
Learning nonlinear state-space models using deep autoencoders

Daniele Masti?†, Alberto Bemporad†

Abstract— We introduce a new methodology for the identifi-
cation of nonlinear state-space models using machine-learning
techniques based on deep autoencoders for dimensionality
reduction and neural networks. By learning a direct acyclic
computational graph, our framework simultaneously identifies
the nonlinear output and state-update maps, and optionally
a neural state observer. After formulating the approach in
detail and providing guidelines for tuning the related hyper-
parameters and reducing the model order, we show its capa-
bility of fitting a nonlinear model from an input/output dataset
generated by a benchmark nonlinear system. Performance is
assessed in terms of the ability of filtering and predicting output
signals ahead, and of controlling the system via nonlinear model
predictive control (MPC) based on the identified model.

I. INTRODUCTION

Nonlinear systems identification has gained increasing
popularity in the last years [1], also due to recent advances in
machine-learning methods for nonlinear function regression.
These have been employed with high success either as an ex-
tension of classical techniques, such as neural autoregressive
models with exogenous inputs (ARX) and reproducing kernel
Hilbert space (RKHS) models [1], or as novel approaches,
such as long short-term memory (LSTM) neural networks
[2] and piecewise-affine regression [3].

Most of the above techniques, however, are based on input-
output representations and thus do not involve an explicit
definition of a Markovian state. On the other hand, state-
space models are the basis for most modern control design
techniques, such as model predictive control (MPC), sliding
mode control, as well as for noise filtering and smoothing,
such as extended Kalman filtering (EKF).

In this paper we introduce a new methodology based on
autoencoders (AEs) [4] that is able to learn a nonlinear
model in state-space representation from a given input/output
dataset. Autoencoders are a particular type of artificial neural
networks (ANNs) that can be successfully employed for
various tasks, such as dimensionality reduction and denoising
[5]. To the best of our knowledge, the use of AEs in systems
identification has not been explored in the literature, except
for the very recent contribution [6], which we became aware
of after preparing this manuscript, that proposes an approach
to learn autoregressive models of autonomous systems.

In our approach, the order of the model is a design
parameter that can be set arbitrarily, trading off modeling
accuracy versus model complexity. Therefore, our method

? University of Florence, Department of Information Engineering, Italy.
daniele.masti@stud.unifi.it
† IMT School for Advanced Studies Lucca, Italy.

alberto.bemporad@imtlucca.it

can be also employed to reduce the order of a given nonlinear
model, such as a model of a distributed parameter system.

II. NONLINEAR IDENTIFICATION PROBLEM

We are given a training dataset of input/output samples
Z = {u1, y1, . . . , uN , yN} collected from a dynamical sys-
tem, where uk ∈ Rnu is the vector of exogenous inputs and
yk ∈ Rny the vector of measured outputs. For a given desired
number of past outputs na ≥ 1, of past inputs nb ≥ 1,
and a chosen state dimension nx ≥ 1, our goal is to find
maps e, f, g, with e : RnI → Rnx , nI , nany + nbny ,
f : Rnx+nu → Rnx , g : Rnx → Rny , optimizing the fitting
criterion

min
e,f,g
L(e, f, g, Z) (1a)

where

L(e, f, g, Z) =

N∑
k=k0

L(ŷk, yk)

s.t. xk+1 = f(xk, uk)
ŷk = g(xk), k = k0, . . . , N
xk0 = e(Ik0−1)

(1b)

L : R2ny → R is a given loss function, with L(0, 0) = 0,
xk ∈ Rnx is the state vector, Ik is the following information
vector

Ik = [y′k . . . y′k−na+1 u
′
k . . . u′k−nb+1]′ (2)

and k0 , max{na, nb}. In (1) f is the nonlinear state-update
map, g the nonlinear output map1, and e is a state-space
coordinate transformation function mapping the information
vector Ik of past inputs and outputs into the current state xk.
We will assess the quality of the model on a new validation
dataset Z̃ = {ũ1, ỹ1, . . . , ũM , ỹM}.

In general problem (1) has infinitely many solutions. The
problem of recognizing the smallest state-dimension nx that
provides an acceptable mismatch between the predictions ŷk
and the measured outputs ỹk is of main interest and has been
widely explored in the literature [7], [8].

