppose constraints in the store may contain
variables and consider the following example:

[x] (store∅ | tell(x ≤ 5). (n!〈6〉 | n?〈x〉))

After action tell has added x ≤ 5 to the store, communication along the endpoint n can modify the
constraint in 6 ≤ 5. This way, the communication can make the store inconsistent. This means
that the write-once variables of C�WS are not suitable for modelling constraint variables.

Therefore, as we stated before, we do not allow constraints in the store to contain variables.
Instead, they can use specific names, that we call constraint variables and, for the sake of presen-
tation, write as x, y, . . . (i.e. in the sans serif style). Indeed, names are not affected by expression
evaluation (i.e. [[x]] = x) and by substitution application (i.e. x · σ = x). Moreover, names can be
delimited, thus allowing us to model local constraints. Notice however that constraints occurring
as arguments of operations may contain variables so that we can specify constraints that will be
dynamically determined. E.g., we can write tell (cost > xmin cost).s; since [[cost > xmin cost]] is
undefined, this operation is blocked until variable xmin cost is substituted by a value.

Besides ask, tell, retract and check, inter-service communication can be used to implement
many protocols allowing two parties to generate new constraints. For instance, in [43], service
synchronization works like two global ask and tell constructs: as a result of the synchronization
between the output x̄〈y〉 and the input x〈y′〉 the new constraint y = y′ is added to the store. There-
fore, synchronization allows local constraints (i.e. constraints with restricted names) to interact,

34

thus establishing an SLA between the two parties, and (possibly) to become globally available.
Differently, C�WS does not allow communication to directly generate new constraints: e.g., an
invoke p • o!〈x〉 and a receive p • o?〈y〉 cannot synchronize, becauseM(y, x) does not hold. Thus,
to create constraints of the form x = y, where each of x and y is initially local to only one party,
we can use the standard C�WS communication mechanism together with operation tell. For
example, the following term

storeC | p • o!〈x〉 | [z] p • o?〈z〉. tell (z = y). s (2)

for z fresh in s, adds to the store the constraint x = y, if it is consistent with C. This protocol
is simple and divergence-free, but it may introduce deadlocked states in the terms, because the
communication along endpoint p • o takes place before the consistency check (performed by
operation tell). For other protocols that permit establishing new constraints by overtaking this
problem, we refer the interested reader to [23]. Anyway, since the problem mentioned above
does not occur in the specification in Section 5.2, in the sequel we implicitly rely on protocol (2).

5.2. Automatic discovery and negotiation in the automotive case study

We show here how our framework can be used to integrate publication, discovery and negoti-
ation into the automotive case study presented in Section 2.2 and specified in COWS in Section 4.

Initially, each on road service (e.g. garages, tow trucks, . . .) has to publish its service descrip-
tion on a service registry. For example, assume that a garage service description consists of: a
string identifying the kind of provided service, the provider’s partner name, and a constraint that
defines the garage location. By assuming that the registry provides the operation opub through
the partner name preg, a garage service can request the publication of its description as follows:

preg • opub!〈“garage”, pgarage, gps = (4348.1143N, 1114.7206E) 〉

where gps is a constraint variable.
The service registry is defined as

[oDB] (∗ [xtype, xp, xc] preg • opub?〈xtype, xp, xc〉.preg • oDB!〈xtype, xp, xc〉 | Rsearch)

For each publication request received along the endpoint preg • opub from a provider service, the
registry service outputs a service description along the private endpoint preg • oDB. The parallel
composition of all these outputs represents the database of the registry. The subservice Rsearch,
serving the searching requests, is defined as

Rsearch , ∗ [xtype, xclient, xc, oaddToList, oaskList]
preg • osearch?〈xtype, xclient, xc〉. [ps] (store∅ | tell xc.R′ | List)

R′ , [k] (∗ [xp, xconst] preg • oDB?〈xtype, xp, xconst〉.
({|preg • opub!〈xtype, xp, xconst〉|} | check xconst. preg • oaddToList!〈xp〉)

| � δ. (kill(k) | {| [xlist] preg • oaskList?〈xlist〉. xclient • oresp!〈xlist〉 |}))

When a searching request is received along preg • osearch, the registry service initializes a new
local store (delimitation [ps] makes store∅ inaccessible outside of service Rsearch) by adding the
constraint within the query message. Then, it cyclically reads a description (whose first field is
the string specified by the client) from the internal database, checks if the provider constraints
are consistent with the store and, in case of success, adds the provider’s partner name to a list (by

35

exploiting an internal service List, that provides operations oaddToList and oaskList). After δ time
units from the initialization of the local store, the loop is terminated by executing a kill activity
and the current list of providers for service type xtype is sent to the client. Notably, reading a
description in the database, in this case, consists of an input along preg • oDB followed by an
output along preg • opub; this way we are guaranteed that, after being consumed, the description
is correctly added to the database. It is worth noticing that, for the sake of simplicity, service
descriptions are non-deterministically retrieved, thus the same provider can occur in the returned
list many times. This behaviour could be avoided by refining the specification, e.g. by tagging
each service description with an index (stored in an additional field) that is then exploited to read
the descriptions in an ordered way.

