
AN EFFICIENT BRANCH AND BOUND ALGORITHM

FOR STATE ESTIMATION AND CONTROL OF

HYBRID SYSTEMS

A. Bemporad, D. Mignone, M. Morari

Institut für Automatik
ETH Swiss Federal Institute of Technology
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Abstract

This paper presents a new Branch and Bound tree ex-
ploring strategy for solving Mixed Integer Quadratic Pro-
grams (MIQP) involving time evolutions of linear hybrid
systems. In particular, we refer to the Mixed Logical
Dynamical (MLD) models introduced by Bemporad and
Morari (1999), where the hybrid system is described by
linear equations/inequalities involving continuous and in-
teger variables. For the optimizations required by the con-
troller synthesis and state estimation of MLD systems, the
proposed algorithm reduces the average number of node
explorations during the search of a global minimum. It
also provides good local minima after a short number of
steps of the Branch and Bound procedure.

1 Introduction

Bemporad and Morari (1999) and Bemporad et al. (1999b)
proposed a framework for modeling, control, and state
estimation/fault detection of Mixed Logical Dynamical
(MLD) systems, a class of hybrid systems described by
linear equations and inequalities involving integer and
continuous variables. The key idea of their approach is
to transform propositional logic into mixed integer linear
inequalities (Bemporad and Morari 1999, Williams 1993,
Cavalier et al. 1990, Raman and Grossmann 1992). MLD
systems generalize a broad number of important classes of
systems like piecewise linear systems, systems with mixed
discrete/continuous inputs and states, and many more
(Bemporad and Morari 1999). The general MLD form
is:

x(t + 1) = Ax(t) +B1u(t) +B2δ(t) +B3z(t) (1a)

y(t) = Cx(t) +D1u(t) +D2δ(t) +D3z(t) (1b)

E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5 (1c)

where x are the continuous and binary states, y the
continuous and binary outputs, u the continuous and
binary inputs, δ and z represent binary and continuous
auxiliary variables. The latter are introduced when
translating logic propositions into linear inequalities. All
constraints are summarized in the inequality (1c). The
description (1) only appears to be linear, as the variables
δ are constrained to be binary.

For feedback control, Bemporad and Morari (1999)
propose a Model Predictive Control (MPC) scheme which
is able to stabilize MLD systems on desired reference
trajectories while fulfilling operating constraints, and
possibly take into account qualitative knowledge in the
form of heuristic rules. The algorithm requires the
solution of a Mixed Integer Quadratic Programming
(MIQP) problem (Lazimy 1985, Roschchin et al. 1987)
at each time step.

For the dual problem of state estimation and fault
detection, Bemporad et al. (1999b) define a Moving
Horizon Estimation problem. This consists of solving at
each time step a least squares estimation problem over
a finite horizon backwards from the current time. The
resulting optimization problem is again an MIQP.

With the exception of particular structures, mixed-
integer programming problems are classified as NP -
complete, which means that in the worst case, the
solution time grows exponentially with the problem
size (Raman and Grossmann 1991). Despite this
combinatorial nature, several algorithmic approaches have
been proposed and applied successfully to medium and
large size application problems (Fletcher and Leyffer
1995), the four major ones being: Cutting plane methods,
where new constraints (“cuts”) are generated and added



to reduce the feasible domain until a 0-1 optimal
solution is found; decomposition methods, where the
mathematical structure of the models is exploited via
variable partitioning, duality, and relaxation methods;
Logic-based methods, where disjunctive constraints or
symbolic inference techniques are utilized which can be
expressed in terms of binary variables; branch and bound
(B&B) methods, where the 0-1 combinations are explored
through a binary tree, the feasible region is partitioned
into sub-domains systematically, and valid upper and
lower bounds are generated at different levels of the binary
tree. For MIQP problems, Fletcher and Leyffer (1995)
mention Generalized Benders’ Decomposition (Lazimy
1985), Outer Approximation, LP/QP based branch and
bound, and B&B as the major solvers. See Roschchin
et al. (1987) for a review of these methods. Several
authors agree on the fact that B&B methods are the most
successful for mixed integer quadratic programs (Fletcher
and Leyffer 1995).

Devising particular B&B algorithms that exploit the
problem structure can be useful to reduce the amount of
computations on average. We will measure the complexity
of a solution method for an MIQP by the number of
relaxed QPs (Quadratic Programs) that have to be solved
during B&B. This is only a rough measure of complexity
since it does not take into account the complexity of the
single QPs.

