Reachability and Observability Analysis of Hybrid Systems

Alberto Bemporad

1)(

Dip. di Ingegneria dell'Informazione Università degli Studi di Siena

bemporad@dii.unisi.it
http://www.dii.unisi.it/~bemporad

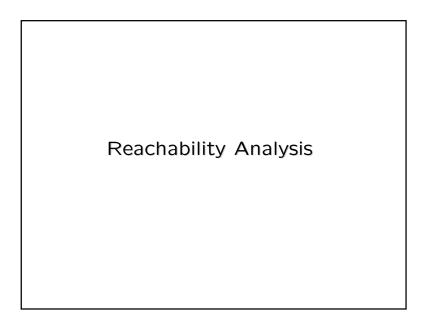
Verification

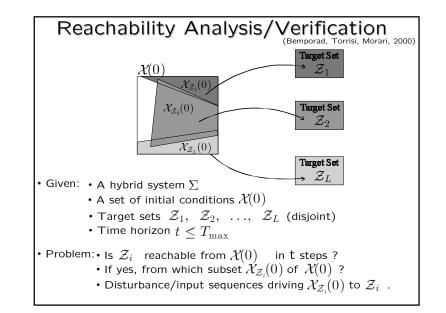
 GIVEN: an embedded system (continuous dynamical system + logic controller = hybrid system)

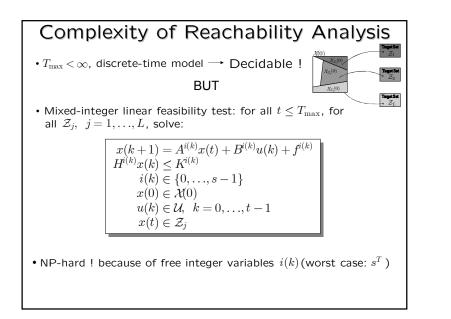
- \bullet CERTIFY that such combination behaves as desired
 - for ALL initial conditions within a given set
 - $\mbox{ \ \ }$ for ALL disturbances within a given class
- or **PROVIDE** a counterexample.

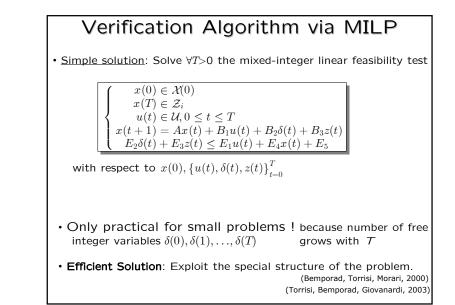
Simulation: provides a partial answer (not all possibilities can be tested!)

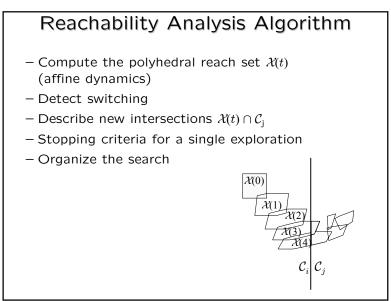
Reachability Analysis: provides the answer