After the user’s car breaks down and Orchestrator is triggered, the service Discovery of the
in-vehicle platform will receive from Orchestrator a request containing the GPS data of the car,
that it stores in xloc, and a string identifying the kind of the required services (see the specification
in Section 4). By exploiting the latter information, it will know that it has to search a garage,
a tow truck and a rental car service. For example, the component taking care of discovering a
garage service can be

preg • osearch!〈“garage”, pcar, dist(xloc, gps) < 20 〉 | [xgarageList] pcar • oresp?〈xgarageList〉

where the constraint dist(xloc, gps) < 20 means that the required garages must be less than 20
km far from the stranded car’s actual location.

Once the discovery phase terminates and Reasoner communicates the best garage service to
Orchestrator, the latter and the selected garage engage in a negotiation phase in order to sign an
SLA. First, Orchestrator invokes the operation oorderGar provided by the selected garage (see the
term OrderGarageAndTowTruck in Section 4); then, it starts the negotiation by performing an
operation tell that adds Orchestrator’s local constraints (i.e. constraints with restricted constraint
variables) to the shared global store; finally, it synchronizes with the garage service, by invoking
osync, for sharing its local constraints with it.

[cost, duration]
tell ((cost < 1500 ∧ duration < 48) ∨ (cost < 800 ∧ duration > 48)).
(xgarage • osync!〈cost, duration〉
| pcar • ogarageOK?〈xgps, xgarageInfo〉. · · · + pcar • ogarageFail?〈〉. · · ·)

In our example, the constraints state that for a repair in less than two days (i.e. 48 hours) the
driver is disposed to spend up to 1500 Euros, otherwise he is ready to spend less than 800 Euros.

After the synchronization with Orchestrator, the selected garage service tries to impose its
first-rate constraint c = ((cost’ > 2000 ∧ 6 < duration’ < 24) ∨ (cost’ > 1500 ∧ duration’ > 24))
and, if it fails to reach an agreement within δ′ time units, weakens the requirements and retries
with the constraint c′ = ((cost’ > 1700 ∧ 6 < duration’ < 24) ∨ (cost’ > 1200 ∧ duration’ >
24)). Both constraints are specifically generated by the garage service for the occurred engine
failure, by exploiting the transmitted diagnostic data. After δ′′ time units, if also the second
attempt fails, it gives up the negotiation. This negotiation task is modelled as follows:

[xcost, xduration, cost’, duration’]
pgarage • osync?〈xcost, xduration〉. tell (xcost = cost’ ∧ xduration = duration’).

(tell c. xcust • ogarageOK!〈garageGPS, garageInfo〉
+ � δ′ . (tell c′. xcust • ogarageOK!〈garageGPS, garageInfo〉

+ � δ′′ . xcust • ogarageFail!〈〉))
36

Notably, operations tell could not be directly used as guards for the choice operator. Thus, a
term like tell c. s + � e. s′ should be considered as an abbreviation for

[p, q, o] (check c. (p • o!〈〉 | q • o?〈〉. tell c. s) | � e. s′ + p • o?〈〉. q • o!〈〉)

Intuitively, if the constraint c is consistent with the store, the timer can be stopped (i.e. communi-
cation along p • o makes a choice and removes the wait activity); afterward, the constraint can be
added to the store, provided that other interactions that took place in the meantime do not lead to
inconsistency (which, anyway, is not the case in our scenario). Otherwise, if the timeout expires,
the constraint cannot be added to the store.

6. Related work

We have already pointed out, mainly in Section 3.1.1, main relationships of C�WS with
other process calculi. By summing up, C�WS borrows, e.g., global scoping and non-binding
input from update calculus [33] and fusion calculus [34], distinction between variables and values
from value-passing CCS [51], Applied π-calculus [52] and Distributed π-calculus [53], pattern-
matching from KLAIM [54], prioritised activities from variants of CCS with priority [55, 56, 57],
and forced termination and protection from StAC [58].