A similar problem has also been widely studied in machine
learning, where discovering a “compressed” description of
a given information vector has been extensively studied
in the context of feature extraction [9]. The goal is to
reduce the dimension of the input space by identifying a
nonlinear function that projects the original (large) input
space into a (smaller dimensional) feature space, without
losing significant information content. How to adapt such

1We restrict our analysis to strictly causal discrete-time nonlinear systems,
as these are most often encountered when modeling physical systems.

2018 IEEE Conference on Decision and Control (CDC)
Miami Beach, FL, USA, Dec. 17-19, 2018

978-1-5386-1394-8/18/$31.00 ©2018 IEEE 3862

techniques to the posed problem of identification of nonlinear
state-space models will be discussed in the next sections.

To summarize, solving problem (1) amounts to deter-
mining a suitable state-space dimension nx, the relation e
between xk and past input/output pairs, and the state-update
and output maps f, g. For tackling both tasks, we will employ
ANNs due to their universal approximation properties [10],
[11] and efficient numerical packages available for training
them such as Tensorflow [12].

III. STATE SELECTION VIA AUTOENCODERS

The idea behind an autoencoder is simply to train an ANN
to reproduce the unit mapping from a certain information
vector Ik ∈ RnI to Ik itself, under the topological constraint
that one of the hidden layers contains nx < nI neurons.
Such a constraint forces the network to learn a description
of Ik that lives in the lower-dimensional space Rnx without
losing information. The smaller the fitting error between Ik
and the reconstructed Ik, the less information is lost when
passing through the network across the hidden “bottleneck”
layer. As a result, when excited by an input value I , the
corresponding value zk ∈ Rnx , taken by the neurons of the
bottleneck layer, represents the desired lower-dimensional
vector concentrating the information contained in Ik.

A. Partial predictive autoencoders

Given the dataset consisting of input/output samples Z,
applying a standard autoencoder to compress the informa-
tion vector Ik defined by (2) into a reduced-order vector
zk ∈ Rnx would not be optimal for two reasons: (i) it
would treat the samples Ik as independent, missing the fact
that consecutive samples Ik share common (time-shifted)
components, and therefore fail in capturing the capability
of predicting the next output yk+1, and (ii) it would be
redundant, as we are not really interested in reproducing the
input signals uk−i, i = 1, . . . , nb. Therefore, we introduce
here a partial predictive autoencoder (PPE) that maps Ik−1

(i.e., the information available up to time k − 1) into the
following vector of outputs

Ok = [y′k . . . y′k−m]′ (3)

with 0 ≤ m ≤ max{na, nb} − 1. By fitting an ANN
with a hidden layer of size nx, nx ≤ nany + nbnu, that
tries to predict Ok given Ik−1, we obtain an intermediate
compressed representation xk ∈ Rnx . Such a state xk of the
model captures the information required to predict yk from
Ik−1, filter yk−1 (if m ≥ 1), and smooth past outputs (if
m > 1). Note that we could make xk depend on yk too,
although our numerical experiments have shown that this
leads to worse fitting results.

The PPE amounts to the cascade of two different ANNs:
(i) an encoding function e : RnI → Rnx representing the
transformation from Ik−1 (past inputs and outputs) to xk
(state vector), (ii) a decoding mapping d : Rnx → Rmny

from xk to Ok, whose first ny components constitute the
desired output function g : Rnx → Rny .

d d

e e

f

IkIk-1 uk

Ok+1Ok

xk+1xk xk+1*

Fig. 1. Schematic representation of the computational graph of the proposed
nonlinear model structure

IV. MODEL LEARNING

Having defined a structure to map Ik−1 into xk, we also
need a structure to fit a function f : Rnx+nu → Rnx mapping
xk and uk into the next state xk+1.

A first approach would be to fit the PPE described
above to get functions e and d, compute the set of states
xk = e(Ik−1), k = max(na, nb) + 1, . . . , N , and then fit
a model f : Rnx+nu → Rnx mapping (xk, uk) to xk+1.
Our numerical experience is that this approach leads to poor
models.

We propose instead a better method that learns e, d and f
simultaneously. By exploiting the fact that neural networks
are direct acyclic graphs, we define a multi-objective learning
problem whose solution is a set of sub-networks implement-
ing the state-update and output functions of the desired state
space model. The corresponding structure is schematically
depicted in Figure 1, in which we use two PPEs that share
exactly the same weights (to be determined), one fed by Ik−1

and the other by Ik. The goal is to reproduce, respectively,
Ok and Ok+1. In this way, the generated state xk in the first
AE and xk+1 in the second AE will be coherent. A third
ANN must be trained to map uk and xk into the shifted
state xk+1, therefore getting the state-update mapping f .