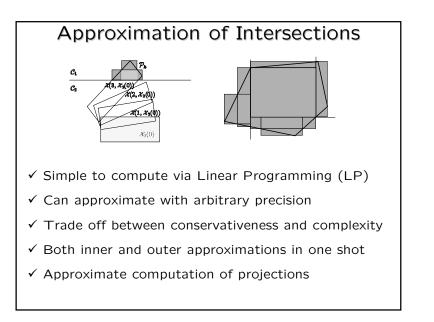


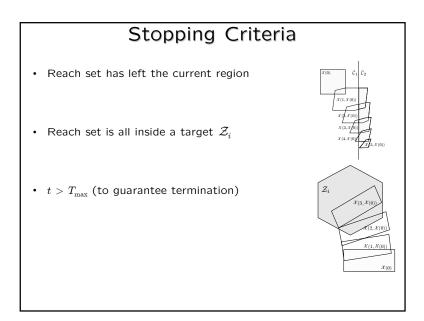


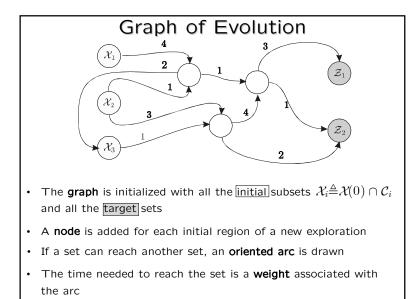
Reach Set Computation Reach set implicitly defined by linear inequalities $\begin{cases} x \in \mathcal{X}(0) \\ K_i^x \left(A_i^k x + \sum_{k=0}^{t-1} A_i^j [B_i u(t-1-k) + f_i] \right) + \\ + K_i^u u(t) \leq H, \ k = 1, \dots, t \\ u_{\min} \leq u(k) \leq u_{\max}, \ k = 0, \dots, t-1 \end{cases}$

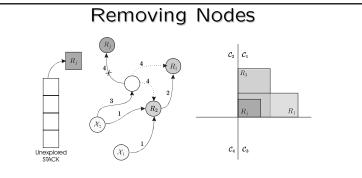
where $\mathcal{X}_i = \{(x, u): K_i^x x + K_i^u u \leq H\}$ is the current region

- Simple to compute
- Number of constraints grows linearly with time
- Explicit form also possible via projection methods (e.g. CDD by К. Fukuda)

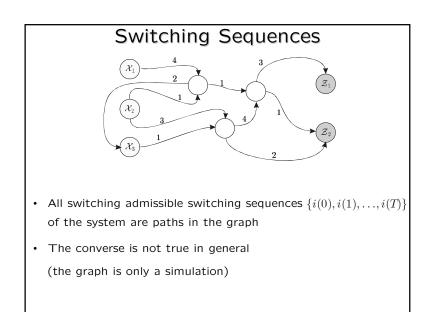


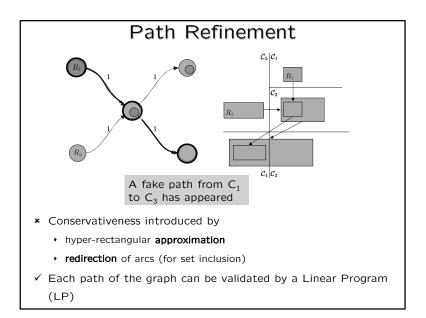


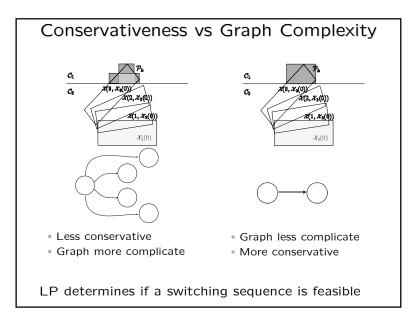


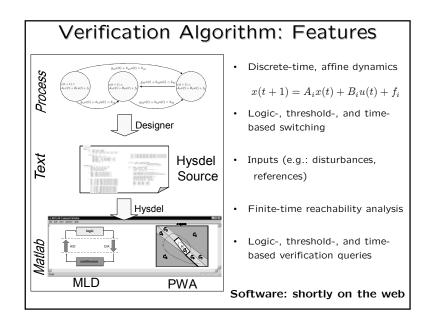


 Before starting a new exploration, if the initial set associated with the node is included in another set, the node is removed and the arcs are redirected