Many works put forward enrichments of some well-known process calculus with constructs
inspired by those of WS-BPEL. Most of them deal with issues of web transactions such as inter-
ruptible processes, failure handlers and time. This is, for example, the case of [4, 5, 59, 60] that
present timed and untimed extensions of the π-calculus, called webπ and webπ∞, tailored to study
a simplified version of the scope construct of WS-BPEL. Other proposals on the formalization
of flow compensation are [61, 62] that give a more compact and closer description of the Sagas
mechanism [32] for dealing with long running transactions, while some other works [4, 60] have
concentrated on modelling web transactions and on studying their properties in programming
languages based on the π-calculus. In contrast, C�WS aims at dealing at once with many dif-
ferent and typical aspects of SOC, thus modelling an expressive subset of WS-BPEL rather than
only focussing on a few specific constructs.

The formalism closest to C�WS is ws-calculus [7], which has been introduced to formalize
the semantics of WS-BPEL. C�WS represents a more foundational formalism than ws-calculus
in that it does not rely on explicit notions of location and state, it is more manageable (e.g. has
a simpler operational semantics) and has, at least, equally expressive power (as the encoding of
ws-calculus in COWS [21, Section 5.1.3] shows). Moreover, C�WS is equipped with timed
constructs while ws-calculus is not.

For modelling time and timeouts, we have drawn again our inspiration from the rich literature
on timed process calculi (see, e.g., [63, 64] for a survey). In C�WS, basic actions are duration-
less, i.e. instantaneous, and the passing of time is modelled by using explicit actions, like in
TCCS [65]. Moreover, actions execution is lazy, i.e. can be delayed arbitrary long in favour of
passing of time, like in lTCCS [66].

The correlation mechanism was first exploited in [67], that, however, only considers interac-
tion among different instances of a single business process. Instead, to connect the interaction
protocols of clients and of the respective service instances, a large strand of work (among which
we mention [68, 69, 70, 14, 71, 72, 73]) relies on the explicit modelling of interaction sessions
and their dynamic creation (that exploits the mechanism of private names of π-calculus). Ses-
sions are not explicitly modelled in C�WS: they can be identified by tracing all those exchanged

37

messages that are correlated each other through their same contents (as in [12]). We believe that
the mechanism based on correlation sets, that exploits business data and communication proto-
col headers to correlate different interactions, is more robust and fits the loosely coupled world
of Web Services better than that based on explicit session references. It is not a case that also
WS-BPEL uses correlation sets.

Another body of work has been devoted to study mechanisms for comparing global descrip-
tions (i.e. choreographies) and local descriptions (i.e. orchestrations) of a same system. Means
to check conformance of these different views have been defined in [74, 10] and, by relying on
session types, in [75]. C�WS, instead, only considers service orchestration and focuses on mod-
elling the dynamic behaviour of services without the limitations possibly introduced by a layer
of choreography.

Regarding QoS requirement specifications and SLA achievements, most of the proposals in
the literature result from the extension of some well-known process calculus with constructs to
describe QoS requirements. This is, for example, the case of cc-pi [43], a calculus that gen-
eralises the explicit name ‘fusions’ of the pi-F calculus [76] to ‘named constraints’, namely
constraints defined on enriched c-semiring structures. cc-pi, as well as C�WS, combines basic
features of name-passing calculi with those of concurrent constraint programming, firstly intro-
duced in [44], and its soft variant [45]. However, rather than on fusions of names, C�WS relies
on substitutions of variables with values and can thus express also soft constraints by exploiting
the simpler notion of c-semiring. Moreover, C�WS permits defining local stores of constraints
while cc-pi processes necessarily share one global store. [77] introduces another formalism,
namely nmsccp, for soft concurrent constraint programming that permits the nonmonotonic evo-
lution of the store of constraints. Besides the retract operation also used in C�WS, nmsccp
provides an update operation, to relax some constraints of the store dealing with certain vari-
ables while adding a constraint, and a nask operation, to test if a constraint is not entailed by the
store. If and how the latter two operations can be rendered in the variant of C�WS presented in
Section 5.1 is left for future investigation. A similar approach to SLAs negotiation is proposed
in [78], although it is based on fuzzy sets instead of constraints and relies on three different lan-
guages, one for client requests, one for provider descriptions and one for contracts creation and
revocation. SLA compliance has been also the focus of KoS [79] and Kaos [80], two calculi
designed for modelling network aware applications with located services and mobility. In both
cases, QoS parameters are associated to connections and nodes of nets, and operations have a
QoS value; the operational semantics ensures that systems evolve according to SLAs. All the
mentioned proposals aim at specifying and concluding SLAs, while C�WS permits also mod-
elling other service-oriented aspects, such as e.g. service instances and interactions, fault and
compensation handling, and dynamic service publication, discovery and orchestration. Integra-
tions of the concurrent constraint paradigm with process calculi have also been used to define
foundational formalisms for computer music languages. This is the case of the π+-calculus [81],
an extension of the (polyadic) π-calculus with agents that can interact with a store of constraints
by performing ‘tell’ and ‘ask’ actions. Differently from C�WS, the store of constraints is not a
term of the calculus, indeed the operational semantics of π+-calculus is defined over configura-
tions consisting of pairs of an agent and a store, and local stores are not supported.