The overall training problem described above is formu-
lated as the following minimization problem

minf,d,e

N−1∑
k=k0

L1(Ôk, Ok) + L1(Ôk+1, Ok+1)

+βL2(x?k+1, xk+1) + γL3(Ok+1, O
?
k+1)

s.t. xk = e(Ik−1), k = k0, . . . , N
x?k+1 = f(xk, uk), k = k0, . . . , N − 1

Ôk = d(xk), k = k0, . . . , N
O?

k = d(x?k), k = k0 + 1, . . . , N

(4)

where Li are loss functions, β, γ > 0 are scalar weights, Ok

is defined by (3), and Ik by (2).

3863

A. Choice of the loss functions

Clearly (4) may not solve our original objective (1) ex-
actly, although it may provide a good suboptimal solution
to it. In particular, the loss function L1 must be related
with the original loss L in (1b), such as L1(Ôk, Ok) =∑k

j=k−m L(ŷj , yj). The loss L2 can be seen as a relaxation
of the state update equation xk+1 = f(xk, uk) in (1b). The
loss L3 attempts avoiding that the error introduced by the
bridge function f gets amplified by the nonlinear decoder
d and results in a large deviations between the predicted
outputs O?

k+1 and the measured outputs Ok+1. Minimizing
L3 is the objective with the most priority, as it captures the
one-step ahead properties of the model. We set

L3(Ok+1, O
?
k+1) = ‖Ok+1 −O?

k+1‖22 (5a)

The “horizontal” objective related to L2 ensures the consis-
tency of the two copies of PPE learned. We set

L2(x?k+1, xk+1) = ‖xk+1 − x?k+1‖22 (5b)

The “vertical” objectives related to L1 is only ancillary to
guide the process of learning the correct bridge/decoder pair.
For this reason, we choose L1 as the margin-loss function
commonly used in SVM regression problems with soft-
margins [13]

L1(Ok, Ôk) =

(m+1)ny∑
i=1

max{ε, ζ|Oi
k|, |Oi

k − Ôi
k|}2 (5c)

where ε, ζ are nonnegative hyper-parameters determining the
component-dependent soft threshold max{ε, ζ|Oi

k|}, with
the superscript i denoting the ith component of the corre-
sponding vector.

B. Tuning parameters

Besides deciding the topology and activation functions
of the ANNs employed in the two identical PPEs, and the
learning algorithms employed in optimizing their weights
given the available training dataset, several tuning hyper-
parameters are involved in the proposed nonlinear system
identification method described above. These are summa-
rized in Table I.

In particular, while in standard AEs the dimension nx is
related to keeping the variance of the error between the value
of the input and replicated input layers limited, here it is
enough to choose nx so that the ANN is able to predict
just Ok satisfactorily. Clearly, as introduced earlier, as we
assume that xk is a compressed version of the information
contained in Ik, we require nx ≤ nany + nbnu. Moreover,
we restrict m ≤ max{na, nb} − 1 as we assume that older
outputs cannot be inferred from Ik.

V. NONLINEAR STATE ESTIMATION AND CONTROL

A. Filtering and state reconstruction

The encoding part e of the PPE network can be interpreted
as a deadbeat observer, in that it provides xk as a function of
the last na outputs and nb inputs. However, the unavoidable
presence of measurement noise and modeling errors often

asks for a state-observer to reconstruct xk recursively, which
also reduces the storage requirements from the past na
outputs and nb inputs to the last nx components of the
estimated state.

We propose here two alternative state-reconstruction meth-
ods: (i) a standard extended Kalman filter (EKF) technique
[14] based on the learned model f, g and suitable covariance
matrices, and (ii) a state observer based on a neural network,
denoted in the sequel as “neural observer”. Employing an
EKF poses a limit in the choice of activation functions, due to
the fact that the ANN needs to be differentiated with respect
to xk and uk in order to get the required Jacobian matrices.

While often the issue can be circumvented, in some cases
one knows in advance that the data-generating process has
switching properties or other forms of nonsmoothness, that
would be highly desirable to capture in our learned model
for maximum fit performance.