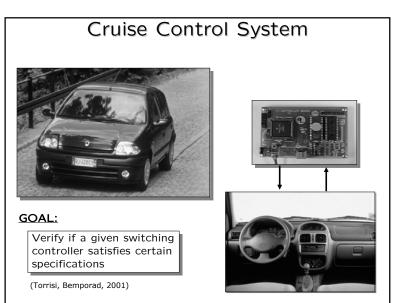


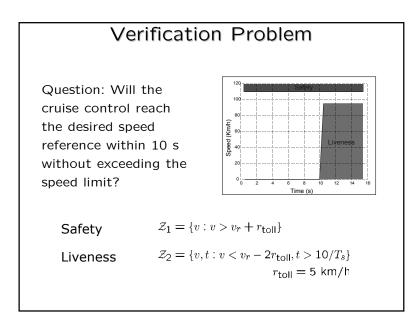


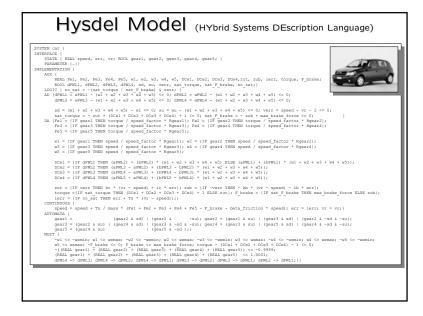




Applications Safety (Z₁, Z₂, ..., Z_L = unsafe sets) Stability (Z₁ = invariant set around the origin) Optimal control (u(0),...,u(T_{max}) = optimal strategy, Z₁ = reference set) (Bemporad, Giovanardi, Torrisi, CDC 2000) (practical) Liveness (Z₁ = set to be reached within a finite time) Robust Simulation





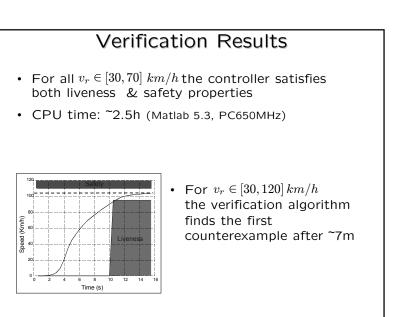


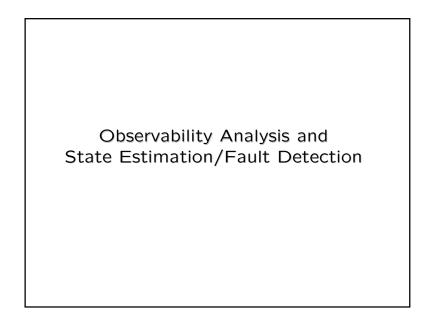
Hybrid Model

• MLD model

 $\begin{aligned} x'(k) &= Ax(k) + B_1u(k) + B_2\delta(k) + B_3z(k) + B_5\\ y(k) &= Cx(k) + D_1u(k) + D_2\delta(k) + D_3z(k) + D_5\\ E_2\delta(k) + E_3z(k) &< E_1u(k) + E_4x(k) + E_5 \end{aligned}$

- 3 continuous states: v, v_r, e (speed, reference and tracking error)
- 5 binary states: g_1, g_2, g_3, g_4, g_5 (gears)
- 19 auxiliary continuous vars: (5 traction force, 5 engine speed, 5 reset/saturation, 4 PWL max engine torque)
- 15 auxiliary binary vars: (4 PWL max torque breakpoints, 4 saturations 5 logic updates, 2 gear switching conditions)
- 173 mixed-integer inequalities





Complexity of Observability

Consider the PWA system:

$$\begin{array}{l} x\left(t+1\right) = A_{i}x\left(t\right) + B_{i}u\left(t\right) + f_{i} \\ y\left(t\right) = C_{i}x\left(t\right) + g_{i} \end{array} \quad \text{for} \quad \begin{bmatrix} x\left(t\right) \\ u\left(t\right) \end{bmatrix} \in \mathcal{X}_{i} \end{array}$$

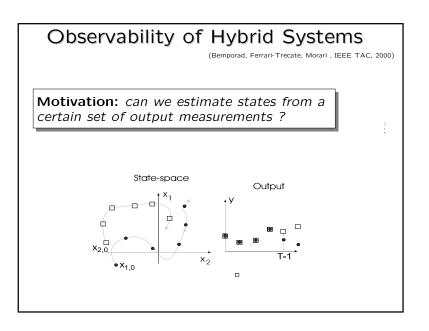
i-th component $(A_i, B_i, C_i, f_i, g_i)$

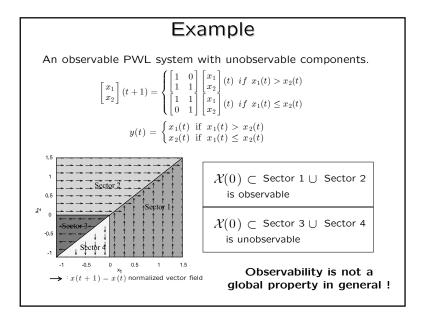
Possible conjectures:

PWA systems with observable components are observable
 PWA systems with unobservable components are unobservable

All these conjectures are false !

