
DESIGN OF A MOTORCYCLE ENGINE
CONTROL UNIT USING AN INTEGRATED

CONTROL-IMPLEMENTATION APPROACH �

Andrea Balluchi ∗ Maria D. Di Benedetto ∗∗

Alberto Ferrari ∗ Giovanni Gaviani ∗∗∗

Giovanni Girasole ∗∗ Claudio Grossi ∗∗∗

Walter Nesci ∗∗∗ Michele Pennese ∗∗∗

Alberto L. Sangiovanni–Vincentelli ∗,∗∗∗∗

∗ PARADES, Via S. Pantaleo 66, 00186 Rome, Italy,
{balluchi,aferrari,alberto}@parades.rm.cnr.it
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Abstract: The design of automotive control systems is becoming increasingly com-
plex as the level of performance required by car manufactures grows continuously
and the constraints on cost and development time imposed by the market become
tighter. A successful design, without costly and time consuming re-design cycles,
can be achieved only by using an efficient design methodology that allows for
component re-use and evaluation of platform requirements at the early stages
of the design flow. In this paper, we illustrate the application of an integrated
control-implementation design methodology, recently proposed by our group, to
the development of the top few layers of abstraction in the design flow of an engine
control system for motorcycles.

Keywords: Embedded systems, design methodologies, automotive control, hybrid
systems.

1. INTRODUCTION

An automotive engine control unit is a reactive
real-time embedded system, since it is designed to
control the behavior of a physical system (namely,
the engine) with tight timing constraints. Reactive
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real-time embedded systems, referred to as em-
bedded controllers also, are the most challenging
embedded systems to design.
In the standard approach to embedded controller
design, a serious problem is the present disregard
for the interaction of the control algorithms with
their implementation. This neglect leads to long
re-design cycles when the timing and accuracy
requirements of the applications are not met. In
(Antoniotti et al., 1998) and (Balluchi et al., 2002)



the authors proposed a general methodology to
bridge the gap between functional design and im-
plementation of embedded controllers. The pro-
posed design methodology is based on the prin-
ciples of platform-based design, see (Sangiovanni-
Vincentelli, 2002). A platform, in this context, is
a layer of abstraction that hides the unnecessary
details of the underlying implementation and yet
carries enough information about the layers be-
low to prevent design iterations. In this paper,
we describe the application of the methodology
presented in (Balluchi et al., 2002) to the de-
sign flow of an embedded controller in the au-
tomotive industry. In particular, we consider the
design of engine control units (ECUs) for mo-
torcycles. This application is of importance in
industry since tighter laws on emission force the
adoption of embedded controllers, which are con-
siderably less complex than the ones in cars but
at the same time, exhibit all the tight interactions
with the plant typical of car applications that
make the design of ECUs very challenging. In
particular, we focus on the upper three layers of
the platform-based design methodology described
in (Antoniotti et al., 1998), namely, the functional
decomposition layer, the control strategies layer
and the implementation abstraction layer. The
importance of these platform layers derives from
the fact that most of the critical design choices are
taken in the early stages of the design flow and
missteps in these stages produce costly and time
consuming re-design cycles. Hybrid system tech-
niques are extensively used to evaluate the behav-
ior of the system at each layer (Antsaklis, 2000).
The paper is organized as follows. In Sec. 2, we
briefly recall the main concepts of platform-based
design. In Sec. 3, we present our approach to
functional decomposition, the control strategies
and the implementation abstraction layers of the
motorcycle ECU. Some concluding remarks are
presented in Sec. 4.

2. PLATFORM-BASED DESIGN
METHODOLOGY

The basic tenets of the Platform-based De-
sign Methodology as exposed in (Sangiovanni-
Vincentelli, 2002) are:

• Regarding design as a “meet-in-the-middle pro-
cess” where successive refinements of specifica-
tions meet with abstractions of potential imple-
mentations;
• The identification of precisely defined layers
where the refinement and abstraction process take
place.

