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Motivations. Engine s Stabilization

Driving a 4-cylinder-in-line automotive
engine to a specified set-point

Hybrid
Stabilization Probl

Discrete-Time

Formulation

Hybrid Model of the Engine

T(k+1) =Gm,(k)7(0) +T,
g m(+D =k, p(t)
v, 0{DC, spark, spark & DC} m,(k+1) = m, (k)
Ten=emmnE) +T, D=9
m(k+1) = m (k)
m(k+1) = m (k)
Ak +1) =@(k)

Inputs:

T(k+12) =T(k)

my(k+1) =m(k)
m(k+1) =m(k)
Ak +1) = - 3(t)

p= A,p+bpa
= AZ+bT
d=c,¢

p:%p+bpa
= Al +0,T
d=c

b= A,p+bpa
= AZ+bT
d=c,¢

T(k+1)=0
m,(k+1) =k, p(t)
m,(k+1) =m, (k)
Ak+1) = g(k)

T(k+1) =Gm, (k)7(¢(k)) +T,
m (k+1) =k, p(t)
my(k+D=m, (k)




DT-Hybrid Model of the Engine

1
{(k+1) = A (k) +b,T (k)

T(k+1) =Gm, (k)7(0)+T,

m(k+1) =m, (k)
m(k+1) = m(K)
S(k+1)=0

m,(K)
Inputs: %(k) >0
Hoooft2343

{(k+1) = A () +b,T (k)
T(k+1) = Gm,()n(-F(K) +T,
m,(k+1) =m,(k)

m(k+1) = m(K)

S(k+1) =F(K)

{(k+1) = AL (K)+BT(K)
T(k+1) =0
m,(k+1) = m, (k)
m(k+1) =m (k)
S(k+1)=0

{(k+1) = A (k) +b,T (k)
T(k+1) =T (k)

m,(k+1) =m,(k)
m(k+1) = m(K)

S(k+1) =m-F(K)

{(k+1) = A (k) +b,T (k)
T(k+1) =Gm, (@ (K)+T,
m(k+1) =m, (k)

m(k+1)=m (k)

S(k+1)=0

"‘-‘._‘_\ y(k) = fi(k) (Z(k))

Zk+1) = Ry (2(),m, (k). #(K))

~ . | Find the feedback control law:
¢ o, (2(k),i(k D)

05 (2(K), i (k -1))

1 |H@zk),i(k-1)

/| that gives:

lim y(k) = Yo




Approaching the Problem: State Stabilization
I —

We start considering the problem Find the feedback control law:
of state stabilization for the
discrete-time hybrid linear u(z(k),i(k-1)

automaton: 0(z(k),i(k -1)) '

z(k+1) = A,y z(k) + B, u(k) that gives:

with the same 5-locations FSM. lim z(k) =0

Explicit Design of Stabilizing Switching Strategies
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Previous Results:

I —
¢ Engine Control:
* Balluchi, Benvenuti et a. [ACC 2000]: Idle speed control

¢ Continuous-time Switched Systems:
» Wicks, Peleties and DeCarlo [CDC 1994]: Stable convex
combinations on conti nuous-time switched systems;
* Pettersson and Lennartson [ACC 2001]: Stable convex combinations
in the context of min-projection strategy;
» Johansson and Rantzer [IEEE 1998]: Computation of piecewise
quadratic Lyapunov functions.

® Discrete-time Switched and Hybrid Systems:
» Bemporad, Borrelli and Morari [HSCC 2002]: Optimal control of
piecewise affine systems,
* Cuzzola and Morari [HSCC 2001]: Stabilization of piecewise affine
systems.
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CT-Stable Convex Combinations
[
In the continuous-time case, the switched system

X=AX

under the switching law

i =argmin, {x()" (ATP+ PA )x(®)}

is asymptotically stable, with rate of convergence greater or
equal to Q, if the following problem has a solution:

> 0(ATP+PA)<-Q

0,20, P,Q>0

53=1

DT-Stable Convex Combinations

We propose an extension to the discrete time domain, based on
the solution of the system:

> 6(ATPA-P)<-Q

520, P,Q>0

5,01

that implies stability for the switched system
X(k+1 = Ay x(k)

under the switching law

i(k) = argmin, {x(<)" (AT PA ~P)x(k}




DT-Stable Convex Combinations and FSMs

Three different
approaches

l Common Lyapunov

Function

Negative Definite
Multiple Stable
Convex Combination

Non-Definite
Multiple Stable
Convex Combination

Negative Definite Multiple Stable Convex Combinations

Di:l..|L|

5ij(A]TPjAj _R)S_Qi °
i%ot) .
5]-20, F?,Q]. >0 .

15” - ‘
%: A +1BiKi @

1 =argminix()” (AP A =Ry (K)]
V(%K) = x(k)" Pk X(K)




Non-Definite Multiple Stable Convex Combinations

Oi:1.JL, 01 O 7(i) st.:
x(k=1"(ATRA = R)x(k-1) <0,
x(K)" S &, (AP A ~P)x(k) <0

I
jdo(i)

3,20, P>0

215” =1

0
.
.
.
.

V(%K) = x(K)" P X(K)

109 =arg minp(k)" (A'PA = Ry)X(K)] &)

Common Lyapunov Function

> 0(APA-P)<-Q
5,20, P,Q>0
>.4=1

A=A A LA
A =A+BK

i(k) = argmin {x(K)" (AT PA, - P)x(K)]
V(X) = X" Px




Numerical Examples

I ——
Common Lyapunov Function approach on the previous FSM,

with the following open-loop dynamic matrices (obtained by a
simplified model of the engine):

[0.9453 34842 0 O 0O 09542 29171 0O 0O
ado o ad u-d) Afo 1 o) b
5o o o0f B 5o o 1§ P

09907 05944 0 0O
A=D0 0 s bof
ERY 0 O0f E'E

Numerical Examples

with the ‘macro-transformations defined as.
A=A; A=AA
The solution obtained is;
_ 1.179 5.917 -0.60 o
L =
.000 0,000 0.000 [0.000 0000 0.0007]

2~ 19000 0000 0.00H
[0226 -0042 —0.068 @1

“Ho229 -0018 -061