Some other works, differently from C�WS, exploit static service discovery mechanisms.
For example, [82] introduces an extension of the λ-calculus with primitive constructs for call-
by-contract invocation for which a completely static approach for regulating secure service com-
position has been devised. In particular, an automatic machinery, based on a type system and
a model-checking technique, has been defined to construct a viable plan for the execution of

38

services belonging to a given orchestration. Non-functional aspects are included and enforced
by means of a runtime security monitor. In [83], user’s requests and compositions of web ser-
vices are statically modelled via constraints. Finally, the calculi of contracts of [84] represent a
more abstract approach for statically checking compliance between the client requirements and
the service functionalities. A contract defines the possible flows of interactions of a service, but
does not take into account non-functional properties and, thus, cannot be used for specifying and
negotiating SLAs.

Up to here, we have discussed the relationship between C�WS and other formal languages
for specifying SOC applications and their main features. We conclude now this section with a
discussion about the relationship between C�WS and WS-BPEL, namely the SOC technology
that more than any other has influenced C�WS’s design. On the one hand, C�WS distills out
of WS-BPEL those features that are, in our opinion, absolutely necessary to formally define
the basic elements and mechanisms underlying the SOC paradigm. Indeed, C�WS directly
borrows from WS-BPEL the notions of partner and operation, the communication primitives (for
invoking an operation offered by a service and waiting for an invocation to arrive), the related
mechanism for message correlation, and the timed activity (for delaying the execution for some
amount of time). C�WS also retains the WS-BPEL’s constructs flow, to execute activities in
parallel, and pick, to execute activities selectively, which corresponds to the C�WS’s parallel
composition and choice operators, respectively. On the other hand, while the set of WS-BPEL
constructs is not intended to be a minimal one, C�WS aims at being a foundational model and,
thus, at keeping its semantics rigorous but still manageable and not strongly tight to web services’
current technology. Therefore, some WS-BPEL constructs do not have a precise counterpart in
C�WS, rather they are expressed in terms of more primitive operators. For example, fault and
compensation handlers are rendered in C�WS, as shown in Section 4, by means of the primitives
dealing with termination, i.e. kill, protection and delimitation. Indeed, when a fault occurs during
the execution of a given activity, the kill primitive permits to immediately interrupt the currently
running activities under the scope of the fault (identified by the delimitation operator), while the
protection operator is used to avoid involving any fault/compensation handling behaviour in the
forced termination. Similarly, service instantiation is rendered in C�WS through the replication
operator, while shared states among service instances through variable delimitation. Finally,
as shown in [8], the standard imperative constructs (assignment, while, if-then-else, etc.) can
be easily expressed in C�WS, as well as the remaining features of WS-BPEL, like e.g. the
synchronisation dependencies within flow activities.

7. Concluding remarks and future work

This paper provides a formal account of the SOC paradigm and related technologies. The
introduction of C�WS as a formalism specifically devised for modelling service-oriented appli-
cations is indeed an important step towards the comprehension of the mechanisms underlying
the SOC paradigm. On the one hand, since the design of the calculus has been influenced by the
principles underlying WS-BPEL, C�WS permits modelling in a natural way different and typical
aspects of (web) services technologies, such as multiple start activities, receive conflicts, timed
constructs, delivering of correlated messages, service instances and interactions among them. On
the other hand, C�WS is a foundational formalism, not specifically tight to web services’ current
technology, and borrows many constructs from well-known process calculi, as e.g. π-calculus,
update calculus, StACi, and Lπ. We have illustrated syntax, operational semantics and pragmat-
ics of the calculus by means of a large case study from the automotive domain and a number of

39

more specific examples drawn from it. We have also introduced a dialect of the language that
turned out to be capable of modelling all the phases of the life cycle of service-oriented applica-
tions, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and
execution.

As a further evidence of the quality of the design of our formalism, since its definition a num-
ber of methods and tools have been devised to analyse COWS specifications. We want to mention
here the stochastic extension and the BPMN-based notation defined in [9, 16] to enable quantita-
tive reasoning on service behaviours, the type system introduced in [17] to check confidentiality
properties, the logic and model checker presented in [18] and exploited in [85] to express and
check functional properties of services, the bisimulation-based observational semantics defined
in [19] to check interchangeability of services and conformance against service specifications,
and the symbolic characterisation of the operational semantics of COWS presented in [20] to
avoid infinite representations of COWS terms due to the value-passing nature of communica-
tion. An overview of most of the tools mentioned above and the classes of properties that can
be analysed by using them can be found in [21]. For the time being, the above analysis tools
are applicable to the time-free fragment COWS. We do not envisage any major issue in tailoring
them to C�WS, but leave this extension as a future work.