The approach presented here belongs to the class
of B&B methods. It is suitable for optimal con-
trol/estimation problems for MLD systems where the time
sequence of binary variables switches rarely over the time
horizon. In cases where the computational time is lim-
ited, the approach chooses to solve those QPs first that
are most promising to deliver a good suboptimal solution
to the MIQP.

In Sect. 2 some standard facts about MIQPs are
reviewed. In Sect. 3 the new algorithm is presented. In
Sect. 4 we estimate the computational complexity of the
algorithm. A few remarks about the implementation of
the method are given in Sect. 5. A simulation example is
shown in Sect. 6.

2 B&B Algorithms for MIQP

A Mixed Integer Quadratic Program (MIQP) has the
following form

min
x

xTQx+ bTx (2)

subject to Cx+ d ≤ 0

x =
[
xc
xd

]
, xc ∈ Rnc

xd ∈ {0, 1}nd (3)

and differs from a standard QP through the integrality
constraint (3)1.

1In a more general setup any integer value is allowed, but we
restrict it to the 0-1 case here.

The idea of solving MIQPs with B&B methods relies on
the relaxation of the integrality constraints (3), i.e. integer
variables are allowed to span over the whole continuous
interval [0, 1]. We shall refer to a relaxed problem as a
subproblem. The optimal values of the subproblems, if
they exist, represent lower bounds on the optimal value
of the original MIQP (Fletcher and Leyffer 1995). A
graphical representation of the concepts relaxation and
separation in B&B algorithms can be drawn with the help
of k-ary trees. Fig. 1 depicts a binary tree.

We recall here some standard concepts from tree data
structure terminology. A tree consists of nodes and
branches. Exactly one node of a tree is characterized as
the root. Each node except the root has a unique father,
i.e. a unique predecessor. Each node including the root
can have none, one or more subsequent nodes, called the
children of the node. Nodes without children are called
leaves. A tree, where each node except the leaves has
exactly k children is called a k-ary tree. The depth of a
node is the number of its predecessors towards the root,
i.e. the number of its ‘fathers’ and ‘grandfathers’. The q-
th level of a tree is the set of all nodes with depth q. The
depth of the root is 0. The length of a tree is the maximum
depth over all its nodes. The tree obtained from a node ν
by deleting the branch to its father and taking ν as root
of a smaller tree is the subtree of node ν.

Let ξ be a vector having the dimension nd and let
the symbol ? mean that the corresponding entry of ξ is
relaxed, i.e. free to span the interval [0, 1]. We associate
the original MIQP without integrality constraints (3) with

ξ0 = [? , ? , . . . , ?]︸ ︷︷ ︸
nd times

(4)

The vector ξ0 will be assigned to the root of a k-ary tree.
The separation of the original MIQP or any subproblem
into relaxed QPs is done by setting selected integer
variables to 0 or 1. The resulting new QP problems are
assigned to the children of the node. We denote each child
by a vector ξj , ξj ∈ {?, 0, 1}nd. If the i-th component
ξij = 0 (or ξij = 1), then the QP corresponding to that
node is solved by setting the i-th binary variable to 0
(or 1). If ξij = ?, then the i-th binary variable of ξj is
regarded as free within [0, 1]. As an example, consider an
MIQP with 3 binary variables. The corresponding binary
tree is shown in Fig. 1.

2.1 Strategies for B&B

The MIQP tree can be explored in several ways. The
choice of the problem separation and the order in which
the subproblems are considered, influences the average
computational effort. A good B&B algorithm aims
at quickly fathoming entire subtrees (Floudas 1995),
avoiding the solution of many subproblems. Two choices
determine the sequence of subproblems: (i) the branching
rule, and (ii) the tree exploring strategy.
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Figure 1: The binary tree for a MIQP with 3 integer variables.

Each node is marked with the corresponding vector ξj . The

numbers denote the order how the problems are solved in the

depth first strategy.

The branching rule selects the next variable to branch
on, and consequently the way of separating the problems.
Some possible branching rules are:

First Free Variable: Among the relaxed integer vari-
ables, choose the one with the smallest index.