Observability is undecidable (Sontag, 1996)





Practical Observability

For any pair $(x_1(0), x_2(0))$ of initial states in $\mathcal{X}(0)$, require that $\sum_{n=1}^{T-1} \|y_1(t) - y_2(t)\|_{\infty} \ge w \|x_1(0) - x_2(0)\|_1$

whatever the input signal u(t) is (within a given input set \mathcal{U}).

- 1. w > 0 is a sensitivity indicator \Rightarrow Require $w \geqslant w_{min}$
- 2. T is an observability index \Rightarrow Require $~T \leq T_{max}$

Equivalently:

 $\min_{\substack{x_1(0), x_2(0) \in \mathcal{X}(0) \\ u(t) \in \mathcal{U}, t = 0, \dots, T-1}} \sum_{t=0}^{T-1} \|y_1(t) - y_2(t)\|_{\infty} - w \|x_1(0) - x_2(0)\|_1 \ge 0$

Practical observability is a decidable property

Observability Algorithm #2

Alternative approach:

Use a reachability analysis algorithm to verify that $J^*\!\!\geq 0$ for all initial conditions

(reachability analysis is not propagated from sets where $J^* \ge 0$)

Computationally very efficient also for large T (complexity depends on number of possible switches over the horizon T)

Observability Algorithm #1

Goal: Compute, for $T \leq T_{max}$

 $J^* \triangleq \sum_{t=0}^{T-1} \|y_1(t) - y_2(t)\|_{\infty} \ge w \|x_1(0) - x_2(0)\|_1$

w.r.t. $x_1(0), x_2(0) \in \mathcal{X}(0)$ and $u(t) \in \mathcal{U}$, and subj. to the MLD equations + constraints.

The cost function is not convex !

Idea: The 1-norm is a PWL function and it can be represented via mixed integer linear inequalities

The ∞ -norm can be represented via linear inequalities

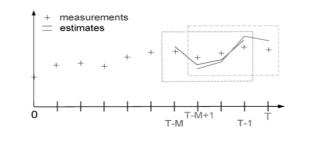
 J^{\ast} can be computed by solving a Mixed Integer Linear Program

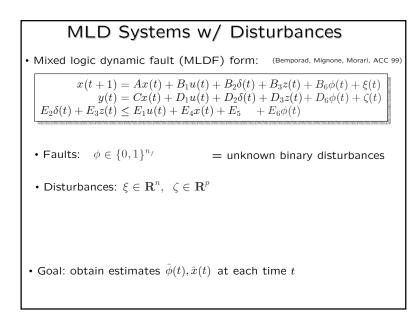
Only suitable for relatively small T (because the number of free integer variables grows linearly with $T\,)$

State Estimation / Fault Detection

• Problem: given past output measurements and inputs, estimate the current states of the hybrid systems (including discrete states and 0/1 faults)

• Idea: Use Moving Horizon Estimation ideas on the MLD model (modified w/ disturbances). This is the (almost) dual of MPC (Rao, Rawlings, Lee, Automatica 2001)





Hybrid Moving Horizon Estimation

• Complexity: at each time step we must solve an MIQP with respect to $\hat{x}(t-T|t), \delta(t-T), \dots \delta(t-1), z(t-T), \dots z(t-1), \phi(t-T), \dots \phi(t-1)$ $\xi(t-T), \dots \xi(t-1), \zeta(t-T), \dots \zeta(t-1).$

• Choice of T: related to observability properties

- Convergence: can be proved for state estimation problems using proper quadratic penalties on $\hat{x}(t-T|t)$ (Ferrari-T., Mignone, Morari, 2002)