These layers support designs built upon them
allowing the designer to be freed from lower-level
details but letting enough information transpire

Fig. 1. Upper part of the platform stack.

about lower levels of abstraction to allow design
space exploration with a fairly accurate prediction
of the properties of the final implementation. The
information should be incorporated in appropri-
ate parameters that annotate design choices at
the present layer of abstraction. These layers of
abstraction are called platforms. A platform is de-
fined to be an abstraction layer in the design flow
that facilitates a number of possible refinements
into a subsequent abstraction layer (platform) in
the design flow. The abstraction layer contains
several possible design solutions, but limits the de-
sign exploration space. During the design process,
at every step we choose a platform instance in the
platform space. Every pair of platforms, the tools
and methods that are used to map the upper layer
of abstraction into the lower level one is a platform
stack. Key to the application of the design princi-
ple is the careful definition of the platform layers.
Some layers are more important than others in
the overall design trade-off space. In particular,
the articulation point between functional design
and implementation is a critical one for design
quality and time. In the platform-based design
paradigm, the effects of the actual implementation
is represented by an abstract model characterized
by idealized parameters. Each choice of these pa-
rameters identifies an implementation platform.
In this view, control design is a platform mapping
with as many implementation details as exposed
by the implementation platform.

3. INTEGRATED
CONTROL-IMPLEMENTATION DESIGN OF

A MOTORCYCLE ECU

In this section, we present the results of the appli-
cation of the methodology for integrated control-
implementation design, described in Sec. 2, to
the development of an ECU for motorcycles. The
design process, which includes formalization of
system specifications, functional decomposition
and deployment, controller selection and modeling
of abstractions of potential implementations, has
been carried out in Magneti Marelli Powertrain
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Fig. 2. Functional decomposition.

Division with the support of Parades and the
University of L’Aquila. A schematic view of the
design process is shown in Fig. 1.

3.1 From System Specification to Functional
Decomposition

To tackle complexity, the system is decomposed
into a number of interacting simpler sub-systems,
called functions. The decomposition is based on
the understanding of the physical process of inter-
est. This first stage is clearly a key step towards
a good quality design, since it leads to a design
process that can be carried out as independently
as possible for each component (see (Antoniotti et
al., 1998) for more details). By the decomposition
process, the objectives and constraints that define
the system specification are distributed among
the components, so that the composition of the
behaviors of the components, made feasible and
possibly optimal with their own constraints and
cost functions, is guaranteed to meet the con-
straints and the objectives of the overall controlled
system.

3.1.1. Functional platform. In our methodol-
ogy, this design step represents a first refinement
of the system specifications into a platform ab-
straction capturing a structure of the implemen-
tation. For engine control, we model the platform
at this layer with eight main functions described
in Fig. 2 (see (Antoniotti et al., 1998)). For the
motorcycle ECU under design, the platform repre-
sentation is a structure composed of the following
functions:

• Motion Generation: driver/vehicle interface
management, torque generation and trans-
mission, synchronization.

• Exhaust Gas Treatment : TWC warm-up con-
trol, temperature estimation.

• Combustion: definition of target for spark
advance and AFR, engine torque estimation.

• Ignition: actuation of target spark advance.
• Mixture Composition: AFR control, defini-

tion of target fuel mass and injection time,
lambda sensor measurement and heating.

• Fuel Management : actuation of fuel injec-
tion, fuel compensation during transients.
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Fig. 3. General scheme for the functional design.

• Air Management : air temperature and throt-
tle valve angle measurements, cylinder air-
charge estimation, throttle valve control.

• Communication: CAN communication with
CVT and dash–board.

Since, in general, it is difficult to decompose the
system into independent parts, the determination
of the local objectives and constraints has to be
the result of a careful trade-off between the desire
of optimality at the global level and the ease of
design for each component.

3.1.2. Functional refinement. The mapping of
system specification to the platform model (pre-
viously described) defines the behavior for each
functional component. This refinement can be
cast into the classical robust control representa-
tion depicted in Fig. 3, where the controller rep-
resents the behavior of the function under design
and the plant represents the remaining part of the
system (plant plus other functions). Furthermore,
d models measurable and unmeasurable distur-
bances to be rejected, v denotes reference signals
and commands, w stands for feedforward and
feedback signals, u represents the control inputs
and y denotes the system outputs.