Maximum Fractional Part: By solving the relaxed
QP of the father node, the solution for the variables
that should be binary will instead usually have a
fractional part. Choose the variable that has the
largest distance to the nearest integer value as the
next branching variable, i.e. the variable with the
index j, where j = arg maxi(min{δi, 1− δi}).

Once the variable to branch on has been selected
by the branching rule, the tree exploring strategy (or
node selection) determines the order in which the relaxed
problems must be solved. Standard strategies are:

Depth First Strategy: The QPs are solved by a last-in
first-out (LIFO) rule.

Breadth First Strategy: The problems at depth N are
not solved before all problems at depths N − 1 have
been solved.

An example of depth first strategy is given in Fig. 1.

3 The Outside First Tree Explor-

ing Strategy

Here we present an algorithm especially tailored to opti-
mal control or estimation problems for MLD systems (1).
In this case, the integer optimization vector xd in (3) con-
tains samples of the auxiliary variables δ(t) and/or bi-
nary inputs u(t) taken at different time instants, e.g. xd =
[δ(t), δ(t + 1), . . . , δ(t + T − 1)]. The MIQPs we are con-
sidering arise from problems as described in (Bemporad
and Morari 1999, Bemporad et al. 1999b).

The main motivation for the algorithm stems from
observing that binary variables δ(t) seldom change their
value over the time horizon T . In fact, typically binary

column -1 column 0 column 1 column 2
original no guaranteed 1 guaranteed 2 guaranteed
problem switches switch switches
[?, ?, ?] [0, 0, 0] [0, 0, 1] [0, 1, 0]

[0, 0, ?] [0, 1, 1] [1, 0, 1]
[0, ?, ?] [1, 1, 0]
[1, 1, 1] [1, 0, 0]
[1, 1, ?] [0, 1, ?]
[1, ?, ?] [1, 0, ?]

Table 1: Classification of subproblems according to
guaranteed switches in the binary variables for nd = 3

variables δ(t) are associated with conditions on continuous
states x(t), for instance [δ(t) = 1] ↔ [x(t) ≥ 0]. Because
the continuous components satisfy dynamic equations,
in general, their inertia will prevent frequent switches
of the indicator variable δ(t), e.g. during transients.
This phenomenon is even more pronounced when integer
variables represent the occurrence of a fault (Bemporad et
al. 1999b) which involves an irreversible physical damage,
because in this case the integer variable will switch at most
once its value over the horizon [t−T, t]. When we suspect
that the system exhibits this kind of behaviour, we should
try to solve first the QPs where the integer variables do
indeed describe a limited number of switches.

3.1 Guaranteed Switches

Given a subproblem marked by ξ, let I be the ordered
m-tuple collecting the indices i for which ξi 6= ?,

I , [i1, i2, . . . im] such that ξij 6= ?, ∀j = 1 . . .m

In other words, I collects the indices of the variables that
are already fixed. We define the number D of guaranteed
switches as the number of indices iq in I such that
ξiq 6= ξiq+1 . For instance, if ξ = [0, 1, 1, 1, ?, ?, 1, 0, 0, ?]
then I = [1, 2, 3, 4, 7, 8, 9], and D = 2. By considering
again the problem of an MIQP with 3 binary variables we
can partition the 15 QPs occurring in the B&B method
into four classes, according to the guaranteed switches of
binary variables in each QP. This classification is given
in Table 1. We use the name “guaranteed switches”,
because we count only the switches in the sequence of fixed
integer variables. The root is assigned by definition −1
guaranteed switches. The proposed B&B algorithm solves
a QP in column i of Table 1 only after all problems in the
columns up to i− 1 have been solved. In receding horizon
control for MLD systems as described by Bemporad and
Morari (1999) at time t the optimal solution for the
optimization at time t − 1 is known. The concept of
guaranteed switches can be modified to count instead the
number of differences of the fixed variables to this optimal
sequence (Bemporad et al. 1999a).

According to this rule, the tree with 3 binary variables
of the example above is explored in the order denoted in
Fig. 2. We call the strategy outside first, since the MIQP
tree is explored from the outside to the inside.
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Figure 2: Order how problems are solved in the outside first

strategy, assuming ‘first free variable’ branching rule.

