
A formal account of WS-BPEL?

Alessandro Lapadula, Rosario Pugliese and Francesco Tiezzi

Dipartimento di Sistemi e Informatica Università degli Studi di Firenze

Abstract. We introduce Blite, a lightweight language for web services orches-
tration designed around some of WS-BPEL peculiar features like partner links,
process termination, message correlation, long-running business transactions and
compensation handlers. Blite formal presentation helps clarifying some ambigu-
ous aspects of the WS-BPEL specification, which have led to engines imple-
menting different semantics and, thus, have undermined portability of WS-BPEL
programs over different platforms. We illustrate the main features of Blite by
means of many examples, some of which are also exploited to test and compare
the behaviour of three of the most known free WS-BPEL engines.

1 Introduction

There is an ever increasing acceptance of WS-BPEL (Web Services Business Process
Execution Language, [23]) as a standard language for service composition within and
across multiple enterprises. The fact that it has become an OASIS standard, however,
has not solved all the difficulties of using the language. Indeed, WS-BPEL comes with-
out a formal semantics and its specification document [23], written in ‘natural’ lan-
guage, contains a fair number of acknowledged ambiguous aspects that may lead to
different interpretations. For example, the relationship between WS-BPEL (multiple)
start activities and the mechanisms handling race conditions has not been fully ex-
plored; moreover, if suitable measures for ‘protecting’ such critical activities as fault
and compensation handlers are not taken into account, then subtle behaviours can arise
when implementing activities that cause immediate termination of other activities.

The design of WS-BPEL applications is difficult and error-prone also due to the
presence of such intricate features as concurrency and race conditions, forced termi-
nation, multiple instances and message correlation, long-running business transactions
and compensation handlers. It would thus benefit from the use of formal methods be-
cause these can provide a framework to precisely describe some aspects of an applica-
tion, to state and prove its properties, and to direct attention towards issues that might
otherwise be overlooked.

As a step in this direction, in this paper we introduce Blite, a ‘lightweight’ variant
of WS-BPEL designed around the above mentioned features. Blite, being obtained by
dropping redundant features from the full-fledged language, permits to focus on those
fragments of the design that are more challenging and need more attention. For example,
Blite clarifies the relationship between compensation activities and the control flow of
the originating process, and illustrates the mechanisms for service instance creation and
identification, and their interplay. Our study can also contribute to the many discussions
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on compensation and correlation which have been reported by the WS-BPEL technical
committee [22] (see, e.g., discussions related to issues 66, 207 and 271).

Moreover, Blite’s formal presentation can help clarifying many ambiguous aspects
of the WS-BPEL specification and, thus, can be used prescriptively to drive implemen-
tations of future WS-BPEL engines. In fact, by means of several examples, we test and
compare three of the most known free BPEL engines, namely ActiveBPEL [1], Apache
ODE [2] and Oracle BPEL Process Manager [3]. As a matter of fact, the considered
engines exhibit quite different behaviours and diverge from the WS-BPEL specifica-
tion in many important aspects. This is complicating the task of developing WS-BPEL
applications and undermining their portability across different platforms.

We also believe that the formalization of WS-BPEL’s operational semantics,
through the introduction of Blite, can also enable tailoring proof techniques and an-
alytical tools typical of process calculi to the needs of WS-BPEL applications. Indeed,
on the one hand, alike other standards enabling the web services technology, WS-BPEL
does not provide support for guided forms of application development and analysis. On
the other hand, it has been shown that type systems, model checking and (bi)simulation
analysis provide adequate tools to address topics relevant to the web services technol-
ogy (see e.g. [21, 26]). In the end, this ’proof technology’ can pave the way for the
development of (semi-)automatic property validation tools.

The rest of the paper is organized as follows. Section 2 presents Blite’s syntax and
operational semantics. Section 3 illustrates most of the language features at work on
modelling a shipping service scenario borrowed from the official WS-BPEL specifica-
tion. Section 4 presents many peculiar examples and the results of our experimenta-
tion with the three WS-BPEL engines mentioned above. Section 5 touches upon more
closely related work and directions for future work.

2 Blite: a ‘lightweight’ variant of WS-BPEL

The language Blite1 is a simplification of WS-BPEL designed around some of its pecu-
liar features like partner links, process termination, message correlation, long-running
business transactions and compensation handlers. Blite is the result of the usual tension
between handiness and expressiveness. Therefore, to keep the design of the language
manageable, we intentionally left out other important aspects, including timeouts, event
and termination handlers, flow graphs, and sophisticated forms of data handling.

Blite provides a formal description of service deployments by only retaining rel-
evant implementation details such as partner links, service definitions and correlation
sets. For example, the roles played by service partners in a service interaction are ex-
plicitly indicated through partner links and partners, while such aspects as physical ser-
vice binding described in associated WSDL documents are abstracted away. In request-
response interactions, for example, partner links indicate two partners because the re-
questing partner must provide a callback operation used by the receiving partner to send
notifications. Instead, in one-way interactions a partner link indicates a single partner
because one of the parties provides all the invoked operations. Besides asynchronous

1 We refer the interested reader to [18] for a deeper presentation of which aspects of WS-BPEL
are supported by Blite and their mapping.



Basic activities b ::= inv ` i o x̄ | rcv ` r o x̄ | x := e invoke, receive, assign
| empty | throw | exit empty, throw, exit

Structured activities a ::= b | if(x){a1}{a2} | while(x) {a} basic, conditional, iteration
| a1 ; a2 | ∑

j∈J rcv ` r
j o j x̄ j ; a j sequence, pick

| a1 | a2 | [a • a f ? ac] parallel, scope

Start activities r ::= rcv ` r o x̄ | ∑
j∈J rcv ` r

j o j x̄ j ; a j receive, pick
| r ; a | r1 | r2 | [r • a f ? ac] sequence, parallel, scope

Services s ::= [r • a f ] | µ ` a | µ ` a , s definition, instance, multiset

Deployments d ::= {s}c | d1‖ d2 deployment, composition

Table 1. Syntax of Blite

invocation, WS-BPEL also provides a construct for synchronous invocation of remote
services. This construct forces the invoker to wait for an answer by the invoked service,
that indeed performs a pair of operations receive-reply. In Blite, this behaviour is ren-
dered in terms of a pair of activities invoke-receive executed by the invoker and a pair
of activities receive-invoke executed by the invoked service.