To complete our programme to lay rigorous methodological foundations and provide sup-
porting tools for specification, validation and development of SOC applications, we plan in the
near future to develop a prototype implementation of C�WS possibly enriched with standard lin-
guistic constructs supporting real application development. This would permit to assess C�WS
practical usability and to shorten the gap between theory and practice. The implementation of a
language based on a process calculus typically consists of a run-time system (a sort of abstract
machine) implemented in a high level language like Java, and of a compiler that, given a program
written in the programming language based on the calculus, produces code that uses the run-time
system above. In the development of our language, we intend to follow a similar approach. In this
regard, the major issue we envisage is the integration of our framework with the current standard
technologies supporting web services interaction, such as WSDL and SOAP. In particular, the
code generated from C�WS services should be able to invoke operations provided by available
web services and, in its turn, to expose its functionalities as a standard web service. Some im-
plementations of service-oriented calculi that could serve as a guide for our work are as follows:
JCaSPiS [86], a Java implementation of the calculus CaSPiS [14] based on a generic framework
that provides recurrent mechanisms for network applications; BliteC [87], a Java tool that ac-
cepts as an input a specification written in Blite [40], a formal orchestration language inspired to
but simpler than WS-BPEL, and returns the corresponding WS-BPEL program together with the
associated WSDL and deployment descriptor files; JOLIE [88], an interpreter written in Java for
a programming language designed for web service orchestration and based on SOCK [12]; JSCL
[89], a coordination middleware for services based on the event notification paradigm of Signal
Calculus [90]; and PiDuce [38], a distributed run-time environment devised for experimenting
web services technologies that implements a variant of asynchronous π-calculus extended with
native XML values, datatypes and patterns.

Acknowledgments. We thank the anonymous reviewers for their useful comments. We also
thank Alessandro Lapadula for his fundamental contribution to the definition of C�WS.

40

References

[1] L. Meredith, S. Bjorg, Contracts and types, Communications of the ACM 46 (2003) 41–47.
[2] F. van Breugel, M. Koshkina, Models and verification of BPEL, Technical Report, Department of Computer Sci-

ence and Engineering, York University, 2006. Available at http://www.cse.yorku.ca/~franck/research/
drafts/tutorial.pdf.

[3] L. Bocchi, C. Laneve, G. Zavattaro, A Calculus for Long-Running Transactions, in: FMOODS, volume 2884 of
LNCS, Springer, 2003, pp. 124–138.

[4] C. Laneve, G. Zavattaro, Foundations of Web Transactions, in: FoSSaCS, volume 3441 of LNCS, Springer, 2005,
pp. 282–298.

[5] C. Laneve, G. Zavattaro, web-pi at Work, in: TGC, volume 3705 of LNCS, Springer, 2005, pp. 182–194.
[6] M. Butler, C. Hoare, C. Ferreira, A Trace Semantics for Long-Running Transactions, in: 25 Years Communicating

Sequential Processes, volume 3525 of LNCS, Springer, 2005, pp. 133–150.
[7] A. Lapadula, R. Pugliese, F. Tiezzi, A WSDL-based type system for WS-BPEL, in: COORDINATION, volume

4038 of LNCS, Springer, 2006, pp. 145–163.
[8] A. Lapadula, R. Pugliese, F. Tiezzi, A Calculus for Orchestration of Web Services, in: ESOP, volume 4421 of

LNCS, Springer, 2007, pp. 33–47.
[9] D. Prandi, P. Quaglia, Stochastic COWS, in: ICSOC, volume 4749 of LNCS, Springer, 2007, pp. 245–256.

[10] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, G. Zavattaro, Choreography and orchestration conformance for system
design, in: COORDINATION, volume 4038 of LNCS, Springer, 2006, pp. 63–81.

[11] C. Laneve, L. Padovani, Smooth Orchestrators, in: FoSSaCS, volume 3921 of LNCS, Springer, 2006, pp. 32–46.
[12] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, G. Zavattaro, SOCK: A Calculus for Service Oriented Computing, in:

ICSOC, volume 4294 of LNCS, Springer, 2006, pp. 327–338.
[13] M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Montanari, A. Ravara, D. San-

giorgi, V. Vasconcelos, G. Zavattaro, SCC: a Service Centered Calculus, in: WS-FM, volume 4184 of LNCS,
Springer, 2006, pp. 38–57.

[14] M. Boreale, R. Bruni, R. De Nicola, M. Loreti, Sessions and Pipelines for Structured Service Programming, in:
FMOODS, volume 5051 of LNCS, Springer, 2008, pp. 19–38.

