Controller Synthesis for Hybrid Systems with a Lower Bound on Event Separation

A. Balluchi§, L. Benvenuti§, T. Villa§†, and A. L. Sangiovanni-Vincentelli§‡

§PARADES G.E.I.E., Rome, Italy
†DIEGM, Universita’ di Udine, Italy
‡Dept. of Electrical Engineering and Computer Sciences,
University of California, Berkeley, California, USA
Outline

- description of the control problem
- hybrid automaton formalism
- example of hybrid thermic model of a room
- the maximal safe set and the maximal controller
- event separation by a timer
- maximal safe set with timer projection
- conclusions
Find a set of states for which there exists a control strategy, for the stove and the heater, which maintains the room temperature within a specified range, no matter what the door and the appliances do, assuming that there is a delay between two successive discrete actions of the door and the stove.
A hybrid automaton is a tuple

\[
H = ((Q, X), (\Sigma_c, U), (M^\text{disc}_c, M^\text{cts}_c), (\Sigma_e, D), (M^\text{disc}_e, M^\text{cts}_e), (\delta, f))
\]

Configuration
- \(Q \) finite set of modes
- \(X \subseteq \mathbb{R}^n \) set of cont. states

Control
- \(\Sigma_c \) finite set of discrete events
- \(\Sigma^\epsilon_c = \Sigma_c \cup \{\epsilon\} \), \(\epsilon \) silent move
- \(M^\text{disc}_c : Q \times X \rightarrow 2^{\Sigma^\epsilon_c} \setminus \{\} \)
- \(\Sigma^\epsilon_e = \Sigma_e \cup \{\epsilon\} \), \(\epsilon \) silent move
- \(M^\text{disc}_e : Q \times X \rightarrow 2^{\Sigma^\epsilon_e} \setminus \{\} \)

Disturbance
- \(D \subseteq \mathbb{R}^P \) set of cont. values
- \(\Sigma^\epsilon_e = \Sigma_e \cup \{\epsilon\} \), \(\epsilon \) silent move
- \(M^\text{disc}_e : Q \times X \rightarrow 2^D \setminus \{\} \)

Transition Funct.
- \(\delta : Q \times X \times \Sigma^\epsilon_c \times \Sigma^\epsilon_e \rightarrow 2^{Q \times X} \setminus \{\} \)
- \(\delta(q, x, \sigma_c, \sigma_e) = W \subseteq Q \times X \)
- \(\delta(q, x, \epsilon, \epsilon) = \{(q, x)\} \)

\(f : Q \times X \times U \times D \rightarrow \mathbb{R}^n \)
- \(\dot{x}(t) = f_q(x(t), u(t), d(t)) \)
- \(x(t_0) = x_0 \)
The set of full-state feedback static controllers for H is the pair $C = (T^{\text{disc}}, T^{\text{cts}})$, $T^{\text{disc}} : Q \times X \rightarrow 2^{\Sigma^e} \setminus \{\}$, $T^{\text{cts}} : Q \times X \rightarrow 2^U \setminus \{\}$ and $\forall (q, x) \in Q \times X$, $T^{\text{disc}}(q, x) \subseteq M^{\text{disc}}_c(q, x)$ and $T^{\text{cts}}(q, x) \subseteq M^{\text{cts}}_c(q, x)$.

The coupling of the hybrid automaton H with the class $C = (T^{\text{cts}}, T^{\text{disc}})$ of full-state feedback static controllers is the closed-loop hybrid automaton

$$H_C = ((Q, X), (U, \Sigma_c), (T^{\text{cts}}, T^{\text{disc}}), (D, \Sigma_e), (M^{\text{cts}}_e, M^{\text{disc}}_e), (f, \delta)).$$

H_C is obtained from H by replacing the discrete controller move function with T^{disc} and the continuous controller move function with T^{cts}.
Closed-Loop Hybrid Automaton H_C

- $\sigma_e \in \Sigma^e_e$
- $d \in D$
- $\sigma_c \in \Sigma^e_c$
- $u \in U$
- $q \in Q$
- $\in X$