An important aspect is that, in general, the information provided by partner links is
not enough to deliver messages to a service. Indeed, since services are instantiated to
serve the received requests, messages need to be delivered not only to the correct part-
ner, but also to the correct instance of the service that the partner provides. To achieve
this, WS-BPEL relies on the business data exchanged rather than on specific mech-
anisms, such as WS-Addressing [9] or low-level correlation methods based on SOAP
headers. Specifically, Blite exploits correlation variables that permit to declare the parts
of a message that are instance dependent, e.g. order number or client id, so that a mes-
sage can be routed to the correct service instance on the basis of the values of the
correlation variables it provides, independently of any routing mechanism.

Syntax. The syntax of Blite is given in Table 1. Services are structured activities built
from basic activities by exploiting operators for conditional choice if(·){·}{·} , iteration
while(·) {·} , sequential composition · ; · , pick

∑
j∈J rcv · · · ; · (i.e., external choice with

the constraint that | J |> 1), parallel composition · | · and scope [· • · ? ·]. A scope
activity [a • a f ? ac] groups a primary activity a together with a fault handling activity
a f and a compensation activity ac. Start activities r are structured activities that initially
can only execute receive activities.

In the sequel, we shall use · + · to abbreviate binary external choice. We let se-
quence have higher priority (i.e. bind more tightly) than parallel composition and ex-
ternal choice, i.e. a1 ; a2 | a3 ; a4 stands for (a1 ; a2) | (a3 ; a4) and a1 ; a2 + a3 stands for
(a1 ; a2) + a3. Moreover, we adopt the convention that fault and compensation activities
may be omitted from a scope construct, in which case they are intended to be throw and
empty, respectively.

Data can be shared among different activities through shared variables (ranged over
by x, x′, . . . ). The set of manipulable values (ranged over by v, v′, . . . ) is left unspecified;
however, we assume that it includes the set of partner names (ranged over by p, q, . . . )



and the set of operation names (ranged over by o, o′, . . . ). We use u to range over
partners and variables and w to range over values and variables. Expressions (ranged
over by e, e′, . . .) are left unspecified but contain, at least, values and variables.

Notation ·̄ stands for tuples of objects, e.g. x̄ is a compact notation for denoting the
tuple of variables 〈x1, . . . , xh〉 (with h ≥ 0). We assume that variables in the same tuple
are pairwise distinct. The special notation ·̃ stands for tuples of one or two objects, e.g. p̃
denotes either 〈p1, p2〉 or 〈p1〉. Tuples can be constructed using a concatenation operator
· : ·, i.e. 〈p, u〉 : 〈x1, . . . , xh〉 returns 〈p, u, x1, . . . , xh〉. We will write Z , W to assign a
symbolic name Z to the term W.

Partner links ` r of receive activities can be either 〈p, u〉 or 〈p〉, where p is the partner
providing the operation and u is a partner or variable used to send messages in reply.
Indeed, service partners used for receiving messages must be known at design-time,
while the partners used to send messages in reply may be dynamically determined.
Partner links ` i within invoke activities can be either 〈u, p〉 or 〈u〉, where u is the partner
providing the operation and, possibly, p is a partner used to receive messages in reply.
Like before, this latter partner must be statically known, thus it cannot be a variable.

Deployments are finite compositions of multisets of service instances µ ` a, con-
taining at most one service definition [r • a f ] and associated to a correlation set c,
namely a (possibly empty) set of correlation variables. A service definition provides
a ‘top-level’ scope (i.e. a scope that cannot be compensated) and offers a choice of al-
ternative receives among multiple start activities. Each service instance µ ` a has its
own (private) state µ. States are (partial) functions mapping variables to values and are
written as collections of pairs of the form {x 7→ v}. The state obtained by updating µ
with µ′, written as µ ◦ µ′, is inductively defined by: µ ◦ µ′(x) = µ′(x) if x ∈ dom(µ′)
(where dom(µ) denotes the domain of µ) and µ(x) otherwise. The empty state is denoted
by ∅. In the sequel, we will only consider well-formed deployments, i.e. compositions
where the sets of partners used for handling requests within different deployments are
pairwise disjoint. The rationale is that each service definition has its own partner names
and all its instances run within the same deployment where the definition resides.

Operational semantics. The semantics is defined over an enriched syntax that also
includes protected activities LaM, unsuccessful termination stop, messages� p̃ : o : v̄�
and scopes of the form [a • a f ? ac 4 ad]. The first three ‘auxiliary’ activities are used
to replace, respectively, unsuccessfully completed scopes (with their protected default
compensation), compulsorily or faultily terminated services (with stop), and invoke
activities (with the message they produced). Instead, such scopes as [a • a f ? ac 4 ad]
are dynamically generated to store in ad the compensation activities of the immediately
enclosed scopes that have successfully completed, together with the order in which they
must be executed. In the sequel, empty, exit, throw, stop and messages will be called
short-lived activities and will be generically indicated by sh.