The behavior of the function is represented by
a functional specification defined in terms of a
number N of inequalities of the type:

J̄i (Ji{y}|x∈Xi) ≤ 0 for i = 1 . . .N (1)

where:

• the system of inequalities may be related to
different operating modes of the system and
– possibly – different requirements for each
operating mode;

• Ji : Yi → R is a functional measuring the
performance of the controlled system on a
particular evolution x ∈ Xi and the operator
J̄i(·) collects the overall performances in Xi;

• x denotes the state of the plant, and Xi is the
family of system evolutions of interest 1 ;

• y denotes the system outputs on which the
functional is applied and Yi is the family of
output evolutions.

1 Which may depend on uncertain and time-varying pa-
rameters, as well as initial and final conditions.



3.1.3. ECU functional design. As examples, we
report below the description of the functional
specifications for two tasks of the motorcycle
ECU, namely the AFR control and the fuel in-
jection actuation. In the sequel we will refer to
Fig. 3 and formalism (1).

AFR control. Function inputs produced by other
functions: w = (AFRobj , AFR), with AFRobj de-
sired air-to-fuel ratio, AFR actual air-to-fuel ra-
tio, estimated from lambda sensor measurements.
Function output u to the fuel management func-
tion: the target fuel mass qobj . Disturbance d =
(ma, δq) with: ma cylinder air flow, δq additive
step disturbance on fuel mass. System output:
regulation error y = AFR−AFRobj. Performance
functional J̄ = max(J1,J2) with

J1{y(t)} = {settling time of y(t)} − tMs
J2{y(t)} = {overshoot of y(t)} − SM

with tMs , SM > 0 upper bounds on settling time
and overshoot, respectively. The class of evolu-
tions X1 = X2 is given by those with initial
conditions at feasible equilibrium points.

Fuel injection actuation. Function input: w =
(qobj , Vbat), with qobj target fuel mass and Vbat

estimated battery voltage. Function output: u =
tinj ∈ [0, tMinj ] injector opening time. Plant dis-
turbance d = (δbat, δp), with δbat error on bat-
tery voltage estimation and δp perturbation of
the pressure across the injector. Class X : any
evolution under bounded disturbance d and fea-
sible initial conditions and inputs. Denote by q
the injected fuel. The performance specification is
expressed in terms of the mean-value of fuel injec-
tion error y = q − qobj over the interval [0, tMinj ],
that is J {y} = E{|y|} − qM

err, with qM
err > 0 the

mean-value upper bound.

3.2 From Functional Decomposition to Control
Strategies

As represented in Fig. 1, the next step in the
design flow consists of a refinement of the func-
tional decomposition obtained in the previous step
into a set of control strategies using given control
platforms.

3.2.1. Control platforms. On the basis of a
model of the plant interacting with the functional
component, a set of candidate control strategies
are devised for each function. Different control
strategies are conceived to allow for exploration
of different solutions. These strategies correspond
to different choices of physical variables in d,
u, w and v, and different algorithms. Therefore,
the platforms at the control strategies layer are
described by

• a number R of different controller structures;
• a set Xr

C of control parameters for each con-
troller structure r ∈ {1, . . . , R}.
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Fig. 4. AFR control parameter admissible set
J(c) ≤ 0, for settling time specification J1

(gray) and overshoot specification J2 (cyan).

3.2.2. Control refinement. A particular control
strategy, resulting from the mapping of a func-
tional solution into a control platform, is iden-
tified by selecting a controller structure and an
admissible value for the control parameters. Let
ỹ and x̃ respectively denote the representation in
the given model of the physical variables y and x.
The functional specification (1) is guaranteed for
a control structure r, control parameters c, and a
given plant model if

J̄i (Ji{y}|x∈Xi) ≤ J̄i (Ji{ỹ(r, c)}|x̃∈Xi)

≡ Ji(r, c) ≤ 0 for i = 1 . . .N . (2)

Note that, while Ji{·} is a functional that is
applied to the system outputs, Ji : {1, . . . , R} ×
Xr

C → R is a function of the controller struc-
tures and control parameters. To guarantee sys-
tem specification (1), the model that produces
ỹ(r, c) has be conservative w.r.t. functionals Ji{·}.