[15] OASIS WSBPEL TC, Web Services Business Process Execution Language Version 2.0, Technical Report, OASIS,
2007. Available at http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[16] D. Prandi, P. Quaglia, N. Zannone, Formal analysis of BPMN via a translation into COWS, in: COORDINATION,
volume 5052 of LNCS, Springer, 2008, pp. 249–263.

[17] A. Lapadula, R. Pugliese, F. Tiezzi, Regulating data exchange in service oriented applications, in: FSEN, volume
4767 of LNCS, Springer, 2007, pp. 223–239.

[18] A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese, F. Tiezzi, A Logical Verification Methodology for
Service-Oriented Computing, ACM Transactions on Software Engineering and Methodology (2011). To appear.

[19] R. Pugliese, F. Tiezzi, N. Yoshida, On observing dynamic prioritised actions in SOC, in: ICALP, volume 5556 of
LNCS, Springer, 2009, p. 558570.

[20] R. Pugliese, F. Tiezzi, N. Yoshida, A Symbolic Semantics for a Calculus for Service-Oriented Computing, in:
PLACES, volume 241 of ENTCS, Elsevier, 2009, pp. 135–164.

[21] F. Tiezzi, Specification and Analysis of Service-Oriented Applications, PhD Thesis in Computer Science, Diparti-
mento di Sistemi e Informatica, Università degli Studi di Firenze, 2009. Available at http://rap.dsi.unifi.
it/cows.

[22] A. Lapadula, R. Pugliese, F. Tiezzi, C�WS: A timed service-oriented calculus, in: ICTAC, volume 4711 of LNCS,
Springer, 2007, pp. 275–290.

[23] A. Lapadula, R. Pugliese, F. Tiezzi, Service discovery and negotiation with COWS, in: WWV, volume 200(3) of
ENTCS, Elsevier, 2008, pp. 133–154.

[24] A. Brown, S. Johnston, K. Kelly, Using Service-Oriented Architecture and Component-Based Development to
Build Web Service Applications, Technical Report, Rational Software Corporation, 2003.

[25] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S. Thatte, D. Winer, Simple Object
Access Protocol (SOAP) 1.2, W3C recommendation, 2003. Available at http://www.w3.org/TR/SOAP/.

[26] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web Services Description Language (WSDL) 1.1, Tech-
nical Report, W3C, 2001. Available at http://www.w3.org/TR/wsdl/.

[27] UDDI Spec TC, UDDI Specification Technical Committee Draft, Technical Report, OASIS, 2004. Available at
http://uddi.org/pubs/uddi_v3.htm/.

[28] C. Peltz, Web Services Orchestration and Choreography, Computer 36 (2003) 46–52.
[29] N. Koch, Automotive Case Study: UML Specification of On Road Assistance Scenario, Technical Report 1, FAST

GmbH, 2007. Available at http://rap.dsi.unifi.it/sensoriasite/files/FAST_report_1_2007_ACS_
UML.pdf.

41

[30] Sensoria, Software engineering for service-oriented overlay computers, 2005-2010. Web site: http://www.

sensoria-ist.eu/.
[31] P. Mayer, A. Schroeder, N. Koch, A Model-Driven Approach to Service Orchestration, in: SCC, volume 2, IEEE

Computer Society Press, 2008, pp. 533–536.
[32] H. Garcia-Molina, K. Salem, Sagas, in: SIGMOD, ACM Press, 1987, pp. 249–259.
[33] J. Parrow, B. Victor, The update calculus, in: AMAST, volume 1349 of LNCS, Springer, 1997, pp. 409–423.
[34] J. Parrow, B. Victor, The fusion calculus: Expressiveness and symmetry in mobile processes, in: LICS, IEEE

Computer Society Press, 1998, pp. 176–185.
[35] M. Carbone, S. Maffeis, On the expressive power of polyadic synchronisation in π-calculus, Nordic Journal of

Computing 10 (2003) 70–98.
[36] M. Merro, D. Sangiorgi, On asynchrony in name-passing calculi, Mathematical Structures in Computer Science

14 (2004) 715–767.
[37] P. Gardner, C. Laneve, L. Wischik, Linear Forwarders, in: CONCUR, volume 2761 of LNCS, Springer, 2003, pp.