The operational semantics of Blite deployments is defined in terms of a structural
congruence and a reduction relation. The structural congruence, written ≡, identifies
syntactically different terms which intuitively represent the same term. It is defined as
the least congruence relation induced by a given set of equational laws. In Table 2, we
explicitly show, in the upper part, the laws for empty, stop, protected activities, mes-
sages and scopes, and, in the lower part, the laws for services and deployments. Stan-



a | empty ≡ a empty ; a ≡ a ; empty ≡ a stop | stop ≡ stop stop ; a ≡ stop

LLaMM ≡ LaM LshM ≡ sh L� p̃ :o : v̄�| aM ≡� p̃ :o : v̄�| LaM
[a • a f ? ac] ≡ [a • a f ? ac 4 empty] (� p̃ :o : v̄�| a1) ; a2 ≡� p̃ :o : v̄�| (a1 ; a2)

[� p̃ :o : v̄�| a • a f ? ac 4 ad] ≡� p̃ :o : v̄�| [a • a f ? ac 4 ad] if ¬a⇓throw

a ≡ a′ a f ≡ a′f ac ≡ a′c ad ≡ a′d

[a • a f ? ac 4 ad] ≡ [a′ • a′f ? a′c 4 a′d]

r ≡ r′ a f ≡ a′f

{[r • a f ] , s}c ≡ {s , [r′ • a′f ]}c
a ≡ a′

{µ ` a , s}c ≡ {s , µ ` a′}c
d1‖ d2 ≡ d2‖ d1 (d1‖ d2) ‖ d3 ≡ d1‖ (d2‖ d3) {µ ` empty , s}c ≡ {s}c
{µ ` stop , s}c ≡ {s}c {µ ` empty}c‖ d ≡ d {µ ` stop}c‖ d ≡ d

Table 2. Structural congruence for Blite activities and deployments

dard laws stating, e.g., that sequence is associative, parallel composition is commutative
and associative, are omitted. A few observations on the structural laws are in order. Ac-
tivity empty acts as the identity element both for sequence and parallel composition.
Multiple stop in parallel are equivalent to just one stop, moreover stop disables sub-
sequent activities. The protection operator is idempotent, and short-lived activities are
implicitly protected, thus messages can go in/out of the scope of a protection operator.
Default compensation is initially empty. Messages do not block subsequent activities
and scope completion, except when throw is active in the scope (this is checked by
predicate · ⇓throw that will be explained later on). Structural congruence is extended to
scopes, instances and deployments in the obvious way. Moreover, the order in which
definition and instances occur within a deployment does not matter, and deployment
composition is commutative and associative. Instances like µ ` empty and µ ` stop are
terminated and, thus, can be removed. Similarly, deployments only containing termi-
nated instances are terminated too and can be removed.

The reduction relation over deployments, written �−_, exploits a labelled transition
relation over structured activities, written

α−−_, where α is generated by the grammar:

α ::= τ | x← v | ! p̃ :o : v̄ | ? ` r :o : x̄ | i | Â | (a)

The meaning of labels is as follows: τ indicates message productions, guard evaluations
for conditional and iteration or installation/activation of compensations; x← v indicates
assignment of value v to variable x; ! p̃ : o : v̄ and ? ` r : o : x̄ indicate execution of invoke
and receive activities for operation o, where p̃ and v̄ match with ` r and x̄, respectively;
i indicates forced termination of a service instance; Â indicates production of a fault
signal from inside a scope; (a) indicates successful completion of a scope that can be
compensated by the structured activity a.

The relation
α−−_ is defined by the rules in Table 3 with respect to a state µ, that is

omitted when unnecessary (writing a
α−−_ a′ instead of µ ` a

α−−_ a′). Before com-



µ ` inv ` i o x̄
τ−_�µ(` i) :o :µ(x̄)� (inv) rcv ` r o x̄

? ` r :o:x̄−−−−−−_ empty (rec)

µ ` x := e
x←µ(e)−−−−−−_ empty (asg) throw

Â−−_ stop (thr)

exit
i−−_ stop (term) � p̃ :o : v̄� ! p̃:o:v̄−−−−−_ empty (msg)

µ ` a
α−_ a′

(prot)
µ ` LaM α−_ La′M

µ ` a1
α−_ a′1

(seq)
µ ` a1 ; a2

α−_ a′1 ; a2

∑
j∈J rcv ` r

j o j x̄ j ; a j

? ` r
h :oh :x̄h−−−−−−−_ ah , h ∈ J (pick)

a =

{
a1 if µ(x) = tt
a2 if µ(x) = ff

(if)
µ ` if(x){a1}{a2} τ−_ a

a′ =

{
a ; while(x) {a} if µ(x) = tt
empty if µ(x) = ff

(while)
µ ` while(x) {a} τ−_ a′

µ ` a1
α−_ a′1 α < {i, Â} ¬(a2 ⇓throw∨ a2 ⇓exit)

(par1)
µ ` a1 | a2

α−_ a′1 | a2

a1
α−_ a′1 α ∈ {i, Â}

(par2)
a1 | a2

α−_ a′1 | end(a2)

[empty • a f ? ac 4 ad]
(ac)−−−_ empty (done1) [stop • a f ? ac 4 ad]

τ−_ Lad ; a f M (done2)

µ ` a
α−_ a′ α < {Â, (a′′)}

(exec)
µ ` [a • a f ? ac 4 ad]

α−_ [a′ • a f ? ac 4 ad]

a
(a′′)−−−_ a′

(done3)
[a • a f ? ac 4 ad]

τ−_ [a′ • a f ? ac 4 a′′ ; ad]

a
Â−−_ a′

(fault)
[a • a f ? ac 4 ad]

τ−_ [a′ • a f ? ac 4 ad]