PLANT
- dynamics continuous: f
- discrete: δ

ENVIRONMENT

CONTROLLER
Hybrid Thermic Model of the Room

\[\begin{align*}
Q &= \{q_1, q_2, q_3, q_4\} \\
X &= t_c \times T_{ae} \\
\Sigma_c &= \{\text{stove_on, stove_off}\} \\
U &= [0, U_b] \\
M_c^{\text{disc}} &= \epsilon \text{ if } t_c < 0, \ldots \\
M_c^{\text{cts}} &= U \\
\Sigma_e &= \\
D &= [0, D_e] \\
M_e^{\text{disc}} &= \epsilon \text{ if } t_c < 0, \ldots \\
M_e^{\text{cts}} &= D
\end{align*} \]
Maximal Safe Set and Maximal Controller

Given a set $\text{Good} \subset Q \times X$ of configurations that do not violate a safety property, the Maximal Safe Set, Safe, is the maximal robust controlled invariant set contained in Good.

The Maximal Controller is the family of all feedback controllers such that, given any configuration (q, x) in Safe, keep it in Safe.

Fixed–Point Procedure [Tomlin, Lygeros, Sastry - HSCC98]

```plaintext
procedure Safe = $P(H, \text{Good})$
$W^0 := \text{Good}$
$i := -1$
repeat {
    $i := i + 1$
    $W^{i+1} := W^i \setminus [Pre^e_H(W^i) \cup Unavoid_Pre^H(Pre^e_H(W^i) \cup \overline{W^i}, Pre^c_H(W^i))]$
} until $(W^{i+1} = W^i)$
Safe := $W^i$
```
\[Pre_e(W^i) = \{(q, x) \in Q \times X : \forall \sigma_c \in M_{disc}^d(q, x). \exists \sigma_e \in M_{disc}^e(q, x). (\sigma_c, \sigma_e) \neq (\epsilon, \epsilon) \land \delta(q, x, \sigma_c, \sigma_e) \not\subseteq W^i \} \]

\[Pre_c(W^i) = \{(q, x) \in Q \times X : \exists \sigma_c \in M_{disc}^d(q, x). \forall \sigma_e \in M_{disc}^e(q, x). (\sigma_c, \sigma_e) \neq (\epsilon, \epsilon) \land \delta(q, x, \sigma_c, \sigma_e) \subseteq W^i \} \].

\[Unavoid_Pre(B, E) = \{(q, \hat{x}) \in Q \times X | \forall u \in M_{cts}^c \exists \bar{t} > 0 \exists d \in M_{cts}^e \text{ such that for the trajectory } x(t) = \psi_q(u, d, \hat{x}, t) \text{ we have } \forall \tau \in [0, \bar{t}) (q, x(\tau)) \in Wait \land \overline{E} \land (q, x(t)) \in B \} \]
When designing a hybrid system, we may have to guarantee that there is always a delay of at least Δ time units between pairs of consecutive discrete events (e.g., to ensure nonZenoness).

This lower bound can be enforced by introducing a timer t_c ($\dot{t}_c = 1$): events are enabled when $t_c \geq 0$ and jumps reset the timer to $t_c = -\Delta$, so that no discrete event is allowed in the interval $-\Delta \leq t_c < 0$.
How to avoid computing the maximal safe set in the extended space $\tilde{X} = (X, t_c)$?

Since there is only one timer t_c, information about its value can be discretized into the two parts — $t_c = -\Delta$ and $t_c \geq 0$:

1. if $t_c \geq 0$, then it suffices to know that a discrete jump is enabled, whereas the specific value of t_c irrelevant;

2. if $-\Delta \leq t_c < 0$, since t_c after a jump is always reset to $-\Delta$, the value of t_c can be determined by knowing the integration time.