408–422.
[38] S. Carpineti, C. Laneve, L. Padovani, PiDuce - a project for experimenting Web services technologies, Science of

Computer Programming 74 (2009) 777–811.
[39] R. Amadio, I. Castellani, D. Sangiorgi, On Bisimulations for the Asynchronous pi-Calculus, Theoretical Computer

Science 195 (1998) 291–324.
[40] A. Lapadula, R. Pugliese, F. Tiezzi, A formal account of WS-BPEL, in: COORDINATION, volume 5052 of LNCS,

Springer, 2008, pp. 199–215.
[41] R. van Glabbeek, On Specifying Timeouts, in: APC, volume 162 of ENTCS, Elsevier, 2006, pp. 173–175.
[42] R. Pugliese, F. Tiezzi, A COWS Specification of an Automotive Case Study, Technical Report, Dipartimento di

Sistemi e Informatica, Università degli Studi di Firenze, 2011. Available at http://rap.dsi.unifi.it/cows/
automotiveCSinCOWSforJAL.pdf.

[43] M. Buscemi, U. Montanari, CC-Pi: A Constraint-Based Language for Specifying Service Level Agreements, in:
ESOP, volume 4421 of LNCS, Springer, 2007, pp. 18–32.

[44] V. Saraswat, M. Rinard, Concurrent Constraint Programming, in: POPL, ACM Press, 1990, pp. 232–245.
[45] S. Bistarelli, U. Montanari, F. Rossi, Soft concurrent constraint programming, ACM Transactions on Computa-

tional Logic 7 (2006) 563–589.
[46] S. Bistarelli, U. Montanari, F. Rossi, Semiring-based constraint satisfaction and optimization, Journal of the ACM

44 (1997) 201–236.
[47] U. Montanari, F. Rossi, Constraint Relaxation may be Perfect, Artificial Intelligence 48 (1991) 143–170.
[48] S. Bistarelli, Semirings for Soft Constraint Solving and Programming, LNCS, Springer, 2004.
[49] M. Wirsing, G. Denker, C. Talcott, A. Poggio, L. Briesemeister, A Rewriting Logic Framework for Soft Constraints,

in: WRLA, volume 176(4) of ENTCS, Elsevier, 2007, pp. 181–197.
[50] V. A. Saraswat, M. C. Rinard, P. Panangaden, Semantic Foundations of Concurrent Constraint Programming, in:

POPL, ACM Press, 1991, pp. 333–352.
[51] R. Milner, Communication and concurrency, Prentice-Hall, 1989.
[52] M. Abadi, C. Fournet, Mobile values, new names, and secure communication, in: POPL, ACM Press, 2001, pp.

104–115.
[53] M. Hennessy, J. Riely, Resource access control in systems of mobile agents, Information and Computation 173

(2002) 82–120.
[54] R. De Nicola, G. Ferrari, R. Pugliese, KLAIM: A Kernel Language for Agents Interaction and Mobility, Transac-

tions on Software Engineering 24 (1998) 315–330.
[55] R. Cleaveland, G. Lüttgen, V. Natarajan, Priorities in process algebra, Handbook of Process Algebra, chapter 12

(2001) 391–424.
[56] J. Camilleri, G. Winskel, CCS with Priority Choice, Information and Computation 116 (1995) 26–37.
[57] I. Phillips, CCS with priority guards, Journal of Logic and Algebraic Programming 75 (2008) 139–165.
[58] M. Butler, C. Ferreira, An Operational Semantics for StAC, a Language for Modelling Long-Running Business

Transactions, in: COORDINATION, volume 2949 of LNCS, Springer, 2004, pp. 87–104.
[59] M. Mazzara, I. Lanese, Towards a Unifying Theory for Web Services Composition, in: WS-FM, volume 4184 of

LNCS, Springer, 2006, pp. 257–272.
[60] M. Mazzara, R. Lucchi, A pi-calculus based semantics for WS-BPEL, Journal of Logic and Algebraic Program-

ming 70 (2006) 96–118.
[61] R. Bruni, H. Melgratti, U. Montanari, Theoretical foundations for compensations in flow composition languages,

in: POPL, ACM Press, 2005, pp. 209–220.
[62] R. Bruni, M. Butler, C. Ferreira, T. Hoare, H. Melgratti, U. Montanari, Comparing two approaches to compensable

flow composition, in: CONCUR, volume 3653 of LNCS, Springer, 2005, pp. 383–397.
[63] F. Corradini, D. D’Ortenzio, P. Inverardi, On the Relationships among four Timed Process Algebras, Fundamenta

42

Informaticae 38 (1999) 377–395.
[64] X. Nicollin, J. Sifakis, An Overview and Synthesis on Timed Process Algebras, in: CAV, volume 575 of LNCS,

Springer, 1991, pp. 376–398.
[65] F. Moller, C. Tofts, A Temporal Calculus of Communicating Systems, in: CONCUR, volume 458 of LNCS,

Springer, 1990, pp. 401–415.
[66] F. Moller, C. Tofts, Relating Processes With Respect to Speed, in: CONCUR, volume 527 of LNCS, Springer,