Table 3. Basic, auxiliary and structured activities

menting the rules, we introduce the auxiliary functions and predicates they exploit.
Specifically, the predicates a⇓exit and a⇓throw check the ability of a of performing exit
or throw, respectively. They are defined inductively on the syntax of activities and act as
an homomorphism in all cases, but for conditional choice and iteration for which they
hold false, and for the following cases

exit⇓exit throw⇓throw
a1⇓exit

a1 ; a2⇓exit

a1⇓throw

a1 ; a2⇓throw

a⇓exit

[a • a f ? ac 4 ad]⇓exit

The function end(·), given an activity a, returns the activity obtained by only retaining
short-lived and protected activities inside a. It is defined inductively on the syntax of
activities, the most significant cases being

end(sh) = sh end(LaM) = LaM end(a1 ; a2) = end(a1)

end([a • a f ? ac 4 ad]) = [end(a) • a f ? ac 4 ad]



match(c, µ, x, v) =

{ {x 7→ v} if x < c ∨ (x ∈ c ∧ x < dom(µ))
∅ if x ∈ c ∧ {x 7→ v} ∈ µ

match(c, µ, v, v) = ∅
match(c, µ, w1, v1) = µ′ match(c, µ, w̄2, v̄2) = µ′′

match(c, µ, (w1, w̄2), (v1, v̄2)) = µ′ ◦ µ′′

|match(c, µ, ` r :o : x̄, p̃ :o : v̄) |< n

µ ` rcv ` r o x̄ ; a⇓c,n
p̃:o:v̄

∃ h ∈ J . |match(c, µ, ` r
h :oh : x̄h, p̃ :o : v̄) |< n

µ ` ∑ j∈J rcv ` r
j o j x̄ j ; a j⇓c,n

p̃:o:v̄

µ ` a1 ⇓c,n
p̃:o:v̄

µ ` a1 ; a2 ⇓c,n
p̃:o:v̄

µ ` a1 ⇓c,n
p̃:o:v̄ ∨ µ ` a2 ⇓c,n

p̃:o:v̄

µ ` a1 | a2 ⇓c,n
p̃:o:v̄

µ ` a⇓c,n
p̃:o:v̄

µ ` LaM⇓c,n
p̃:o:v̄

µ ` a⇓c,n
p̃:o:v̄

µ ` [a • a f ? ac 4 ad]⇓c,n
p̃:o:v̄

µ ` a⇓c,n
p̃:o:v̄ ∨ s⇓c,n

p̃:o:v̄

µ ` a , s⇓c,n
p̃:o:v̄

Table 4. Matching rules / Is there an active receive along p̃ and o matching v̄?

where a1 may not be congruent to empty or to� p̃ :o : v̄�, or to parallel compositions
of them. In the remaining cases, end(·) returns stop, except for parallel composition for
which it acts as an homomorphism.

We now briefly comment on the rules in Table 3. Rules (inv) and (asg) state that
invoke and assign activities can proceed only if their arguments are closed expressions
(i.e. expressions without uninitialized variables) and can be evaluated (i.e. µ(·) returns
a value). By rule (rec), a receive activity offers an invocable operation along a given
partner link. Rules (thr) and (term) report production of fault and forced termination
signals, respectively. Auxiliary activities behave as expected: a message can always be
delivered (rule (msg)) and the protected activity LaM behaves like a (rule (prot)). Rule
(seq) takes care of activities executed sequentially, while rule (pick) permits to choose
among alternative receive activities. Rules for conditional choice and iteration ((if) and
(while), resp.) are standard. Execution of parallel activities is interleaved (rules (par1)
and (par2)), except when a terminate/fault activity can be executed (rule (par2)), in which
case all parallel activities must immediately terminate except for short-lived activities
and protected fault/compensation handlers. In other words, termination activities throw
and exit are executed eagerly.

By rules (done1) and (done3), scope completions can be compensated according to
the WS-BPEL default compensation behaviour (i.e. in the reverse order of completion)
by the immediately enclosing scope. Notably, scopes like [empty • a f ? ac 4 ad] have
not completed yet and when a scope completes, the default compensation ad of in-
ner scopes is not passed to the enclosing scope (rule (done1)). Rule (exec) permits to
perform any action of the primary activity a except for fault emission and scope com-
pletion. In particular, inner forced terminations are propagated externally outside the
scope. Differently from forced termination, faults arising within a scope are managed
internally (rule (fault)), and the corresponding handler is installed when the main activ-
ity completes (rule (done2)). By rule (done2), default compensation is performed after



a1
? t1−−−_ a′1 a2

! t2−−−_ a′2 match(c1, µ1, t1, t2) = µ′1 ¬ ( µ1 ` a1 , s1 ⇓c1 ,|µ′1|
t2 )

(com)
{µ1 ` a1 , s1}c1‖ {µ2 ` a2 , s2}c2 �−_ {µ1 ◦ µ′1 ` a′1 , s1}c1‖ {µ2 ` a′2 , s2}c2

[r • a f ? empty]
? t1−−−_ a1 a2

! t2−−−_ a′2 match(c1, ∅, t1, t2) = µ1 ¬ (s1 ⇓c1 ,|µ1|
t2 )

(new)
{[r • a f ] , s1}c1‖ {µ2 ` a2 , s2}c2 �−_ {µ1 ` a1 , [r • a f ] , s1}c1‖ {µ2 ` a′2 , s2}c2

µ ` a
x←v−−−−_ a′ match(c, µ, x, v) = µ′

(var)
{µ ` a , s}c �−_ {µ ◦ µ′ ` a′ , s}c

d1 �−_ d′1
(part)

d1‖ d2 �−_ d′1‖ d2

µ ` a
α−_ a′ α < {? t1, ! t2, x← v}

(pass)
{µ ` a , s}c �−_ {µ ` a′ , s}c

d ≡ d1 d1 �−_ d2 d2 ≡ d′
(cong)

d �−_ d′

Table 5. Reduction rules for Blite deployments (where t1 = ` r :o : x̄ and t2 = p̃ :o : v̄)

termination of the primary activity and before fault handling. Note that compensation
activities do not store any state with them: hence, if the state changes between the com-
pensation being stored and executed, the current state is used.