3.2.3. ECU control strategies design. Using the
representation of Fig. 3, controller parameters
(r, c) have been identified and values for which (2)
holds have been computed. For the examples
considered above we obtained:

AFR control. A PI controller is designed to achieve
zero asymptotic error for a fuel mass step distur-
bance δq. Control parameters are c = (KP , KI , β)
with: (KP , KI) PID tuning parameters, and β an
anti-windup parameter. The abstract plant model
is AFR(t) = LP (t) ∗ ma(t−τ0)

qobj(t−τ0)+δb(t)
, where LP (t)

is a unitary gain low-pass filter and τ0 models the
induction to exhaust delay. Following (2), func-
tional specification is achieved for control param-
eters in the set depicted in Fig. 4.

Fuel injection actuation. A standard piecewise
linear approximation of the injector characteristic
is assumed: q = 0, if tinj < t0, q = αtinj , if
tinj ≥ t0. Gain α depends on the pressure across
the injector. Hence, α is represented as the sum of
a nominal value αN and an uncertain component
αU (which depends on the pressure disturbance
δp). The control algorithm is the inversion of
the nominal piecewise model of the injector. The
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Fig. 5. Abstract representation of the effects of
implementation non–idealities.

maximum value of αU is chosen as the control
parameter c = δα = maxδp αU . According to (2),
the functional specification is guaranteed for the
control parameter δα satisfying:

δα(tM
2

inj − t20)/2tMinj ≤ qM
err .

3.3 From Control Strategies to Implementation
Abstract Model

Finally, referring again to Fig. 1, we describe the
third step of the methodology in which control
strategies are refined in an implementation ab-
stract model.

3.3.1. Implementation platforms. The essential
issue for representing implementation platforms in
an abstract way is to determine the effect of im-
plementation platforms on the controlled system
performances. Accuracy of measurements and ac-
tuations, and how to represent the fact that com-
putation and communication take time and may
be affected by errors are important in this respect.
The main effects of a particular implementation
on the behavior of the controlled system must be
carefully classified and characterized. They can
be represented in terms of perturbations on the
controller input/output channels, as illustrated in
Fig. 5. Disturbances nu, nw, nr and blocks ∆u,
∆w, ∆r represent, respectively, value and time
domains perturbations due to the implementa-
tion and acting on the control inputs u, feedback
outputs w and reference signals v. Depending on
the selected platform, these perturbations can be
represented by different models and characterized
by abstract parameters p. A set of implementa-
tion platforms with the corresponding exported
parameters is defined by:

• a number S of different platform structures;
• a set of parameters Xs

P for each platform
structure s ∈ {1, . . . , S};

• a set of platform constraints

Jv(s, p) ≤ 0, for v = 1 . . . V . (3)

For a given platform structure s ∈ {1, . . . , S},
elements p ∈ Xs

P are referred to as the platform
parameters.

3.3.2. Implementation abstract model refinement.
In the control parameters and platform param-

eters product space, feasible mappings are given
by the set

U = {(r, c, s, p) | r ∈ {1, . . . R}, c ∈ Xr
C ,

s ∈ {1, . . . S}, p ∈ Xs
P , such that

Ji(r, c, s, p) ≤ 0, for i = 1 . . . N + V } (4)

where Ji include both conservative expressions
for (2), including the effects of the implementation
platform modeled by (s, r), and the platform
constraints (3). To select the best mapping, i.e.
the best implementation platform, we introduce
an objective function H(r, c, s, p) and solve

arg min
(r,c,s,p)∈U

H(r, c, s, p) . (5)

For layers of abstraction distant from the actual
implementation, H does not represent the real
cost, since an accurate estimate of it would be
difficult to obtain. In these cases, a better solution,
as demonstrated in (Chang et al., 1997), is to
adopt a function that measures the “size” of the
design space where platforms at lower levels of
abstraction can be selected. If indeed the platform
parameters chosen by the optimization process
can be easily achieved by platforms at lower levels
of abstraction, we minimize the risk of expensive
design cycles that span several platforms and we
offer a better platform choice while we are ap-
proaching the implementation level. The objective
function that reflects these principles was called
flexibility function. In some sense, the flexibility
function is an auxiliary function that serves the
purpose of a more efficient search of the design
space. While the macro aspects of this function
are easy to establish and can be generalized, the
actual choice of flexibility functions is the result of
the experience of the designer and can be refined
during re-design to reflect more accurately the
difficulty of achieving the platform parameters 2 .