Therefore, an alternative approach, similar to what em-
ployed in Section IV to learn the state-update function f , is to
extend the overall learning objective (4) to also train a neural
observer. Similar to the bridge function introduced to forward
the state xk and new input uk to estimate the next state x∗k+1,
we can introduce a similar structure to build, together with
e, d, f , an additional map s : Rnx+nu+ny → Rnx from the
current state estimate x̂k, the input uk, and the new measured
output yk to the updated state estimate x̂k+1. This is achieved
by replacing L3(O?

k+1, Ok+1) in problem (4) with

βL4(x̂k+1, xk+1) + γL3(Ô?
k+1, Ôk+1) (6)

where
x̂k+1 = s(xk, uk, yk)

Ô?
k = d(x̂k), k = 0, . . . , N − 1

(7)

and
L4(x̂k+1, xk+1) = ‖x̂k+1 − xk+1‖22 (8)

A benefit of this approach is that no separate tuning process
is required after training the process model f , g, in that
the observer s is trained directly on the data set. On the
other hand, having coupled the fit of model and observer
leaves no freedom in retuning the observer without fitting
again both; moreover, it may lead to sacrificing the quality
of prediction/smoothing of the output in favor of better
reconstructability of the state.

B. Nonlinear model predictive control

Having a state-space model and a state observer learned
from the available dataset, any model-based state-feedback
control technique can be employed to design a control
system. Among these, Model Predictive Control (MPC) is
probably the most flexible [15], [16] for dealing with multi-
variable systems and constraints on process variables, and
relatively easy to tune. Here we focus on a linear time-
varying (LTV) MPC scheme that exploits the Jacobian ma-
trices already used by the EKF.

The standard Algorithm 1 summarizes the LTV-MPC
control algorithm based on the learned model f , g and EKF
(see, e.g., [17]).

3864

parameter symbol meaning
input window size na, nb size of information vector Ik employed to construct the state xk+1

autoencoding window m size of output vector Ok , m ≤ max{na, nb} − 1. Increasing m usually provides a regularization effect
state dimension nx number of components of the state xk , corresponding to the number of neurons in the central layer of

the hourglass ANN defining the PPE, nx ≤ nany + nbnu

soft threshold parameters ζ, ε parameters defining the loss function L1, ζ, ε ≥ 0
relative weights β, γ relative weights scalarizing the multi-objective fitting criterion in (4)

TABLE I
PARAMETERS OF THE PROPOSED LEARNING METHOD TO BE TUNED

VI. EXAMPLE: NONLINEAR TANK SYSTEM

A. Benchmark problem

We generate data from the following process x1(k + 1) = x1(k)− k1

√
x1(k) + k2(u(k) + w(k))

x2(k + 1) = x2(k) + k3

√
x1(k)− k4

√
x2(k)

y(k) = x2(k) + v(k)
(9)

which is a discrete-time approximation of the well-known
nonlinear tank system [18] with possible overflows neglected.
In (9) k1 = 0.5, k2 = 0.4, k3 = 0.2, k4 = 0.3, and v(k),
w(k) are zero-mean Gaussian white noise signals with stan-
dard deviation σv = 0.15 and σw = 0.35, respectively. The
training dataset consists of N = 80000 samples collected
by exciting (9) with a sequence of step signals of length 7
steps each of random amplitude, normally distributed with
zero mean and standard deviation of 5. Since we employ an
early-stopping strategy, 10% of the training dataset is used
to check the stopping criterion.

The test set used for cross-validation consists of 1000
samples and is instead collected by supplying the harmonic
input u(k) = 2.5 sin(k/7) + 1.5 cos(k/3) + 1 and noise
generated with the same distributions used when collecting
the training dataset. The acquired signals are rescaled by a
multiplicative factor to have similar ranges, although bias is
not removed as motivated in [19].

B. Choice of topology and tuning of hyper-parameters

In principle each one the four modules (encoder e, decoder
d, bridge f , and observer s) can be designed with different
ANN topologies and activation functions, which provides
an extreme flexibility of the approach. We restrict here our
analysis to ANNs with 3 hidden layers for all modules, each
one containing 60 exponential linear unit (ELU) neurons
[20], encapsulated between a linear input and a linear output
layer with no bias enabled, for a total of ≈ 45000 weights
equally divided among the four modules. Such a choice,
although not the optimal one, allows us to perform all the
tests using the same network architecture, and in any case it
is a good baseline for further fine tuning.