3.2 The Algorithm

We adapt the general B&B algorithm structure (see e.g.
(Floudas 1995)) to the outside first strategy, to obtain the
following algorithm:

1. Take the original MIQP, relax all integrality con-
straints, mark the relaxed QP with its number of
guaranteed switches, i.e. −1. Set fopt =∞, kc = −1,
xopt = [∞, . . . ,∞] and initialize with the relaxed QP
the list of problems to be solved.

2. If the list of problems is empty, terminate and output
fopt, xopt.

3. If there are problems on the list marked by kc, select
one of them, remove it from the list, and solve it.
If the QP is feasible, denote its cost by f? and its
solution by x?. Go to step 5. If the QP is infeasible2,
go to 2.

4. If there are no problems on the list marked by kc,
increase kc by 1 and go to 2.

5. Fathoming by worse cost: If f? ≥ fopt, then go to 2.

6. Integer feasibility: If f? < fopt and x? satisfies the
integrality constraints, then set fopt = f? and xopt =
x?. Go to 2.

7. Feasibility, but not integer feasibility Separate the
problem. Mark the subproblems by the number of
guaranteed switches in the fixed integer variables.
Add the subproblems to the list of problems. Go
to 3.

Often hard restrictions on the time available to perform
the online computations severely limit the chances to
find a global minimizer for (2)–(3), especially for a
large problem with many binary variables. In this case,
the MIQP optimization should aim at providing good
suboptimal solutions. With the outside first approach a
kmax can be defined and only those problems are solved
that have a number of guaranteed switches smaller than
kmax. Alternatively the number of QPs can be limited.

2All the children problems will not be solved, i.e. the subtree is
fathomed by infeasibility
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Figure 3: Number of switches for each subproblem in the

outside first tree. Note the symmetry in the number of

guaranteed switches of subtrees at the same depth.
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Figure 4: Tree of depth 1 with a root of 0 switches.

The outside first approach allows to select and solve
those QPs first that are most promising in giving good
suboptimal solutions, provided that the integer variables
do not switch their value often. This is the case for
the optimal control/estimation problems at hand, where
local minima are also tolerable. In fact, Bemporad and
Morari (1999) prove that stability of the model predictive
control algorithm for MLD systems is not altered by
local minima, though the convergence properties of the
controller deteriorate. The same considerations hold for
the estimator presented by Bemporad et al. (1999b).

4 Complexity of the Outside First
B&B Algorithm

In this section we analyze the computational complexity
associated with the outside first tree exploring strategy.
In particular, we determine the worst case number of QPs
in the outside first approach with a limited number of
switches kmax.

4.1 Nodes with Equal Number of
Switches

Given a full binary tree An of length n and a root with −1
switches, denote by Mn(k) the number of nodes having
an equal number k of guaranteed switches. The same
quantity for a subtree having a root with 0 switches is
denoted by M̃n(k).

In Fig. 3 we have marked the number of guaranteed
switches for an MIQP tree with 3 integer variables. To
simplify the nomenclature we will denote by node with k
switches the node corresponding to the relaxed QP with
k guaranteed switches in the integer variables.



Lemma 1 Assume that the root of An has 0 switches.
Then

M̃n(k) =

(
n+ 1

k + 1

)
, ∀k = 0, . . . , n (5)

Proof. We prove (5) by induction on n. For n = 1, it is
easy to verify that M̃1(0) = 2, M̃1(1) = 1 (see Fig. 4).
Assume now, that (5) holds. By induction on the tree
length n, it holds that

M̃n+1(k) =

{
M̃n(k) + M̃n(k − 1) (k = 1 . . . n+ 1)

M̃n(0) + 1 (k = 0)
(6)

Eq. (6) states that the number of nodes with k switches
in a tree of length n + 1 is the sum of the nodes with
k switches in one of the main subtrees of length n and
the nodes with k − 1 switches in a subtree of length n.
The latter subtree experiences an increase of the number
of switches in each node, as soon as it gets adopted, i.e.
it gets a new father, cfr. subtree a in Fig. 3. It is now
straightforward to verify that:

M̃n(k)+M̃n(k − 1)=

(
n+ 1

k + 1

)
+

(
n+ 1

k

)
=

(
n+ 2

k + 1

)
which completes the proof. 2

In Lemma 1 we have assumed that the root has 0
switches. The binary trees we want to consider in the
MIQP context, however have by definition a root with −1
switches. By exploiting the symmetry, it is easy to prove
the following theorem.