A few auxiliary functions are also used in the semantics of deployments defined in
Table 5. The rules for communication and updating of variables ((com), (new) and (var))
need a mechanism for checking if an assignment of some values v̄ to w̄ complies with
the constraints imposed by the given correlation set c and state µ and, in case of success,
returns a state µ′ for the variables in w̄ that records the effect of the assignment. This
mechanism is implemented by the function match(·, ·, ·, ·) defined through the rules in
the upper part of Table 4. Notice that match(·, ·, ·, ·) is undefined when w̄ and v̄ have
different length or when x ∈ c and {x 7→ v′} ∈ µ for some v′ , v (since the state {x 7→ v}
does not comply with c and µ). Rules (com) and (new) also use the auxiliary predicate
s⇓c,n

p̃:o:v̄, defined inductively on the syntax of s in the lower part of Table 4, that checks
the ability of s of performing a receive on the operation o exploiting the partner link
p̃, matching the tuple of values v̄ and generating a state with fewer pairs than n that
complies with c and the current state of the activity performing the receive.

Finally, we linger on the rules in Table 5. By rule (com), communication can take
place when two service instances perform matching receive and invoke activities com-
plying with the correlation set of the receiving instance. Notice that matching covers
both partner link p̃ and business data v̄. Communication generates a state that updates
the state of the receiving instance. If more than one matching receive activity is able to
process a given invoke, then only the more defined one (i.e. the receive that generates the
‘smaller’ state) progresses (predicate ·⇓·,·· serves this purpose). This mechanism permits
to correlate messages to different service instances and to model the precedence of an
existing service instance over a new service instantiation (rule (new), see also the Mul-
tiple start and conflicting receive activities example in Section 4). In rules (com) and
(new), the assumption about well-formedness of deployments finds full employment,
because it avoids to check every single deployment for possible conflicting receive ac-
tivities. By rule (new), service instantiation can take place when a service definition and



a service instance perform matching receive and invoke activities, respectively. By rule
(var), correlation variables cannot be reassigned if the new value does not match with
the old one. Moreover, if an assignment takes place, its effect is global to the instance,
i.e. the state is updated. By rule (pass), execution of activities different from communi-
cations or assignments can always proceed. If part of a larger deployment evolves, the
whole composition evolves accordingly (rule (part)) and, as usual, structural congruent
deployments have the same reductions (rule (cong)).

3 A Shipping Service scenario

We consider an extended version of the shipping service described in the official speci-
fication of WS-BPEL [23] (Section 15.1). This example will allow us to illustrate most
of the language features, including correlation sets, shared variables, flow control struc-
tures, fault and compensation handling. We will see that, in particular, scope activities
are especially useful for modelling fault handling and compensation behaviours, while
exit activities are useful to exit from while loops and terminate the customer instance.

The shipping service handles the shipment of orders. From the service point of view,
orders are composed of a number of items. The service offers two types of shipment:
shipments where the items are held and shipped together and shipments where the items
are shipped piecemeal until the order is fulfilled. The service specification in Blite is

sship , [ rcv 〈pship, xcust〉 oreq 〈xid, xc, xitems〉 ;
if (xc) { inv 〈xcust〉 onotice 〈xid, xitems〉 } { [ aship • inv 〈xcust〉 oerr 〈xid, “sorry”〉 ] } ]

aship , [ apriceCalc ? acomp ] ; xshipped := 0 ;
while (xshipped < xitems) {

xcount := rand() ;
if (xcount 6 0) { xratio := xshipped / xitems ; throw }

{ inv 〈xcust〉 onotice 〈xid, xcount〉 ; xshipped := xshipped + xcount } }

pship is the partner associated to the shipping service, oreq is the operation used to re-
ceive the shipping request, and 〈xid, xc, xitems〉 is the tuple of variables used for the re-
quest shipping message: xid stores the order identifier, that is used to correlate the ship
notice(s) with the ship order, xc stores a boolean indicating whether the order is to be
shipped complete or not, and xitems stores the number of items in the order. Shipping
notices and error messages to customers are sent using the partner stored in xcust and
the operations onotice and oerr, respectively. A notice message is a tuple composed of the
order identifier and the number of items in the shipping notice. When partial shipment
is acceptable, xshipped is used to record the number of items already shipped.

Our example extends that in [23] by allowing the service to generate a fault in case
the shipping company has ended the stock of items (this is modelled by function rand()
returning an integer less than or equal to 0). The fault is handled by sending an error
message to the customer and by compensating the inner scope, that has already com-
pleted successfully. Function rand() returns a random integer number and represents an
internal interaction with a back-end system. For the sake of simplicity, we do not further



describe this interaction. Moreover, we do not show services apriceCalc and acomp. Basi-
cally, the former calculates the shipping price according to the value assigned to xitems

and sends the result to the accounts department. The latter is the corresponding com-
pensation activity, that sends information about the non-shipped items to the accounts
department and sends a refund to the customer according to the ratio (stored in xratio)
between the shipped items (stored in xshipped) and the required ones (stored in xitems).
Now, consider the following composition of a deployment containing the shipping ser-
vice definition and a deployment containing a customer’s invocation of the service

{ sship }{xid}‖ {µcust ` inv 〈pship, pcust〉 oreq 〈yid, yc, yitems〉 ; acust}{yid}

where µcust = {yid 7→ 123, yc 7→ ff, yitems 7→ 50} and acust is the following term

yshipped := 0 ; while (yshipped < yitems) {
rcv 〈pcust〉 onotice 〈yid, ycount〉 ; yshipped := yshipped + ycount

+ rcv 〈pcust〉 oerr 〈yid, yerr〉 ; exit }
In the first computational step, the customer’s invocation is consumed and an instance
of the shipping service is created. Thus the overall computation becomes

{ sship , µship ` [ aship • inv 〈xcust〉 oerr 〈xid, “sorry”〉 ] }{xid}‖ {µcust ` acust}{yid}

where µship is {xid 7→ 123, xc 7→ ff, xitems 7→ 50, xcust 7→ pcust}. The computation can
now go on, e.g., with the inner scope [apriceCalc ? acomp] that successfully completes
while its continuation fails, e.g., rand() returns an integer less than or equal to 0.