The network has been implemented in Keras [21] and
Tensorflow [12], and has been trained via the AMSgrad
algorithm [22] with batch size of 32 samples per batch.
The training cost function in (4) is defined by the hyper-
parameters ζ = 0.03, ε = 0.25, β = 2, and γ = 10.

All the reported results were obtained on a laptop with
Intel Core i5 6200u (2.3GHz) with 8 Gb RAM running

Ubuntu 16.04 using Pyhton 3.5. We used version 1.5.0rc1
of Tensorflow and 2.1.3 of Keras.

C. Sensitivity to state and information vector dimensions

We evaluate the fit performance obtained when applying
our identification method with different sizes nx of the state
xk and na, nb of the information vector Ik. We set m = 2
in all tests as we are only interested in predicting the next
output yk+1 and filter the current one yk.

Performance is compared in terms of the best fit rate
(BFR)

BFR = 100

1−

√∑N
k=k0

(yt − ŷt)2√∑N
k=k0

(yt − ȳ)2

% (10)

and Root Mean Square Error (RMSE)

RMSE =

√√√√ 1

N

N∑
k=k0

(yt − ŷt)2 (11)

In (10)–(11) ȳ is the average of the output signal y over
N − k0 + 1 samples, k0 = max{na, nb}, and we consider
different choices for ŷt:

(i) one-step ahead prediction ŷk, extracted from Ôk =
d(e(Ik−1));

(ii) open-loop prediction, in which ŷk is extracted from
Ôk = d(x̂k), where

x̂k+1 = f(x̂k, uk), k = k0, . . . , N − 1
x̂k0 = e(I0)

(12)

(iii) ŷk generated by the neural observer, i.e., extracted from
Ô?

k = d(x̂k), where x̂k+1 = s(x̂k, uk, yk), k = k0,
1, . . . , N − 1, xk0

= e(I0);
(iv) ŷk = ŷk|k generated by the extended Kalman filter, i.e.,

extracted from Ok|k = d(x̂k|k), where x̂k|k is the state
estimate produced by the EKF, tuned with variances
consistent with those of the noise signals w(k), v(k).

Table II reports the results obtained with nx = 6, na =
nb = 12, which requires ~230 s CPU time to solve the
training problem (4), while Table III reports the results
achieved instead with nx = 2, na = nb = 7, which requires
~25 s CPU time. Figure 2 shows some of the simulation
traces corresponding to the results reported in Table II.

3865

BFR RMSE
1-step ahead 94.0% 0.174
open-loop 87.5% 0.348
neural observer 91.0% 0.264
EKF 93.0% 0.200

TABLE II
FIT RESULTS OBTAINED WITH nx = 6, na = nb = 12, 80000 SAMPLES

Fig. 2. Estimated output signal ŷk with nx = 6, na = nb = 12: noise-
corrupted measured signal (blue), noise-free signal (dashed red), 10-steps
ahead w/ reset prediction (black), open-loop simulation (green), EKF filtered
output yt|t (magenta).

D. Sensitivity with respect to dataset size

As for most deep-learning approaches, the training algo-
rithm based on (4) may require a high number N of samples
to converge to a good model. Table IV report the performance
obtained under the same network topology with nx = 6,
na = nb = 12 when we use a reduced training dataset of
N = 10000 samples. No attempt has been made to revise the
topology of the networks with respect to the previous tests.
The CPU time required for training the model is ≈ 30 s.

Although the performance of open-loop prediction deteri-
orates in a perceivable way, results are still acceptable for
limited ahead prediction and using a state observer. This
suggests that the obtained model may still good enough for
control design, as confirmed in Section VI-E.

E. Linear time-varying MPC based on nonlinear model

To control the tank system (9), we apply the LTV-MPC
Algorithm 1 based on the nonlinear model identified with
nx = 3, na = nb = 7 trained on a dataset further reduced
to N = 8000 samples, that achieves 61% BFR in open-loop
prediction. We employ the neural state observer, although
very similar results have been obtained using the EKF.

Figure 3 reports the closed-loop results obtained with the
LTV-MPC controller defined by np = nm = 4, Wy =
10, Wu = 0.1, W∆u = 0.3, under slew-rate constraints
|∆uk| ≤ 1.5. Each simulation step, that includes simulating
the system, updating the state observer, and computing the
LTV-MPC solution, is carried out in 40 ms.