Thus we can move between the two separated parts for $t_c = -\Delta$ and $t_c \geq 0$ by integrating between them for a fixed time Δ.
procedure \([Safe_0, Safe_{-\Delta}] = \mathcal{P}_{tc}^c(H, Good)\)

\(W_0^0 := Good\)

\(W_{-\Delta}^0 := Good\)

\(i := -1\)

repeat

\(i := i + 1\)

\(W_{0}^{i+1} := W_0^i \setminus [Pre_e^H(W_{-\Delta}^i) \cup Unavoid_{Pre_e^H}(Pre_e^H(W_{-\Delta}^i) \cup \overline{W_0^i}, Pre_c^H(W_{-\Delta}^i))]\)

\(W_{-\Delta}^{i+1} := W_{-\Delta}^{i} \setminus Unavoid_{Pre_e^H}_{(-\Delta,0]}(Good, \overline{W_0^{i+1}})\)

\} until \((W_{0}^{i+1} = W_0^i \text{ and } W_{-\Delta}^{i+1} = W_{-\Delta}^{i})\)

\(Safe_0 := W_0^i\)

\(Safe_{-\Delta} := W_{-\Delta}^i\)
Given a set of configurations $K \subseteq Q \times \tilde{X}$:

1. $\pi_{(-\Delta)} : Q \times \tilde{X} \rightarrow Q \times X$ is such that $\pi_{(-\Delta)}(K) = \{(q, x) \in Q \times X | (q, x, -\Delta) \in K\}$, and

2. $\pi_{(0)} : Q \times \tilde{X} \rightarrow Q \times X$ is such that $\pi_{(0)}(K) = \{(q, x) \in Q \times X | (q, x, 0) \in K\}$.

The computation of the safe set can be carried out using only the projections of the sets K for $t_c = -\Delta$ and $t_c \geq 0$.
The sets W^i_0, $W^i_{-\Delta}$ computed by procedure $\mathcal{P}^{tc}(H, Good)$ are the projections, respectively, for $t_c \geq 0$ and $t_c = -\Delta$, of the sets W^i computed by the procedure $\mathcal{P}(\tilde{H}, \tilde{Good})$, where $\tilde{Good} = Good \times \mathbb{R}$, i.e.,

$$W^i_0 = \pi_0(W^i),$$
$$W^i_{-\Delta} = \pi_{(-\Delta)}(W^i).$$

In particular, the repeat cycle of procedure $\mathcal{P}^{tc}(H, Good)$ converges if and only if the cycle of procedure $\mathcal{P}(\tilde{H}, \tilde{Good})$ does, and if so

$$Safe_0 = \pi_0(Safe),$$
$$Safe_{-\Delta} = \pi_{(-\Delta)}(Safe).$$
To reconstruct the set $Safe$, the knowledge of the segments $Safe_0$ and $Safe_{-\Delta}$ is not sufficient; instead one has to obtain also the boundary curves that join them, by means of backward integration from the extremes of the segments.
Since no transition is enabled for $t_c < 0$,

$$Pre_e(W^i)|_q \cap ([-\Delta, 0) \times \mathbb{R}) = \emptyset$$

$$Pre_c(W^i)|_q \cap ([-\Delta, 0) \times \mathbb{R}) = \emptyset$$

From modes (off, closed) and (on, closed) to modes (off, open) and (on, open) the temperature is reset to $T_{ae} := rT_{ae}$.

Unavoidable $Pre()$ is the playable set in a 2-player dynamic game between d and u:

$$\min_{d \in D} \max_{u \in U} H(t_c^*, T_{ae}^*, \lambda_1, \lambda_2, d, u) =$$

$$H(t_c^*, T_{ae}^*, \lambda_1, \lambda_2, d^*, u^*) = 0$$

$$(d^*, u^*) = \begin{cases} (0, U_b) & \text{upper boundary} \\ (D_e, 0) & \text{lower boundary} \end{cases}$$
Conclusions

- $Pre_e(\cdot)$, $Pre_c(\cdot)$ can be written easily in closed form
- no general solution available for $Unavoid_Pre(\cdot)$:
 - exploit system structure, e.g. reduce game to lower dimensions
 - approximate conservative solutions
- timer for discrete event separation
- handle event separation in the discrete domain
- selection of a controller inside the maximal safe set
- application to “idle regime” in engine control