4 Evaluations of BPEL engines

We now present some illustrative examples and use them to test and compare the be-
haviour of three well-known free WS-BPEL engines, namely Oracle BPEL Process
Manager [3], ActiveBPEL Engine [1], and Apache ODE [2] (the latter two are open
source projects, whereas Oracle BPEL is distributed under the Oracle Technology Net-
work Developer License). For our evaluation, we have taken into account fundamental
features of WS-BPEL that remained unchanged since its initial version. Due to lack of
space, we refer the interested reader to [18] for further details and examples.

Example 1 (Message correlation). For our simplification purposes, tuples can be used
to represent XML messages by adopting the convention that the first field of each tuple
acts as a ‘tag’ (like originally proposed in the coordination language Linda [12]). Tuples
plus correlation variables can be exploited to correlate, by means of their same contents,
different service interactions logically forming a same ‘session’. For example, consider
the two uncorrelated receive activities of the following service definition:

{ [rcv 〈p〉 o 〈x〉 ; rcv 〈p〉 o′ 〈y〉 ; a] }{x,y}
The fact that the messages for operations o and o′ are uncorrelated implies that, e.g., if
there are concurrent instances then successive invocations for the same instance can be
mixed up and be delivered to different instances. If one thinks it right, this behavior can
be prevented simply by correlating consecutive messages by means of some correlation
data, e.g. the first received value as in the following modified service definition:



{ [rcv 〈p〉 o 〈x〉 ; rcv 〈p〉 o′ 〈x, y〉 ; a] }{x,y}
A particular case is when the two previous receives are identical, i.e. when we have:

{ [rcv 〈p〉 o 〈x〉 ; rcv 〈p〉 o 〈x〉 ; a] }{x}
Note that the WS-BPEL specification permits to consecutively receive a same request
on a specific partner and operation ([23], Section 10.4), and does not mention that pos-
sible conflicting receives could arise. To illustrate, include a client process as follows:

{ [rcv 〈p〉 o 〈x〉 ; rcv 〈p〉 o 〈x〉 ; a] }{x}‖ { {y 7→ v} ` inv 〈p〉 o 〈y〉 ; inv 〈p〉 o 〈y〉 }∅
The client process performs two requests that, according to the semantics of Blite, trig-
ger only one instantiation of the service. Thus, the only possible evolution leads to

{ [rcv 〈p〉 o 〈x〉 ; rcv 〈p〉 o 〈x〉 ; a] , {x 7→ v} ` [a] }{x}
Differently from Blite, when executing this example, Oracle BPEL creates two in-
stances, one for each received request. An important consequence, and an unexpected
side effect, is that the created instances are in conflict and, then, will never be executed.
Instead, ActiveBPEL and Apache ODE, just like Blite, exploit the received data to cor-
relate two consecutive receives and, thus, prevent creation of a new instance. However,
if the client performs a third invocation inv 〈p〉 o 〈y〉, Apache ODE is not able to serve
this last request, while ActiveBPEL behaves properly.

Example 2 (Persistent messages). In service-oriented systems communication para-
digms are usually asynchronous (mainly for scalability reasons [5]), in the sense that
there may be an arbitrary delay between the sending and the receiving of a message, the
ordering in which messages are received may differ from that in which they were pro-
duced, and a sender cannot determine if and when a sent message will be received. We
can guess from [23], Section 10.4, that this is also the case of WS-BPEL. To illustrate,
consider the following Blite term:

{ [rcv 〈p〉 o1 〈x〉 ; rcv 〈p〉 o2 〈x, z〉 ; a] }{x}
‖ { {y1 7→ v, y2 7→ v′} ` inv 〈p〉 o2 〈y1, y2〉 ; inv 〈p〉 o1 〈y1〉 }∅

After the message�〈p〉 :o2 : 〈v, v′〉� is produced by the first invoke activity, a service
instance is created as a result of consumption of the message produced by the second
invoke activity.

{ [rcv 〈p〉 o1 〈x〉 ; rcv 〈p〉 o2 〈x, z〉 ; a] }{x}
‖ { {y1 7→ v, y2 7→ v′} ` �〈p〉 :o2 : 〈v, v′〉� | inv 〈p〉 o1 〈y1〉 }∅ �−_
{ [rcv 〈p〉 o1 〈x〉 ; rcv 〈p〉 o2 〈x, z〉 ; a], {x 7→ v}` [rcv〈p〉 o2 〈x, z〉 ; a] }{x}
‖ { {y1 7→ v, y2 7→ v′} ` �〈p〉 :o2 : 〈v, v′〉� }∅

Now, the first produced message is not considered expired and, thus, can be consumed
by the newly created service instance.

{ [rcv 〈p〉 o1 〈x〉 ; rcv 〈p〉 o2 〈x, z〉 ; a], {x 7→ v, z 7→ v′}` [a] }{x}
‖ { {y1 7→ v, y2 7→ v′} ` empty }∅

All the examined BPEL engines ‘tacitly’ agree with this communication paradigm, al-
though no explicit requirement is reported in the WS-BPEL specification.