BFR RMSE
1-step ahead 89.2% 0.303
open-loop 82.5% 0.530
neural observer 89.0% 0.314
EKF 87.4% 0.369

TABLE III
FIT RESULTS OBTAINED WITH nx = 2, na = nb = 7, 80000 SAMPLES

BFR RMSE
1-step ahead 89.2% 0.305
open-loop 67.1% 1.160
neural observer 90.0% 0.296
EKF 82.9% 0.540

TABLE IV
FIT RESULTS OBTAINED WITH nx = 6, na = nb = 12, 10000 SAMPLES

F. Comparison with other identification techniques

We compare our approach with more classical nonlinear
neural ARX (NNARX) techniques. To this end, we use the
nlarx function implemented in the Systems Identification
Toolbox for MATLAB [23], based on the regressor [y(t −
1) . . . y(t− na) u(t− nk) . . . u(t− nk − nb + 1)]′ and a
feedforward neural network as the nonlinearity [24]. Table V
reports the performance obtained in cross-validation in terms
of BFR when reproducing the output signal in open-loop
simulation.

Table V also shows the number of states of the identified
models, which is nx in our approach and na + nb + nk − 2
for NNARX models. It is apparent that for the same number
of states our method is able to better reproduce the open-
loop response on test data. Note also that the NNARX model
identified with na = nb = 12 corresponds to using the entire
uncompressed information vector Ik.

Finally, we remark that in our approach we restricted the
activation functions of the neurons to be differentiable. If

0 50 100 150 200 250

time steps

-1

0

1

2

3

4

5

6

Fig. 3. Nonlinear tank system benchmark: Tracking a sine-sweep signal
(red) with LTV MPC based on a neural observer as state observer. The
controlled output is shown in blue, the tracking error in yellow

3866

Input: Prediction horizon np, control horizon nm, weight
matrices Wy ∈ Rny×ny , Wu ∈ Rnu×nu , W∆u ∈ Rnu×nu ;
output and input reference signals rt ∈ Rny , ur

t ∈ Rnu ,
t = 0, 1, . . .; current state estimate x̂t|t−1.

1. estimate x̂t|t from x̂t|t−1, ut, yt (e.g., using EKF);
2. compute the sequence of predicted states
{x̄t+1, . . . , x̄t+np} and outputs {ȳt+1 · · · ȳt+np}
given the current guess of the input sequence
{ūt · · · ¯ut+np−1}, with ūt+k = ūt+nm−1 for all
k ≥ nm − 1;

3. compute the Jacobians

Ak =
∂f

∂xk
(x̄t+k, ūt+k), Bk =

∂f

∂uk
(x̄t+k, ūt+k)

Ck =
∂g

∂xk
(x̄t+k, ūt+k)

4. solve the quadratic programming problem of LTV-MPC
to get the optimal sequence u?

t , . . . , u
?
t+nm−1;

5. set the current input ut = u?
t ;

6. update the estimate x̂t+1|t = f(x̂t|t, ut);
7. update the nominal input sequence ūt+k = u?

t+k, 1 ≤
k ≤ nm − 1, ūt+k = u?

t+nm−1, nm ≤ k ≤ np − 1.

Output: Command input ut, updated nominal input se-
quence {ūt+1, . . . , ūt+np−1}, updated state estimate x̂t+1|t.

Algorithm 1: LTV-MPC algorithm

method parameters # states BFR
NNARX na = 2, nb = 1, nk = 1 2 75.0%
NNARX na = 3, nb = 4, nk = 1 6 82.9%
NNARX na = nb = 12, nk = 1 23 94.9%
Eq. (4) nx = 6, na = nb = 12 6 87.5%
Eq. (4) nx = 2, na = nb = 7 2 82.5%

TABLE V
COMPARISON WITH NONLINEAR NEURAL ARX REGRESSION: BFR

OBTAINED IN OPEN-LOOP PREDICTION (80000 SAMPLES)

such an assumption is relaxed, better open-loop fit figures
can be obtained. However, we have not tested non-smooth
models extensively, as we are interested in obtaining the
Jacobian matrices required by the EKF and MPC controller.