1991, pp. 424–438.
[67] M. Viroli, Towards a Formal Foundation to Orchestration Languages, in: WS-FM, volume 105 of ENTCS, Elsevier,

2004, pp. 51–71.
[68] K. Honda, V. T. Vasconcelos, M. Kubo, Language Primitives and Type Discipline for Structured Communication-

Based Programming, in: ESOP, volume 1381 of LNCS, Springer, 1998, pp. 122–138.
[69] M. Carbone, K. Honda, N. Yoshida, Structured Communication-Centred Programming for Web Services, in:

ESOP, volume 4421 of LNCS, Springer, 2007, pp. 2–17.
[70] I. Lanese, F. Martins, A. Ravara, V. Vasconcelos, Disciplining Orchestration and Conversation in Service-Oriented

Computing, in: SEFM, IEEE Computer Society Press, 2007, pp. 305–314.
[71] L. Caires, H. Vieira, Conversation types, Theor. Comput. Sci. 411 (2010) 4399–4440.
[72] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, in: POPL, ACM Press, 2008, pp.

273–284.
[73] R. Bruni, I. Lanese, H. Melgratti, E. Tuosto, Multiparty Sessions in SOC, in: COORDINATION, volume 5052 of

LNCS, Springer, 2008, pp. 67–82.
[74] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, G. Zavattaro, Choreography and Orchestration: A Synergic Approach

for System Design, in: ICSOC, volume 3826 of LNCS, Springer, 2005, pp. 228–240.
[75] M. Carbone, K. Honda, N. Yoshida, A Calculus of Global Interaction based on Session Types, in: DCM, volume

171(3) of ENTCS, Elsevier, 2007, pp. 127–151.
[76] L. Wischik, P. Gardner, Explicit fusions, Theoretical Computer Science 340 (2005) 606–630.
[77] S. Bistarelli, F. Santini, A Nonmonotonic Soft Concurrent Constraint Language for SLA Negotiation, in: VODCA,

volume 236 of ENTCS, Elsevier, 2009, pp. 147–162.
[78] D. Bacciu, A. Botta, H. Melgratti, A fuzzy approach for negotiating quality of services, in: TGC, volume 4661 of

LNCS, Springer, 2006, pp. 200–217.
[79] R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, E. Tuosto, A Formal Basis for Reasoning on Programmable

QoS, in: Verification: Theory and Practice, volume 2772 of LNCS, Springer, 2003, pp. 436–479.
[80] R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, E. Tuosto, A Process Calculus for QoS-Aware Applications,

in: COORDINATION, volume 3454 of LNCS, Springer, 2005, pp. 33–48.
[81] J. Dı́az, C. Rueda, F. Valencia, π+-calculus: A Calculus for Concurrent Processes with Constraints, CLEI electronic

journal 1 (1998).
[82] M. Bartoletti, P. Degano, G. Ferrari, Security Issues in Service Composition, in: FMOODS, volume 4037 of LNCS,

Springer, 2006, pp. 1–16.
[83] A. Lazovik, M. Aiello, R. Gennari, Encoding Requests to Web Service Compositions as Constraints, in: CP,

volume 3709 of LNCS, Springer, 2005, pp. 782–786.
[84] M. Bravetti, G. Zavattaro, Contract Based Multi-party Service Composition, in: FSEN, volume 4767 of LNCS,

Springer, 2007, pp. 207–222.
[85] F. Banti, R. Pugliese, F. Tiezzi, An Accessible Verification Environment for UML Models of Services, Journal of

Symbolic Computation 46 (2011) 119–149.
[86] L. Bettini, R. De Nicola, M. Lacoste, M. Loreti, Implementing Session Centered Calculi, in: COORDINATION,

volume 5052 of LNCS, Springer, 2008, pp. 17–32.
[87] L. Cesari, R. Pugliese, F. Tiezzi, A tool for rapid development of WS-BPEL applications, SIGAPP Applied

Computing Review 11 (2010) 27–40.
[88] F. Montesi, C. Guidi, R. Lucchi, G. Zavattaro, JOLIE: a Java Orchestration Language Interpreter Engine, in:

MTCoord, volume 181 of ENTCS, Elsevier, 2007, pp. 19–33.
[89] G. Ferrari, R. Guanciale, D. Strollo, E. Tuosto, Event-Based Service Coordination, in: Concurrency, Graphs and

Models, volume 5065 of LNCS, Springer, 2008, pp. 312–329.
[90] G. Ferrari, R. Guanciale, D. Strollo, Event based service coordination over dynamic and heterogeneous networks,

in: ICSOC, volume 4294 of LNCS, Springer, 2006, pp. 453–458.

43