Example 3 (Multiple start and conflicting receive activities). The WS-BPEL specifica-
tion permits to use multiple start activities ([23], Section 10.4), however it is not clear
how conflicting receive activities must be handled. The following example shows that
conflicting receive activities can be enabled when a service definition with multiple start
activities is instantiated. Consider the three composed deployments

{ [ (rcv 〈p1〉 o 〈x〉 | rcv 〈p2〉 o 〈x, z〉 ) ; a] }{x}‖ { {y 7→ v} ` inv 〈p1〉 o 〈y〉 }∅
‖ { {y1 7→ v, y2 7→ v′} ` inv 〈p2〉 o 〈y1, y2〉 }∅

After message � 〈p1〉 : o : 〈v〉 �, produced by invocation inv 〈p1〉 o 〈y〉, has been pro-
cessed by rcv 〈p1〉 o 〈x〉, the overall composition becomes

{ [ (rcv 〈p1〉 o 〈x〉 | rcv 〈p2〉 o 〈x, z〉 ) ; a] , {x 7→ v} ` [rcv 〈p2〉 o 〈x, z〉 ; a] }{x}
‖ { {y1 7→ v, y2 7→ v′} ` inv 〈p2〉 o 〈y1, y2〉 }∅

Now, the definition and the instance of the service compete for receiving the same
message sent by the invoke activity inv 〈p2〉 o 〈y1, y2〉. In cases like this, the WS-BPEL
specification requires that the invocation is only delivered to the existing instance, which
prevents creation of a new instance. In fact, in Blite the above term can only reduce to

{ [ (rcv 〈p1〉 o 〈x〉 | rcv 〈p2〉 o 〈x, z〉 ) ; a] , {x 7→ v, z 7→ v′} ` [a] }{x}
In case of conflicting receives, the WS-BPEL specification document prescribes to

raise the standard fault bpel:conflictingReceive. For example, this situation readily
occurs when a service exploits multiple start activities, because of race conditions on
incoming messages among the service definition and the created instances. However, in
such cases, it does not seem fair to raise a fault because the correlation data contained
within each incoming message should be sufficient to decide if the message has to be
routed to a specific instance or to the service definition. This is indeed a tricky question.
For example, Oracle BPEL raises the fault bpel:conflictingReceive also in these
situations. ActiveBPEL behaves differently and, just like Blite, exploits correlation to
restrict instantiation to one service instance, whereas multiple start activities are not
currently supported by Apache ODE.

Example 4 (Scheduling for parallel execution). While using the BPEL engines, we
have also experimented that they implement the parallel operator in a different man-
ner. For example, in WS-BPEL, the expected behaviour of the following term:

x1 := v1 | x2 := v2 | x3 := v3

is that the three assignments are executed in an unpredictable order that may change in
different executions. In fact, only Apache ODE implements this semantics, while the
other two engines execute the assignments in an order fixed in advance (that is from left
to right in case of ActiveBPEL and from right to left in case of Oracle BPEL).

Example 5 (Forced termination). The WS-BPEL specification ([23], Section 12.6)
says: “The <sequence> and <flow> constructs must be terminated by terminating their
behavior and applying termination to all nested activities currently active within them”.
This definition is ambiguous because it is not clear what “nested activities currently
active” means in case of termination due to <exit> or <throw> activities. For example,



Oracle BPEL interprets the behaviour end(a1 ; a2) as it were a1 ; a2 if it is prompted by
activity <exit>, and as end(a1), if it is prompted by activity <throw>. ActiveBPEL is
more faithful to WS-BPEL and Blite for which all currently running activities are ter-
minated as soon as possible without any fault handling or compensation ([23], Section
10.10). But, differently from Blite, ActiveBPEL does not distinguish short-lived from
basic activities and makes them terminate in the same way. Finally, Apache ODE is
compliant with Blite, because function end(·) retains short-lived activities.

Example 6 (Eager execution of termination activities). As previously stated, in order
to be compliant with the WS-BPEL requirement stating that termination activities must
end immediately all currently running activities ([23], Section 10.10), in the semantics
of Blite activities throw and exit have higher priority than the remaining ones. E.g.,
consider the following structured activity:

a , throw | sh1 ; sh2 | rcv 〈p〉 o 〈x〉 ; a′

In Blite, by executing the activity throw, this term can only reduce to:

stop | end(sh1 ; sh2) | end(rcv 〈p〉 o 〈x〉 ; a′) ≡ stop | sh1

While ActiveBPEL agrees with this requirement, Oracle BPEL and Apache ODE do
not implement any prioritized behavior for termination activities. Thus, for example,
the above term a can evolve by firstly performing the activity sh1 and then the activity
throw; this way, the activity sh2 is not terminated.

Example 7 (Protected handlers). The following structured activity consists of a top-
level scope with two inner parallel scopes, one of which being a sequence of two scopes.

a , [ ( [ [ a1 • throw ? ac ] ; [ a2 • throw ? empty ] • throw ? empty ]
| [ a3 • throw ? empty ] ) • empty ]

For the sake of presentation, suppose that a1 performs an assignment and completes,
say a1 , x1 := v1, while both activities a2 and a3 perform an assignment and reduce
to the throw activity, say ai , xi := vi ; throw for i = 2, 3. Now, consider a deployment
containing a service instance µ ` a such that variables x1, x2 and x3 are not in dom(µ).
A possible computation is the following one

{µ ` a}c �
(1)−−−_ {µ1 ` [ ( [ [ empty • throw ? ac ] ;

[ a2 • throw ? empty ] • throw ? empty 4 empty ]
| [ a3 • throw ? empty ] ) • empty ? empty ]}c

� (2)−−−_ {µ1 ` [ ( [ [ a2 • throw ? empty ] • throw ? empty 4 (ac ; empty) ]
| [ a3 • throw ? empty ] ) • empty ? empty ]}c

� (3)−−−_ {µ2 ` [ ( [ [ throw • throw ? empty ] • throw ? empty 4 ac ]
| [ a3 • throw ? empty ] ) • empty ? empty ]}c