VII. CONCLUSIONS

In this paper we introduced a novel methodology based on
autoencoders and neural networks to estimate nonlinear state-
space models from input/output data. The approach well
captures nonlinear models with a direct control of the order
of the state vector. The technique is especially appealing
for model-based control design and opens the avenue to
the synthesis of nonlinear model predictive controllers from
black-box input/output data. Due to the flexibility of the
proposed approach, we envision several extensions, such as
for the identification of gray-box models, for the synthesis of
virtual sensors, and for model reduction of nonlinear state-
space models.

ACKNOWLEDGEMENTS

The authors thank Professor Alberto Tesi for providing
invaluable suggestions during the development of this work.

REFERENCES

[1] G. Pillonetto, F. Dinuzzo, T. Chen, G. D. Nicolao, and L. Ljung, “Ker-
nel methods in system identification, machine learning and function
estimation: A survey,” Automatica, vol. 50, no. 3, pp. 657 – 682, 2014.

[2] Y. Wang, “A new concept using LSTM neural networks for dynamic
system identification,” in 2017 American Control Conference (ACC),
pp. 5324–5329, May 2017.

[3] V. Breschi, D. Piga, and A. Bemporad, “Piecewise affine regression
via recursive multiple least squares and multicategory discrimination,”
Automatica, vol. 73, pp. 155–162, Nov. 2016.

[4] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” Science, vol. 313, pp. 504–507, July
2006.

[5] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, pp. 3371–3408, Dec. 2010.

[6] N. Takeishi, Y. Kawahara, and T. Yairi, “Learning Koopman
invariant subspaces for dynamic mode decomposition,” CoRR,
vol. abs/1710.04340, 2017.

[7] R. L. Williams and D. A. Lawrence, Minimal Realizations, pp. 185–
197. John Wiley Sons, Inc., 2007.

[8] Y. Baram, “Minimal order representation, estimation and feedback of
continuous-time stochastic linear systems,” in Mathematical Theory
of Networks and Systems (P. A. Fuhrmann, ed.), (Berlin, Heidelberg),
pp. 24–41, Springer Berlin Heidelberg, 1984.

[9] I. Guyon and A. Elisseeff, An Introduction to Feature Extraction,
pp. 1–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.

[10] A. R. Barron, “Universal approximation bounds for superpositions
of a sigmoidal function,” IEEE Transactions on Information Theory,
vol. 39, pp. 930–945, May 1993.

[11] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Mathematics of Control, Signals and Systems, vol. 2, pp. 303–
314, Dec 1989.

[12] M. A. et al., “TensorFlow: Large-scale machine learning on heteroge-
neous systems,” 2015. Software available from tensorflow.org.

[13] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, “New
support vector algorithms,” Neural Comput., vol. 12, pp. 1207–1245,
May 2000.

[14] B. Anderson and J. Moore, Optimal Filtering. Englewood Cliffs, NJ:
Prentice-Hall, 1979.

[15] A. Bemporad, “Model-based predictive control design: New trends
and tools,” in Proc. 45th IEEE Conf. on Decision and Control, (San
Diego, CA), pp. 6678–6683, 2006.

[16] D. Mayne, “Model predictive control: Recent developments and future
promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[17] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From
linear to nonlinear MPC: bridging the gap via the real-time iteration,”
Int. Journal of Control, 2016. In press.

[18] M. Schoukens and J. Noël, “Three benchmarks addressing open
challenges in nonlinear system identification,” 20th World Congress
of the International Federation of Automatic Control, pp.448-453,
Toulouse, France, July 9-14, 2017.

[19] K. K. Chen, J. H. Tu, and C. W. Rowley, “Variants of dynamic mode
decomposition: Boundary condition, Koopman, and Fourier analyses,”
Journal of Nonlinear Science, vol. 22, pp. 887–915, Dec 2012.

[20] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (ELUs),” CoRR,
vol. abs/1511.07289, 2015.

[21] F. Chollet et al., “Keras.” https://github.com/keras-team/keras, 2015.
[22] S. K. Sashank J. Reddi, Satyen Kale, “On the convergence of Adam

and beyond,” International Conference on Learning Representations,
2018.

[23] L. Ljung, System Identification Toolbox for MATLAB – User’s Guide.
The Mathworks, Inc.

[24] The MathWorks Inc., “Class representing neural net-
work nonlinearity estimator for nonlinear arx models.”
https://it.mathworks.com/help/ident/ref/neuralnet.html.

3867