3.3.3. ECU implementation abstract model de-
sign. In the design of the motorcycle ECU, for
each function the main effects of the implementa-
tion on the behavior of the controlled system have
been modeled as in Fig. 5 and implementation
parameters (s, p) have been identified, along with
constraints (3). Then, the feasible parameter set
U in (4) has been computed. For the examples
considered above we have:

AFR control. When the PI controller is imple-
mented in the digital system, the main platform
parameters that affect the performance is the sam-
pling time Tc and the worst case execution time

2 For example, the flexibility function of a discrete-time
platform can be an increasing function of the sampling
time. The higher the sampling time, the easier is to find a
platform that can support that sampling time.
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Fig. 6. Values of the platform parameter Tc that
guarantee settling time specification J1 (left)
and overshoot specification J2 (right), for
admissible control parameters (KP , KI).

WAFR. Hence, p = (Tc, WAFR). Fig. 6 reports
a section of the set U contained in composed
parameter space (KP , KI , β) × Tc for which the
specification is guaranteed.

Fuel injection actuation. Threshold t0 depends
on the battery voltage Vbat − δbat. The platform
parameters p = (δt0 , λ) represent: the maximal
variation of the injector threshold t0 due to the
battery estimation error δbat (δt0), and the accu-
racy of the injector command (λ). In the com-
posed control and platform parameter space, the
performance specification is guaranteed for

(δα(tM
2

inj − t20) + (α − δα)δt0(2t0 + δt0)+
+2λ(tMinj − t0 − δt0))/2tMinj ≤ qM

err .

Additional platform parameters are: Wfi the
worst case execution time and Tfi the minimum
cycle time of the actuation of fuel injection.

The execution time parameters can be refined to
describe platform structures with different hard-
ware/software partitioning, by writing WAFR =
WAFRhw

+ WAFRsw
, Wfi = Wfihw

+ Wfisw
and

p = (WAFRhw
, WAFRsw , δt0 , λ, Wfihw

, Wfisw
)

Assuming that the implementation has a single
CPU, the constraint that guarantees the schedul-
ing with total utilization Ucpu can be expressed as

J
(1)
v (Wi, Ucpu, Ti) =

∑m
i=1(Wi/Ti) − Ucpu ≤ 0

where Wi is the worst case software execution
time of the component i, and Ti is the execution
period of that component. This constraint for the
algorithms considered here is written as follows

WAFRsw/Tc + Wfisw
/Tfi − Ucpu ≤ 0 .

Note that a different hardware/software partition-
ing is captured by different values of the platform
parameters and different values of the objective
function (5). A pure software implementation is
represented with a zero value for any hardware
contribution (Wihw

) to the execution time. An
interesting implementation platform under inves-
tigation has a fully hardware fuel injection actu-
ation and a fully software AFR control. This im-

plementation is expressed by the following values
of the model parameters WAFRhw

= Wfisw
= 0,

which shows that the scheduling problem is dras-
tically simplified. The definition of a flexibility
function for the motorcycle ECU, which will allow
us to select a particular implementation platform,
is currently under investigation.

4. CONCLUDING REMARKS

We illustrated the application of an integrated
control-implementation design methodology, re-
cently proposed by our group, to the develop-
ment of an engine control system for motorcycles.
The methodology allowed us to: 1) evaluate in
terms of performance degradation the main effects
of control algorithm implementation at the very
early stage of design when the control solution
is conceived; 2) formally express the constraints
on the implementation platform that guarantee
fulfillment of the system specification. The results
documented in this paper were achieved via in-
tense collaboration between control engineers and
hardware/software designers.
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