� (4)−−−_ {µ2 ` [ ( [ [ stop • throw ? empty ] • throw ? empty 4 ac ]
| [ a3 • throw ? empty ] ) • empty ? empty ]}c

� (5)−−−_ {µ2 ` [ ( [ LthrowM • throw ? empty 4 ac ]
| [ a3 • throw ? empty ] ) • empty ? empty ]}c



Oracle BPEL ActiveBPEL Apache ODE
Message correlation (Ex. 1) + + +

Consecutive conflicting receives (Ex. 1) − + +/−
Persistent messages (Ex. 2) + + +

Multiple start (Ex. 3) − + −
Parallel execution (Ex. 4) − − +

Short-lived activities (Ex. 5) + − +

Function end(·) (Ex. 5) − + +

Eager execution (Ex. 6) − + −
Protected handlers (Ex. 7) − + +

Compensation handler installation (Ex. 7) − + +

Table 6. Blite compliance

� (6)−−−_ {µ2 ` [ ( [ LstopM • throw ? empty 4 ac ]
| [ a3 • throw ? empty ] ) • empty ? empty ]}c

� (7)−−−_ {µ2 ` [ ( Lac ; throwM | [ a3 • throw ? empty ] ) • empty ? empty ]}c
� (8)−−−_ {µ3 ` [ ( Lac ; throwM | [ throw • throw ? empty ] ) • empty ? empty ]}c
� (9)−−−_ {µ3 ` [ ( Lac ; throwM | [ stop • throw ? empty ] ) • empty ? empty ]}c
� (10)−−−_ {µ3 ` [ ( Lac ; throwM | LthrowM ) • empty ? empty ]}c
� (11)−−−_ {µ3 ` [ ( end(Lac ; throwM) | LstopM ) • empty ? empty ]}c

≡ {µ3 ` [ ( Lac ; throwM | stop ) • empty ? empty ]}c
where the reductions are labelled by numbers indicating the corresponding steps. When
a1 completes, the compensation handler ac is inserted into the default compensation
activities of its enclosing scope (1-2). When execution of a2 rises a fault, then the fault is
caught by the corresponding fault handler (3-7) that activates the default compensation
ac ; throw. This activity is protected, by using the auxiliary operator L·M, from the effect
of the forced termination triggered by the parallel scope [ a3 • throw ? empty ] (7-11).

We end by remarking two aspects of the compensation mechanism prescribed by the
WS-BPEL specification ([23], Sections 12.5 and 10.10). First, compensation handlers
of faultily terminated scopes should not be installed. Second, fault and compensation
handlers should not be affected by the activities causing the forced termination. How-
ever, both aspects are not faithfully implemented in Oracle BPEL, while ActiveBPEL
and Apache ODE meet these specific requirements and adhere to Blite semantics.

Evaluation results. The results of our experiments, summarized in Table 6, point out
that the engines we have experimented with are not fully compliant with Blite, that, in
our opinion, faithfully represents the intended semantics of WS-BPEL. This is also a
consequence of the lack of a formal semantics for WS-BPEL, that would have disam-
biguated the intricate and complex features of the language. We believe that Blite, and
works with similar goals, other than as a guide for the development of faithful imple-
mentations since the early stages, can be also used to make future versions of existing
implementations more compatible.



5 Concluding remarks

We have introduced Blite, a significative and non-redundant fragment of WS-BPEL,
designed around some of its peculiar features like partner links, process termination,
message correlation, long-running business transactions and compensation handlers.
Our formal presentation of Blite helps clarifying some undefined/ambiguous aspects
of the WS-BPEL specification. For example, we have formalized the close relationship
between multiple start activities and race conditions. By means of several examples, we
have also pointed out that the behaviour of three of the most used free BPEL engines
(namely, ActiveBPEL, Apache ODE and Oracle BPEL Process Manager) differs from
each other and from the WS-BPEL specification in many important aspects.

Several formal semantics of WS-BPEL were proposed in the literature (for an
overview see [24]). Many of these efforts aim at formalizing a complete semantics for
WS-BPEL using Petri nets [24, 19], but do not cover such dynamical aspects as service
instantiation and message correlation. Other works [11, 14] using process calculi focus
instead on small and relatively simple subsets of WS-BPEL. Another bunch of related
works [15, 20] formalize the semantics of WS-BPEL by encoding parts of the language
into more foundational orchestration languages. Our work differs for the number of fea-
tures that are simultaneously modelled and for the fact that dynamical aspects are fully
taken into account. Recently, a very general and flexible framework for error recovery
has been introduced in [13]; this framework extends [14] with dynamic compensation,
modelling in particular the dependency between fault handling and the request-response
communication pattern.

Some other relevant related works are [7, 6, 4]. In the first two, the authors propose a
formal approach to model compensation in transactional calculi and present a detailed
comparison with [8]. The third is an extension of the asynchronous π-calculus with
long-running (scoped) transactions. The language has a scope construct which plays
a role similar to the scope activity presented in our semantics, but it is not aimed at
capturing the order in which compensations should be activated. On the contrary, the
semantics we propose faithfully captures the intended semantics of WS-BPEL, thus for
example compensations are activated in the reverse order w.r.t. the order of completion
of the original scopes.

Our programme is to provide a framework for the design and the verification of
WS-BPEL applications that supports analysis of service orchestration. As a further step
in this direction, in [18] we have also defined an encoding from Blite to  [16],
a calculus for orchestration of web services that we recently proposed, and we have
formalized the properties enjoyed by the encoding. By relying on these results, we
plan to devise methods to analyze Blite specifications (and the WS-BPEL applications
they model) by exploiting the analytical tools already developed for , such as
the stochastic extension defined in [25] that enables quantitative reasoning on service
behaviours, the type system introduced in [17] that permits to check confidentiality
properties, and the logic and model checker presented in [10] that permits expressing
and checking functional properties of services.
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