Theorem 1 Assume that the root of An has -1 switches.
Then:

Mn(k) = 2

(
n

k + 1

)
for k = 0 . . . n− 1 (7)

Proof. The root has −1 switches. Therefore we have to
count only the switches in the 2 subtrees of the root. Both
subtrees have a root with 0 switches, and therefore by
Lemma 1 Mn(k) = 2M̃n−1(k). 2

4.2 Nodes with Less than kmax Switches

The number of nodes with less than kmax switches in a
full binary tree of length n is denoted by

Cn(kmax) =
∑kmax

k=−1Mn(k) = 1 + 2

kmax∑
k=0

(
n

k + 1

)
(8)

Note that (8) is consistent with the total number of nodes
in a full binary tree of length n, since:

Cn(n− 1) = 1 + 2
∑n−1
k=0

(
n
k+1

)
= 2n+1 − 1

In Table 2 we illustrate that the complexity of the outside
first algorithm is polynomial in n for fixed kmax.

kmax Cn(kmax) complexity
0 1 + 2n O(n)
1 n2 + n+ 1 O(n2)

2 n3

3
+ 5

3
n+ 1 O(n3)

Table 2: Number of nodes with less than kmax switches
in a tree of length n

5 Implementation Scheme

The implementation of the depth first algorithm can be
done with the use of a stack (last in, first out) data
structure (Floudas 1995). The outside first algorithm
can be implemented in a similar way using multiple
stacks, rather than only one. Each of the stacks contains
the subproblems having the same number of guaranteed
switches. It can be verified that branching on one variable
and using the ‘first free variable’ branching rule requires
at each step of B&B at most two stacks (Bemporad et
al. 1999a). Note that if δ is a vector, the switches must
be counted among the same variables taken at subsequent
time steps.

6 Example: The Two-Tank Sys-

tem

The tree exploring strategy proposed above has been used
for the model predictive control of a two tank system,
according to the control law presented by Bemporad
and Morari (1999). We used a prediction horizon of
NT = 5 steps. The control synthesis requires the online
solution of MIQPs with 15 binary variables. For a detailed
description of the modeling of the tank system the reader
is referred to Dolanc et al. (1997) and Bemporad et al.
(1999b). We compared the outside first algorithm to the
breadth first and the depth first tree exploring strategies,
both used with the ‘first free’ node selection rule.

6.1 Finding the Global Optimum

If we search for the global optimum of the MIQP at
each time step, clearly the three methods yield the same
optimum. In Fig. 5 we see the trajectories of the liquid
levels in the two tank system. The aim is to stabilize the
levels at h = [0.39, 0.13] starting from [0.1, 0.2]. In Fig. 6
we have plotted the number of QPs performed during the
simulation in Fig. 5 for the three tree exploring strategies.
In Table 3 we summarize the total number of QPs during
the simulation. We see that in this particular case the
outside first approach results in a smaller number of QPs
than the other two approaches.

6.2 Limiting the Number of QPs

We consider again the model predictive control of the
tank system. In addition we impose a restiction on
the number of QPs that are allowed to be solved at
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Figure 5: Trajectories of the states of the two tank system

controlled by the MPC controller described by Bemporad and

Morari (1999)

Approach Total number of QPs
Depth First 19’829
Breadth First 21’007
Outside First 5181

Table 3: Data of the simulation in Fig. 5

each time step3. The computations are interrupted as
soon as a maximum number of QPs has been solved
and the currently best solution is returned as a possibly
suboptimal value. This situation occurs if we want to
meet hard time constraints on the computations. For the
control problem described above the worst case number
of QPs using B&B is 216 − 1 = 65′535. We limited the
number of QPs to 100. In this case the results using the
three tree exploring strategies differ noticeably, as seen in
Fig. 7. When the number of QPs is limited, the outside
first approach is the only one giving an acceptable steady
state values for both states. We see that the breadth first
approach is not able to guarantee set-point tracking for the
first state, whereas depth first fails to control the second
state.

7 Conclusions

We have presented a branch and bound method for solving
Mixed Integer Quadratic Programs particularly suited for
optimal control and estimation problems of mixed logical
dynamical systems. The proposed tree exploring strategy
chooses first subproblems which have a small number of
switches in the pattern of discrete variables. When there
are physical motivations for such a behaviour, the method
shows a reduced average computational burden due to the
fast fathoming of entire subtrees of the MIQP tree.
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